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Combinatorial Optimization Layers

We want introduce a way to use two kinds of layers:

▶ Machine Learning layers,

▶ Combinatorial Optimization layers.

Here we find two main challenges:

▶ Transform a C.O. problem in an useful layer (by defining meaningful
derivatives),

▶ Find a good loss.
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Setting

f : θ → argmaxv∈νθ
T v

where:

▶ θ ∈ Rd is the objective direction.

▶ ν ⊆ Rd is a finite set of the feasible solutions.

Any MILP and LP can be written in this way.
Similar arguments can be made for:

f : θ → argmaxv∈νθ
Tg(v)

for any g : ν → Rd .
We consider this formulation as the objective function is linear ans so it
makes no difference to optimize over ν or conv(ν).
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Motivating Example

Motivating Example - Warcraft

Shortest path on a map.
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Lack of useful derivatives

In order to handle with the lack of useful derivatives we consider
approximate derivatives.
Let be:

▶ p(v |θ) = δf (θ(v),

▶ p̂ the smooth and differentiable (w.r.t. θ) approximation of p,

▶ We define the probabilistic layer as

f̂ (θ) = Ep̂(·|θ)[V ] =
∑
v∈ν

v p̂(v |θ).

We assume that the expectation must be tractable, e.g. with Monte
Carlo.
We assume also that all the computations must only require calls to the
CO oracle f.
f̂ is differentiable as

Jθ f̂ (θ) = JθEp̂(· θ)[V ] =
∑
v∈ν

v∇θp̂(v |θ)T
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Effect of CO layer

Example

If p̂(ei |θ) = eθ
T ei = eθi then the probabilistic layers is:

f̂ (θ) = Ep̂(·|θ)[V ] =
d∑

i=1

eθi∑d
j=1 e

θj
ei = softmax(θ)
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Distributions and regularization

We consider a regularized version of the CO problem:

f̂Ω : θ → argmaxµ∈dom(Ω)θ
tµ− Ω(µ)

with Ω : Rd → R smooth and convex penalization function, and
µ ∈ dom(Ω) ⊆ conv(ν).
It is easy to see that any feasible µ is the expectation of some
distribution over ν, hence regularization is just another way to define
probability distributions.
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How compute p̂ and f̂

We will see three possibilities:

▶ Additive Perturbation

▶ Multiplicative Perturbation

▶ General Regularization
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Additive Perturbation

f̂ +ϵ (θ) = E[argmaxv∈ν(θ + ϵZ )T v ] = E[f (θ + ϵZ )] =
∑
v∈ν

v p̂+ϵ (v |θ)

where p̂+ϵ (v |θ) = P(f (θ + ϵZ ) = v).

Differentiate

▶ ∇θp̂
+
ϵ (v |θ) = 1

ϵE[δf (θ+ϵZ)=vZ ]

▶ Jθ f̂
+
ϵ (θ) = 1

ϵE[f (θ + ϵZ )ZT ]

Associated regularization

Let be F+
ϵ (θ) = E[maxv∈ν(θ + ϵZ )T v ] and

Ω+
ϵ (ν) = (F+

ϵ )∗(ν) = supθ(θ
T v − F+

ϵ (θ)).
Ω+

ϵ (ν) is convex, dom(Ω+
ϵ (ν)) ⊆ conv(ν) and

f̂ +ϵ (θ) = argmaxµ∈conv(ν)θ
Tµ− Ω+

ϵ (ν)
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Multiplicative Perturbation

f̂ ⊙ϵ = E[argmaxv∈ν(θ⊙eϵZ−ϵ2/2)T v ] = E[f (θ⊙eϵZ−ϵ2/2] =
∑
v∈ν

v p̂⊙ϵ (v |θ)

where p̂⊙ϵ (v |θ) = P(f (θ ⊙ eϵZ−ϵ2/2) = v).

Differentiate
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▶ Jθ f̂
⊙
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ϵθE[f (θ ⊙ eϵZ−ϵ2/2)ZT ]

Associated regularization

Let be F⊙
ϵ (θ) = E[maxv∈ν(θ ⊙ eϵZ−ϵ2/2)T v ] and Ω⊙

ϵ (ν) = (F⊙
ϵ )∗(ν).

Ω⊙
ϵ (ν) is convex and satisfies

f̂ ⊙ϵ (θ) = argmaxµ∈conv(ν)θ
Tµ− Ω⊙

ϵ (ν) = f̂Ω⊙
ϵ (θ) but

dom(Ω⊙
ϵ (ν)) ̸⊆ conv(ν).
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General regularization

Starting from an explicit regularization Ω smooth and convex we can
obtain an approximate f̂Ω(θ) using the Frank-Wolfe algorithm.
The Frank-Wolfe algorithm is interesting for two reasons:

▶ Requires only the access to the C.O. oracle f and the gradient of Ω.

▶ The algorithm provides both a solution f̂Ω(θ), but also a sparse
probability distribution p̂FWΩ (this one is not uniquely specified by Ω).

Differentiate

Jθ f̂Ω(θ) =
∑
v∈ν

v∇θp̂
FW
Ω (v |θ)T
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Example: Quadratic Penality

If we consider the quadratic penalty Ω(µ) = 1
2∥µ∥

2 we find the Sparse
Map Method with:

f̂Ω = argmaxµ∈conv(ν){θTµ− 1

2
∥µ∥2} = argminµ∈conv(ν)∥µ− θ∥2.
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Choice of the loss

Two main paradigms:

▶ Learning by experience

▶ Learning by imitation
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Learning by Experience and Reinforcement learning
learning

Similar to reinforcement learning, but there are few
differences, as in RL:

▶ is based on Markov decision processes,

▶ the available actions are elementary,

▶ the policy update is local (depends to the state and to the
action),

▶ The Bellman fixed point equation is used explicitly to
derive parameter updates
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Learning by experience

Learning Problem

min
w

1

N

N∑
i=1

L(φw (x
(i)))

For simplicity we consider a single point input x and the gradient for
θ = φw (x).
We can assume that exists c : ν → R a cost function for the problem. A
natural loss could be R(θ) = c(f (θ)) and so we can have the impulse to
take R̂(θ) = c(f (θ)) but also this is not smooth and it could be defined
only in ν.

Solution : Expected regret

Rp̂(θ) = Ep̂(·|θ)[c(V )]

this is as smooth as the probability mapping p̂(·|θ).
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Derivative for regret - Learning by experience

▶ ∇θRp̂+
ϵ (θ)

= 1
ϵE[(c ◦ f )(θ + ϵZ )Z ]

▶ ∇θRp̂⊙
ϵ (θ) =

1
ϵE[(c ◦ f )(θ + eϵZ−ϵ2/2)Z ]

▶ ∇θRp̂FW
ϵ (θ) =

∑
v∈ν c(v)∇θ∇θp̂

FW
Ω (v | θ)
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Learning by imitation

Learning Problem

min
w

1

N

N∑
i=1

L(f (φw (x
(i))), t̄(i))

We have two kinds of target:

▶ a good quality solution t = ȳ

▶ true objective direction θ̄
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Generic Imitation Loss

Let be

Laux(θ, t̄, y) = l(y , t̄) + θT (y − ȳ)− (Ω(y)− Ω(ȳ))

Generic Loss

Lgen(θ, t̄) = max
y∈dom(Ω)

Laux(θ, t̄, y)

Lgen is convex w.r.t. θ and

argmaxy∈dom(Ω)Laux(θ, t̄, y)− ȳ ∈ ∂θLgen(θ, t̄)

The generic loss is a cross-over between the Fenchel-Young loss and the
problem specific base loss.
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Setting for Warcraft
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Results
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Conclusions

Contributions:

▶ Implemented InferOpt.jl

▶ New perturbation technique that allows to accept objective
vectors with a certain sign.

▶ Probabilistic regularization allows to differentiate through large
class of C.O. layers, combining the Frank-Wolfe algorithm with
implicit differentiation.

▶ Generic decomposition framework for imitation losses.
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