Learning with Combinatorial Optimization Layers: a Probabilistic Approach

Guillaume Dalle, Léo Baty, Louis Bouvier, Axel Parmentier presented by Francesco Demelas

・ロト < 回 ト < 三 ト < 三 ト 三 の へ で 1/23
</p>

We want introduce a way to use two kinds of layers:

- Machine Learning layers,
- Combinatorial Optimization layers.

Here we find two main challenges:

- Transform a C.O. problem in an useful layer (by defining meaningful derivatives),
- Find a good loss.

$$\underbrace{\text{Input } x}_{\text{Input } x} \left(\text{ML layer } \varphi_w \right) \xrightarrow{\text{Objective } \theta = \varphi_w(x)} \left(\begin{array}{c} \text{CO oracle } f \end{array} \right) \xrightarrow{\text{Solution } y = f(\theta)} \left(\begin{array}{c} \text{Loss function } \mathcal{L} \end{array} \right)$$

・ロ ・ ・ 日 ・ ・ 目 ・ ・ 目 ・ の へ ? 2/23

$$f: \theta \to \arg \max_{v \in \nu} \theta^T v$$

where:

• $\theta \in \mathbb{R}^d$ is the *objective direction*.

• $\nu \subseteq \mathbb{R}^d$ is a finite set of the *feasible solutions*.

Any MILP and LP can be written in this way.

Similar arguments can be made for:

 $f: \theta \to \arg \max_{v \in \nu} \theta^T g(v)$

for any $g: \nu \to \mathbb{R}^d$.

We consider this formulation as the objective function is linear ans so it makes no difference to optimize over ν or $conv(\nu)$.

・ロト ・ 日 ・ ・ 三 ・ ・ 三 ・ つ へ (* 3/23)

$$f: \theta \to \arg \max_{v \in \nu} \theta^T v$$

where:

• $\theta \in \mathbb{R}^d$ is the objective direction.

• $\nu \subseteq \mathbb{R}^d$ is a finite set of the *feasible solutions*.

Any MILP and LP can be written in this way. Similar arguments can be made for:

$$f: \theta \to \arg \max_{v \in \nu} \theta^T g(v)$$

for any $g: \nu \to \mathbb{R}^d$.

We consider this formulation as the objective function is linear ans so it makes no difference to optimize over ν or $conv(\nu)$.

Motivating Example - Warcraft

Shortest path on a map.

Motivating Example

Motivating Example - Warcraft

Shortest path on a map.

Code sample 1: CNN encoder for Warcraft

Code sample 2: Dijkstra optimizer for Warcraft

```
x, theta_ref, y_ref = images[1], cells[1], paths[1]
theta = warcraft_encoder(x)
y = warcraft_maximizer(theta)
c = warcraft_cost(y; theta_ref=theta_ref)
```

Code sample 3: Full pipeline for Warcraft shortest paths $\langle \Box \rangle \rangle \langle B \rangle \langle \Xi \rangle \rangle \langle \Xi \rangle \rangle \equiv \langle \Im Q \rangle \langle \langle 4/23 \rangle$

Lack of useful derivatives

In order to handle with the lack of useful derivatives we consider **approximate derivatives**.

Let be:

 $\blacktriangleright p(v|\theta) = \delta_{f(\theta)}(v),$

• \hat{p} the smooth and differentiable (w.r.t. θ) approximation of p,

We define the probabilistic layer as

$$\hat{f}(heta) = \mathbb{E}_{\hat{
ho}(\cdot| heta)}[V] = \sum_{v \in
u} v \hat{
ho}(v| heta).$$

We assume that the expectation must be tractable, e.g. with Monte Carlo.

We assume also that all the computations must only require calls to the CO oracle f.

f̂ is differentiable as

$$J_{\theta}\hat{f}(\theta) = J_{\theta}\mathbb{E}_{\hat{\rho}(\cdot \mid \theta)}[V] = \sum_{v \in \nu} v \nabla_{\theta} \hat{\rho}(v|\theta)^{\top}$$

< □ ▶ < □ ▶ < ≧ ▶ < ≧ ▶ E の Q ↔ 5/23

Lack of useful derivatives

In order to handle with the lack of useful derivatives we consider **approximate derivatives**.

Let be:

 $\blacktriangleright p(v|\theta) = \delta_{f(\theta)}(v),$

• \hat{p} the smooth and differentiable (w.r.t. θ) approximation of p,

We define the probabilistic layer as

$$\hat{f}(heta) = \mathbb{E}_{\hat{
ho}(\cdot| heta)}[V] = \sum_{v \in
u} v \hat{
ho}(v| heta).$$

We assume that the expectation must be tractable, e.g. with Monte Carlo.

We assume also that all the computations must only require calls to the CO oracle f.

 \hat{f} is differentiable as

$$J_{\theta}\hat{f}(\theta) = J_{\theta}\mathbb{E}_{\hat{\rho}(\cdot \ \theta)}[V] = \sum_{v \in \nu} v \nabla_{\theta}\hat{\rho}(v|\theta)^{T}$$

< □ ▶ < □ ▶ < ≧ ▶ < ≧ ▶ E の Q ↔ 5/23

Effect of CO layer

Example

If $\hat{p}(e_i|\theta) = e^{\theta^T e_i} = e^{\theta_i}$ then the **probabilistic layers** is:

$$\hat{f}(\theta) = \mathbb{E}_{\hat{
ho}(\cdot| heta)}[V] = \sum_{i=1}^{d} \frac{e^{ heta_i}}{\sum_{j=1}^{d} e^{ heta_j}} e_i = softmax(heta)$$

We consider a regularized version of the CO problem:

$$\widehat{f}_{\Omega}: heta
ightarrow {
m arg\,max}_{\mu\in \mathit{dom}(\Omega)} heta^t\mu - \Omega(\mu)$$

with $\Omega : \mathbb{R}^d \to \mathbb{R}$ smooth and convex penalization function, and $\mu \in dom(\Omega) \subseteq conv(\nu)$.

It is easy to see that any feasible μ is the expectation of some distribution over ν , hence *regularization* is just another way to define *probability distributions*.

< □ ▶ < □ ▶ < ≧ ▶ < ≧ ▶ E の Q @ 7/23

We consider a regularized version of the CO problem:

$$\widehat{f}_{\Omega}: heta
ightarrow {
m arg\,max}_{\mu\in {\it dom}(\Omega)} heta^t\mu - \Omega(\mu)$$

with $\Omega : \mathbb{R}^d \to \mathbb{R}$ smooth and convex penalization function, and $\mu \in dom(\Omega) \subseteq conv(\nu)$.

It is easy to see that any feasible μ is the expectation of some distribution over ν , hence *regularization* is just another way to define *probability distributions*.

< □ ▶ < □ ▶ < ≧ ▶ < ≧ ▶ E の Q @ 7/23

We will see three possibilities:

- Additive Perturbation
- ► *Multiplicative* Perturbation

8/23

► General *Regularization*

$$\hat{f}_{\epsilon}^{+}(\theta) = \mathbb{E}[\arg\max_{v \in \nu}(\theta + \epsilon Z)^{T}v] = \mathbb{E}[f(\theta + \epsilon Z)] = \sum_{v \in \nu} v\hat{\rho}_{\epsilon}^{+}(v|\theta)$$

where
$$\hat{p}_{\epsilon}^+(v|\theta) = \mathbb{P}(f(\theta + \epsilon Z) = v).$$

Differentiate

$$\nabla_{\theta} \hat{\rho}_{\epsilon}^{+}(v|\theta) = \frac{1}{\epsilon} \mathbb{E}[\delta_{f(\theta+\epsilon Z)=v} Z]$$

$$J_{\theta} \hat{f}_{\epsilon}^{+}(\theta) = \frac{1}{\epsilon} \mathbb{E}[f(\theta+\epsilon Z) Z^{T}]$$

Let be
$$F_{\epsilon}^{+}(\theta) = \mathbb{E}[\max_{v \in \nu}(\theta + \epsilon Z)^{T}v]$$
 and
 $\Omega_{\epsilon}^{+}(\nu) = (F_{\epsilon}^{+})^{*}(\nu) = \sup_{\theta}(\theta^{T}v - F_{\epsilon}^{+}(\theta)).$
 $\Omega_{\epsilon}^{+}(\nu)$ is convex, $dom(\Omega_{\epsilon}^{+}(\nu)) \subseteq conv(\nu)$ and
 $\hat{f}_{\epsilon}^{+}(\theta) = \arg\max_{\mu \in conv(\nu)} \theta^{T}\mu - \Omega_{\epsilon}^{+}(\nu)$

$$\hat{f}_{\epsilon}^{+}(\theta) = \mathbb{E}[\arg\max_{v \in \nu}(\theta + \epsilon Z)^{T}v] = \mathbb{E}[f(\theta + \epsilon Z)] = \sum_{v \in \nu} v\hat{\rho}_{\epsilon}^{+}(v|\theta)$$

where
$$\hat{p}_{\epsilon}^{+}(v|\theta) = \mathbb{P}(f(\theta + \epsilon Z) = v).$$

Differentiate

$$\blacktriangleright \nabla_{\theta} \hat{p}_{\epsilon}^{+}(v|\theta) = \frac{1}{\epsilon} \mathbb{E}[\delta_{f(\theta+\epsilon Z)=v} Z]$$

►
$$J_{\theta}\hat{f}^{+}_{\epsilon}(\theta) = \frac{1}{\epsilon}\mathbb{E}[f(\theta + \epsilon Z)Z^{T}]$$

Let be
$$F_{\epsilon}^{+}(\theta) = \mathbb{E}[\max_{v \in \nu}(\theta + \epsilon Z)^{\top} v]$$
 and
 $\Omega_{\epsilon}^{+}(\nu) = (F_{\epsilon}^{+})^{*}(\nu) = \sup_{\theta}(\theta^{\top} v - F_{\epsilon}^{+}(\theta)).$
 $\Omega_{\epsilon}^{+}(\nu)$ is convex, $dom(\Omega_{\epsilon}^{+}(\nu)) \subseteq conv(\nu)$ and
 $\hat{f}_{\epsilon}^{+}(\theta) = \arg\max_{\mu \in conv(\nu)} \theta^{\top} \mu - \Omega_{\epsilon}^{+}(\nu)$

$$\hat{f}_{\epsilon}^{+}(\theta) = \mathbb{E}[\arg\max_{v \in \nu}(\theta + \epsilon Z)^{T}v] = \mathbb{E}[f(\theta + \epsilon Z)] = \sum_{v \in \nu} v\hat{\rho}_{\epsilon}^{+}(v|\theta)$$

where
$$\hat{p}_{\epsilon}^{+}(v|\theta) = \mathbb{P}(f(\theta + \epsilon Z) = v).$$

Differentiate

$$\blacktriangleright \nabla_{\theta} \hat{p}_{\epsilon}^{+}(v|\theta) = \frac{1}{\epsilon} \mathbb{E}[\delta_{f(\theta+\epsilon Z)=v} Z]$$

$$\blacktriangleright \ J_{\theta}\hat{f}_{\epsilon}^{+}(\theta) = \frac{1}{\epsilon}\mathbb{E}[f(\theta + \epsilon Z)Z^{T}]$$

Let be
$$F_{\epsilon}^{+}(\theta) = \mathbb{E}[\max_{v \in \nu}(\theta + \epsilon Z)^{T}v]$$
 and
 $\Omega_{\epsilon}^{+}(\nu) = (F_{\epsilon}^{+})^{*}(\nu) = \sup_{\theta}(\theta^{T}v - F_{\epsilon}^{+}(\theta)).$
 $\Omega_{\epsilon}^{+}(\nu)$ is convex, $dom(\Omega_{\epsilon}^{+}(\nu)) \subseteq conv(\nu)$ and
 $\hat{f}_{\epsilon}^{+}(\theta) = \arg\max_{\mu \in conv(\nu)} \theta^{T}\mu - \Omega_{\epsilon}^{+}(\nu)$

Multiplicative Perturbation

$$\hat{f}_{\epsilon}^{\odot} = \mathbb{E}[\arg\max_{v \in \nu} (\theta \odot e^{\epsilon Z - \epsilon^2/2})^T v] = \mathbb{E}[f(\theta \odot e^{\epsilon Z - \epsilon^2/2}] = \sum_{v \in \nu} v \hat{p}_{\epsilon}^{\odot}(v|\theta)$$

where
$$\hat{p}_{\epsilon}^{\odot}(v|\theta) = \mathbb{P}(f(\theta \odot e^{\epsilon Z - \epsilon^2/2}) = v).$$

Differentiate

$$\nabla_{\theta} \hat{\rho}_{\epsilon}^{\odot}(v|\theta) = \frac{1}{\epsilon} \theta \odot \mathbb{E}[\delta_{f(\theta \odot e^{\epsilon Z - \epsilon^2/2}) = v} Z]$$

$$J_{\theta} \hat{f}_{\epsilon}^{\odot}(\theta) = \frac{1}{\epsilon \theta} \mathbb{E}[f(\theta \odot e^{\epsilon Z - \epsilon^2/2}) Z^{T}]$$

Let be
$$F_{\epsilon}^{\odot}(\theta) = \mathbb{E}[\max_{v \in \nu} (\theta \odot e^{\epsilon Z - \epsilon^2/2})^T v]$$
 and $\Omega_{\epsilon}^{\odot}(\nu) = (F_{\epsilon}^{\odot})^*(\nu)$.
 $\Omega_{\epsilon}^{\odot}(\nu)$ is convex and satisfies
 $\hat{f}_{\epsilon}^{\odot}(\theta) = \arg\max_{\mu \in conv(\nu)} \theta^T \mu - \Omega_{\epsilon}^{\odot}(\nu) = \hat{f}_{\Omega_{\epsilon}^{\odot}(\theta)}$ but
 $dom(\Omega_{\epsilon}^{\odot}(\nu)) \not\subseteq conv(\nu)$.

Multiplicative Perturbation

$$\hat{f}_{\epsilon}^{\odot} = \mathbb{E}[\arg\max_{v\in\nu}(\theta\odot e^{\epsilon Z-\epsilon^2/2})^T v] = \mathbb{E}[f(\theta\odot e^{\epsilon Z-\epsilon^2/2}] = \sum_{v\in\nu} v\hat{p}_{\epsilon}^{\odot}(v|\theta)$$

where
$$\hat{p}_{\epsilon}^{\odot}(v|\theta) = \mathbb{P}(f(\theta \odot e^{\epsilon Z - \epsilon^2/2}) = v).$$

Differentiate

$$\blacktriangleright \nabla_{\theta} \hat{\rho}^{\odot}_{\epsilon}(v|\theta) = \frac{1}{\epsilon} \theta \odot \mathbb{E}[\delta_{f(\theta \odot e^{\epsilon Z - \epsilon^2/2}) = v} Z]$$

•
$$J_{\theta}\hat{f}_{\epsilon}^{\odot}(\theta) = \frac{1}{\epsilon\theta}\mathbb{E}[f(\theta \odot e^{\epsilon Z - \epsilon^2/2})Z^T]$$

Let be
$$F_{\epsilon}^{\odot}(\theta) = \mathbb{E}[\max_{v \in \nu} (\theta \odot e^{\epsilon Z - \epsilon^2/2})^T v]$$
 and $\Omega_{\epsilon}^{\odot}(\nu) = (F_{\epsilon}^{\odot})^*(\nu)$.
 $\Omega_{\epsilon}^{\odot}(\nu)$ is convex and satisfies
 $\hat{f}_{\epsilon}^{\odot}(\theta) = \arg\max_{\mu \in conv(\nu)} \theta^T \mu - \Omega_{\epsilon}^{\odot}(\nu) = \hat{f}_{\Omega_{\epsilon}^{\odot}(\theta)}$ but
 $dom(\Omega_{\epsilon}^{\odot}(\nu)) \not\subseteq conv(\nu)$.

Multiplicative Perturbation

$$\hat{f}_{\epsilon}^{\odot} = \mathbb{E}[\arg\max_{v\in\nu}(\theta\odot e^{\epsilon Z-\epsilon^2/2})^T v] = \mathbb{E}[f(\theta\odot e^{\epsilon Z-\epsilon^2/2}] = \sum_{v\in\nu} v\hat{p}_{\epsilon}^{\odot}(v|\theta)$$

where
$$\hat{p}_{\epsilon}^{\odot}(v|\theta) = \mathbb{P}(f(\theta \odot e^{\epsilon Z - \epsilon^2/2}) = v).$$

Differentiate

$$\blacktriangleright \nabla_{\theta} \hat{p}^{\odot}_{\epsilon}(v|\theta) = \frac{1}{\epsilon} \theta \odot \mathbb{E}[\delta_{f(\theta \odot e^{\epsilon Z - \epsilon^2/2}) = v} Z]$$

•
$$J_{\theta}\hat{f}^{\odot}_{\epsilon}(\theta) = \frac{1}{\epsilon\theta}\mathbb{E}[f(\theta \odot e^{\epsilon Z - \epsilon^2/2})Z^T]$$

Let be
$$F_{\epsilon}^{\odot}(\theta) = \mathbb{E}[\max_{v \in \nu}(\theta \odot e^{\epsilon Z - \epsilon^2/2})^T v]$$
 and $\Omega_{\epsilon}^{\odot}(\nu) = (F_{\epsilon}^{\odot})^*(\nu)$.
 $\Omega_{\epsilon}^{\odot}(\nu)$ is convex and satisfies
 $\hat{f}_{\epsilon}^{\odot}(\theta) = \arg\max_{\mu \in conv(\nu)} \theta^T \mu - \Omega_{\epsilon}^{\odot}(\nu) = \hat{f}_{\Omega_{\epsilon}^{\odot}(\theta)}$ but
 $dom(\Omega_{\epsilon}^{\odot}(\nu)) \not\subseteq conv(\nu)$.

Starting from an *explicit regularization* Ω smooth and convex we can obtain an *approximate* $\hat{f}_{\Omega}(\theta)$ using the **Frank-Wolfe algorithm**.

The Frank-Wolfe algorithm is interesting for two reasons:

- **•** Requires only the access to the C.O. oracle f and the gradient of Ω .
- The algorithm provides both a solution $\hat{f}_{\Omega}(\theta)$, but also a sparse probability distribution $\hat{\rho}_{\Omega}^{FW}$ (this one is not uniquely specified by Ω).

Differentiate

$$J_{\theta}\hat{f}_{\Omega}(\theta) = \sum_{v \in \nu} v \nabla_{\theta} \hat{p}_{\Omega}^{FW}(v|\theta)^{T}$$

Starting from an *explicit regularization* Ω smooth and convex we can obtain an *approximate* $\hat{f}_{\Omega}(\theta)$ using the **Frank-Wolfe algorithm**. The Frank-Wolfe algorithm is interesting for two reasons:

- Requires only the access to the C.O. oracle f and the gradient of Ω .
- The algorithm provides both a solution f_Ω(θ), but also a sparse probability distribution p̂^{FW}_Ω (this one is not uniquely specified by Ω).

Differentiate

$$J_{\theta}\hat{f}_{\Omega}(\theta) = \sum_{v \in \nu} v \nabla_{\theta} \hat{p}_{\Omega}^{FW}(v|\theta)^{T}$$

Starting from an *explicit regularization* Ω smooth and convex we can obtain an *approximate* $\hat{f}_{\Omega}(\theta)$ using the **Frank-Wolfe algorithm**. The Frank-Wolfe algorithm is interesting for two reasons:

- Requires only the access to the C.O. oracle f and the gradient of Ω .
- The algorithm provides both a solution f_Ω(θ), but also a sparse probability distribution p̂^{FW}_Ω (this one is not uniquely specified by Ω).

Differentiate

$$J_{ heta} \hat{f}_{\Omega}(heta) = \sum_{m{v} \in
u} m{v}
abla_{ heta} \hat{p}^{FW}_{\Omega}(m{v}|m{ heta})^{\mathcal{T}}$$

If we consider the *quadratic penalty* $\Omega(\mu) = \frac{1}{2} \|\mu\|^2$ we find the **Sparse Map Method** with:

$$\widehat{f}_{\Omega} = \arg \max_{\mu \in conv(\nu)} \{ \theta^{\mathsf{T}} \mu - \frac{1}{2} \| \mu \|^2 \} = \arg \min_{\mu \in conv(\nu)} \| \mu - \theta \|^2.$$

Example: Quadratic Penality

If we consider the *quadratic penalty* $\Omega(\mu) = \frac{1}{2} \|\mu\|^2$ we find the **Sparse** Map Method with:

$$\widehat{f}_{\Omega} = rg\max_{\mu \in \mathit{conv}(
u)} \{ heta^{\mathsf{T}} \mu - rac{1}{2} \|\mu\|^2 \} = rg\min_{\mu \in \mathit{conv}(
u)} \|\mu - heta\|^2.$$

```
using InferOpt
perturbed_add = PerturbedAdditive(
    warcraft_maximizer;
    epsilon=0.5, nb_samples=10
)
perturbed_mult = PerturbedMultiplicative(
    warcraft_maximizer;
    epsilon=0.5, nb_samples=10
}
```

Code sample 5: Probabilistic CO layers defined by perturbation

```
using InferOpt
regularized = RegularizedGeneric(
   warcraft_maximizer;
   omegary -> 0.5 * sum(y .^ 2),
   omega_grad=y -> y
)
```

Code sample 6: Probabilistic CO layer defined by regularization Two main paradigms:

- Learning by experience
- Learning by imitation

Similar to reinforcement learning, but there are few **differences**, as in RL:

- ▶ is based on *Markov decision processes*,
- ▶ the available actions are *elementary*,
- the policy update is local (depends to the state and to the action),
- The Bellman fixed point equation is used explicitly to derive parameter updates

Learning by experience

Learning Problem

$$\min_{w} \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}(\varphi_{w}(x^{(i)}))$$

For simplicity we consider a single point input x and the gradient for $\theta = \varphi_w(x)$.

We can assume that exists $c : \nu \to \mathbb{R}$ a **cost function** for the problem. A *natural loss* could be $R(\theta) = c(f(\theta))$ and so we can have the impulse to take $\hat{R}(\theta) = c(f(\theta))$ but also this is **not** smooth and it could be defined only in ν .

Solution : Expected regret

 $R_{\hat{\rho}}(\theta) = \mathbb{E}_{\hat{\rho}(\cdot|\theta)}[c(V)]$

this is as smooth as the probability mapping $\hat{p}(\cdot| heta)$.

<□ ▶ < @ ▶ < E ▶ < E ▶ E りへで 15/23

Learning by experience

Learning Problem

$$\min_{w} \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}(\varphi_{w}(x^{(i)}))$$

For simplicity we consider a single point input x and the gradient for $\theta = \varphi_w(x)$. We can assume that exists $c : \nu \to \mathbb{R}$ a **cost function** for the problem. A *natural loss* could be $R(\theta) = c(f(\theta))$ and so we can have the impulse to take $\hat{R}(\theta) = c(f(\theta))$ but also this is **not** *smooth* and *it could be defined only in* ν .

Solution : Expected regret $R_{\hat{\rho}}(\theta) = \mathbb{E}_{\hat{\rho}(\cdot|\theta)}[c(V)]$ this is as smooth as the probability mapping $\hat{\rho}(\cdot|\theta)$.

Learning by experience

Learning Problem

$$\min_{w} \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}(\varphi_{w}(x^{(i)}))$$

For simplicity we consider a single point input x and the gradient for $\theta = \varphi_w(x)$.

We can assume that exists $c : \nu \to \mathbb{R}$ a **cost function** for the problem. A *natural loss* could be $R(\theta) = c(f(\theta))$ and so we can have the impulse to take $\hat{R}(\theta) = c(f(\theta))$ but also this is **not** *smooth* and *it could be defined* only in ν .

Solution : Expected regret

$$R_{\hat{\rho}}(\theta) = \mathbb{E}_{\hat{\rho}(\cdot|\theta)}[c(V)]$$

this is as smooth as the probability mapping $\hat{p}(\cdot|\theta)$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ = のへで 15/23

$$\begin{split} & \nabla_{\theta} R_{\hat{\rho}_{\epsilon}^{+}(\theta)} = \frac{1}{\epsilon} \mathbb{E}[(c \circ f)(\theta + \epsilon Z)Z] \\ & \bullet \nabla_{\theta} R_{\hat{\rho}_{\epsilon}^{\odot}(\theta)} = \frac{1}{\epsilon} \mathbb{E}[(c \circ f)(\theta + e^{\epsilon Z - \epsilon^{2}/2})Z] \\ & \bullet \nabla_{\theta} R_{\hat{\rho}_{\epsilon}^{FW}(\theta)} = \sum_{v \in \nu} c(v) \nabla_{\theta} \nabla_{\theta} \hat{\rho}_{\Omega}^{FW}(v \mid \theta) \end{split}$$

```
using InferOpt
regret_pert = Pushforward(
    perturbed_add, warcraft_cost
)
regret_reg = Pushforward(
    regularized, warcraft_cost
)
```

Code sample 7: Expected regrets associated with probabilistic CO layers using Zygote

```
R = regret(theta)
Zygote.gradient(regret, theta)
```

Code sample 8: Supported operations for an expected regret

```
using Flux, InferOpt
gradient_optimizer = ADAM()
parameters = Flux.params(warcraft_encoder)
data = images
function pipeline_loss(x)
    theta = warcraft_encoder(x)
    return regret(theta)
end
for epoch in 1:1000
    train!(pipeline_loss, parameters, data, gradient_optimizer)
end
```

Code sample 9: Learning with an expected regret

Learning by imitation

Learning Problem

$$\min_{w} \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}(f(\varphi_{w}(x^{(i)})), \overline{t}^{(i)})$$

We have two kinds of target:

- ▶ a good quality solution $t = \bar{y}$
- **•** true **objective direction** $\bar{\theta}$

Method	Notation	Target	Base loss	Regul.	Loss formula
S-SVM	$\mathcal{L}_{\ell}^{\mathrm{S-SVM}}$	\bar{y}	$\ell(y, \bar{y})$	No	$\max_{y} \ell(y, \bar{y}) + \theta^{\top}(y - \bar{y})$
SPO+	$\mathcal{L}^{\mathrm{SPO}+}$	$(\bar{\theta}, \bar{y})$	$\bar{\theta}^\top (\bar{y} - y)$	No	$\max_{y} \bar{\theta}^{\top}(\bar{y} - y) + 2\theta^{\top}(y - \bar{y})$
$\mathbf{F}\mathbf{Y}$	$\mathcal{L}_{\Omega}^{\mathrm{FY}}$	\bar{y}	0	Yes	$\max_{u}^{y} \theta^{\top}(y-\bar{y}) - (\Omega(y) - \Omega(\bar{y}))$
Generic	$\mathcal{L}^{\rm gen}$	\bar{t}	$\ell(y,\bar{t})$	Yes	$\max_{y} \ell(y, \bar{t}) + \theta^{\top}(y - \bar{y}) - (\Omega(y) - \Omega(\bar{y}))$

Table 2: A common decomposition for loss functions in imitation learning

Let be

$$\mathcal{L}^{aux}(\theta, \bar{t}, y) = l(y, \bar{t}) + \theta^{T}(y - \bar{y}) - (\Omega(y) - \Omega(\bar{y}))$$

Generic Loss

$$\mathcal{L}^{gen}(\theta, \bar{t}) = \max_{y \in dom(\Omega)} \mathcal{L}^{aux}(\theta, \bar{t}, y)$$

 \mathcal{L}^{gen} is convex w.r.t. θ and

 $\operatorname{arg\,max}_{y \in dom(\Omega)} \mathcal{L}^{aux}(\theta, \bar{t}, y) - \bar{y} \in \partial_{\theta} \mathcal{L}^{gen}(\theta, \bar{t})$

The generic loss is a cross-over between the Fenchel-Young loss and the problem specific base loss. Let be

$$\mathcal{L}^{aux}(\theta, \bar{t}, y) = l(y, \bar{t}) + \theta^{T}(y - \bar{y}) - (\Omega(y) - \Omega(\bar{y}))$$

Generic Loss

$$\mathcal{L}^{gen}(\theta, \bar{t}) = \max_{y \in dom(\Omega)} \mathcal{L}^{aux}(\theta, \bar{t}, y)$$

 \mathcal{L}^{gen} is convex w.r.t. heta and

$$\operatorname{arg\,max}_{y\in \mathit{dom}(\Omega)}\mathcal{L}^{\mathit{aux}}(heta,ar{t},y)-ar{y}\in \partial_{ heta}\mathcal{L}^{\mathit{gen}}(heta,ar{t})$$

The generic loss is a cross-over between the Fenchel-Young loss and the problem specific base loss.

using InferOpt

fyl_pert = FenchelYoungLoss(perturbed_add)
fyl_reg = FenchelYoungLoss(regularized)
spol = SPOPlusLoss(warcraft_maximizer)

Code sample 10: Example imitation losses

using Zygote

```
L = loss(theta, y_ref)
Zygote.gradient(loss, theta, y_ref)
```

Code sample 11: Supported operations for an imitation loss

```
using Flux, InferOpt
gradient_optimizer = ADAM()
parameters = Flux.params(warcraft_encoder)
data = zip(images, paths)
function pipeline_loss(x, y)
    theta = warcraft_encoder(x)
    return loss(theta, y)
end
for epoch in 1:1000
    train!(pipeline_loss, parameters, data, gradient_optimizer)
end
```

Code sample 12: Learning with an imitation loss

Name	CO problem (CO oracle)	Probabilistic CO layer	Exp./Imit. Target	Loss
Cost perturbed multiplicative noise	SP with non-negative costs (Dijkstra)	Multiplicative perturbation	Experience No target	Perturbed cost
Cost perturbed additive noise	SP on an extended acyclic graph (Ford-Bellman)	Additive perturbation	Experience No target	Perturbed cost
Cost regularized half square norm	SP on an extended acyclic graph (Ford-Bellman)	Half square norm	Experience No target	Regularized cost
SPO+	SP on an extended acyclic graph (Ford-Bellman)	No regularization	Imitation Cost and path	SPO+ loss
MSE perturbed multiplicative noise	SP with non-negative costs (Dijkstra)	Multiplicative perturbation	Imitation Path	Mean squared error
MSE regularized half square norm	SP on an extended acyclic graph (Ford-Bellman)	Half square norm	Imitation Path	Mean squared error
Fenchel-Young perturbed multiplicative noise	SP with non-negative costs (Dijkstra)	Multiplicative perturbation	Imitation Path	Fenchel-Young
Fenchel-Young perturbed additive noise	SP on an extended acyclic graph (Ford-Bellman)	Additive perturbation	Imitation Path	Fenchel-Young
Fenchel-Young regularized half square norm	SP on an extended acyclic graph (Ford-Bellman)	Half square norm	Imitation Path	Fenchel-Young

Results

୬९९ ₂₂/23

Implemented InferOpt.jl

- New perturbation technique that allows to accept objective vectors with a certain sign.
- Probabilistic regularization allows to differentiate through large class of C.O. layers, combining the Frank-Wolfe algorithm with implicit differentiation.
- Generic decomposition framework for imitation losses.

- Implemented InferOpt.jl
- New perturbation technique that allows to accept objective vectors with a certain sign.
- Probabilistic regularization allows to differentiate through large class of C.O. layers, combining the Frank-Wolfe algorithm with implicit differentiation.

• Generic decomposition framework for imitation losses.

- Implemented InferOpt.jl
- New perturbation technique that allows to accept objective vectors with a certain sign.
- Probabilistic regularization allows to differentiate through large class of C.O. layers, combining the Frank-Wolfe algorithm with implicit differentiation.
- **Generic decomposition framework** for imitation losses.

- Implemented InferOpt.jl
- New perturbation technique that allows to accept objective vectors with a certain sign.
- Probabilistic regularization allows to differentiate through large class of C.O. layers, combining the Frank-Wolfe algorithm with implicit differentiation.
- Generic decomposition framework for imitation losses.