
Lecture group
MIP-GNN: A Data-Driven Framework for Guiding

Combinatorial Solvers by Khalil et al.

Alexandre Schulz

September 26, 2022

Context

▶ enhancing MIP solvers with data-driven insights

▶ Graph Neural Networks (GNN)

▶ Predicting variable biases

▶ Application to Binary Linear Programs (BLP)

▶ Node selection and warm-starting

Variable biases

Let I := (A, b, c) ∈ Qm×n ×Qm ×Qn be an instance of a BLP
problem. The set of integer solutions of I is :

FInt(I) = {x ∈ Zn|Ax ≤ b, x ∈ Z∗+} (1)

The set of near-optimal solutions :

F ∗
ϵ (I) = {x ∈ FInt(I) : |c

T x∗ − cT x | ≤ ϵ} (2)

Variable biases are defined as [...] component-wise averaging over
a set of near-optimal solutions [...]

b̄(I) =
1

|F ∗
ϵ |

∑
x∈F∗

ϵ (I)

x (3)

Training

Let C be a set of CO problems and D a distribution over C.
Training aims at learning a function fθ : V → R where the set of
parameters is θ ∈ Θ. We note S the training set sampled from D.

min
θ∈Θ

1

|S |
∑
I∈S

l(fθ(V(I)), b̄(I)) (4)

MIP-GNN architecture

▶ instance encoded as a bipartite graph
B(I) = (V (I),C (I),E (I))

▶ variable-to-constraint (v-to-c)

▶ constraint-to-variable (c-to-v)

v-to-c and c-to-v layers are stacked in an alternating manner.

MIP-GNN architecture
Variable to constraint pass

Let

▶ v
(t)
i ∈ Rd variable features

▶ c
(t)
j ∈ Rd constraint features

Update the constraint embeddings:

c
(t+1)
j = f

W2,C

merge

(
c
(t)
j , f

W1,C

aggr ({[v
(t)
i ,Aji , bj]|vi ∈ N(cj)})

)
(5)

▶ f
W1,C

aggr aggregates over adjacent variables

▶ f
W1,C

merge merges constraint embeddings

MIP-GNN architecture
Constraint to variable pass

Assign a scalar value to the variables of the problem:

x̄i = f Wa
asg(x

(t)
i) (6)

Compute the error message : [...] indicating how much the j-th
constraint, [...], contributes to the constraints’ violation in total.

e = softmax(Ax̄ − b) ∈ Rm (7)

Update the variable embeddings :

v
(t+1)
i = f

W2,V

merge(v
(t)
i , f

W1,V

aggr ({[c
(t)
j ,Aji , bj , ej]|cj ∈ N(vi)})) (8)

Training

A this point predicting the variable assignments is a regression
problem. Training can be simplified by transforming the problem
into a classification problem : choose a threshold value τ > 0 and
assign classes :

b̂i =

{
0 if b̄i ≤ τ
1 otherwise

(9)

Evaluation
Node selection

Let p̂ ∈ [0, 1]n be the prediction of the model. Define a confidence
score :

score(p̂i) = 1− |p̂i − ⌊p̂i⌉| (10)

where ⌊·⌉ rounds to the nearest integer.
Define a node score used to guide the branching process as the
sum of confidence scores (or complement) for the set of variables
that are fixed the the current node :

node-score(N; p̂) =

{
score(p̂i) ifxNi = ⌊p̂i⌉
1− score(p̂i) otherwise

(11)

Evaluation
Node selection

Figure: Node selection example

Evaluation
Warm starting

[...] attempt to directly construct a feasible solution via rounding.
Introduction of a rounding threshold pmin ∈ [0.5, 1). Variable bias
prediction are rounded to the nearest integer :

x̂i = ⌊p̂i⌉ if score(p̂i) ≥ pmin (12)

Threshold grid values {.99, .98, .96, .92, .84, .68}, CPLEX’s solution
repair used to produce feasible solution.

Experimental results

▶ CPLEX used as a baseline (version 12.10.0)
▶ two problem datasets :

▶ Generalized independent set problem (GISP) (10 problem sets,
1000 training instances, 100 testing)

▶ Fixed-charge multi-commodity network flow problem (FCMNF)
(1 problem set, 1000 training instances, 100 testing)

▶ Feature dimension of 64

▶ 4 interleaved v-to-c and c-to-v passes followed by a 4-layer
MLP

Experimental results

Conclusions

▶ Node selection :
▶ GISP : improved primal integral, improved quality of the best

solution
▶ FCMNF : better solution in 81% of test instances, smaller

primal integral in 62%

▶ Warm starting
▶ better final solution in 6/9 GISP datasets
▶ better optimality gap
▶ basic warm starting

