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1 Context

Probabilistic models for NLP tasks often make use of latent random variables to enrich
the generative story at the expense of more complex learning and prediction algorithms.
This has been used for many tasks in NLP such as AMR semantic parsing e.g. [LT18] or
[Zho+20], Machine Translation e.g. [CRA19] or [Yan+19], and Topic Modelling [CLN24]
inter alia. Some researchers even claim that LLMs can indeed be considered as latent
variable models [Wan+23]. For this internship we want to revisit the early works on latent
variables in NLP, in particular constituent parsing, with modern latent variable formalisms
developed for Machine Learning in the last 10 years.

Hybridization of context-free grammars with latent probabilistic ML models (L-PCFGs)
have been pioneered 20 years ago [MMT05], studied in several publications [PK08] [Coh+12]
[LRF13] and more recently in [ZZT18] . In all these models, non-terminal symbols which
correspond to grammatical categories are enriched with latent random variables that en-
code some sort of specialization. For instance, the determiner category can be equipped
with a latent variable that encodes subtypes such as demonstratives or possessives. The
precise meaning of this specialization is often difficult to intrepret beyond POS tag special-
ization as they are learned from data in an unsupervised fashion.

These approaches learn model parameters (i.e. rule weights) using a variant of Expectation-
Maximization (EM) relying on the fact that marginal probabilities can be computed ef-
ficiently using the inside-outside algorithm. On the other hand, this can be seen as a
constraint on the probabilistic modelling since it imposes that EM, more precisely the Ex-
pectation step, can be computed exactly and efficiently.

Recent ML probabilistic latent variable models, such as VAEs [KW14], use richer models
but avoid this constraint by approximating expectations over latent values with a Monte-
Carlo estimator based on an inference network. This approach is called variational infer-
ence. In this case, training optimizes a bound on the log-likelihood (ELBo). Some recent
papers investigate ELBo training for unsupervised context-free grammars, see [ZBN20] or
[KDR19], but not in the case of L-PCFGs.

Finally, recent latent variable models are expressed as diffusion processes [Aus+21],
either continuous or discrete. Training amounts to parametrize a denoising neural network
optimizing a ELBo loss, or more sophisticated functions based on score functions [LME24].
While there are already NLP tasks that have taken advantage of this new models, it remains
a challenge to incorporate diffusion in a structured prediction task such as parsing.

2 Internship Description

For this internship, we propose to work on PCFG modelling, either as a variational infer-
ence instance, or possibly as a diffusion process. This includes the definition of inference
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and learning for such models, and implementation for experiments on standard treebanks.
For variational inference, the study will start by the design of the encoder and the

decoder of the VAE architecture. For diffusion, the study will start with the design of the
forward diffusion process, in the variable space or in the latent space. Some recent work
addresses diffusion in an unsupervised setting [SHL24], and this can be a potential avenue
for future improvement.

3 Application

We are looking for a candidate with either NLP background (master level) with very good
knowledge of Machine Learning methods for NLP, or with a strong ML background willing
to adapt recent models to NLP tasks. We expect proficiency with python and deep learning
libraries such as pytorch. Knowledge of parsing more generally graph-based approaches
to NLP tasks is a plus.

The internship work will be carried out at LIPN at Université Sorbonne Paris Nord, on
site (no remote), with possibilities of extension to a three-year Ph.D. funding (2025-2028).
This internship is funded by the ANR Project SEMIAMOR (2024-2028).

For additional information, please contact leroux@lipn.fr. If you are interested please
attach to your application email a CV, a cover letter and a transcript of your Master level
marks.
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