A Tangent on Categorical Models of Differential Linear Logic

Jad Koleilat

Motivations

Motivations

- 1. Categorical semantics of DiLL (Differential Linear Logic) based on Linear non-Linear adjunctions does not exists.
- 2. Differentiation is about tangent bundles, so we would like an axiomatisation in terms of tangent bundles.
- 3. If possible bring the semantics of DiLL closer to that of dependent type theories.

Kerjean, Maestracci and Rogers work (FSCD 2025)

- A semantic based on Linear-non-Linear adjunction by defining a functor from the coslice of the cartesian category.
- Not totally satisfactory as their approach requires well-pointedness (ie. extensionally).
- Does not answer points 2 and 3.

LHC, June 2025 4

Outline

- 1. Motivations
- 2. Linear Logic
- 3. Linear-non-Linear Simple Category
- 4. Differential Linear Logic
- 5. Linear Tangent Functor
- 6. Work in Progress

LHC, June 2025

5

Linear Logic

The semantics of Linear Logic

Definition (Linear-non-linear Adjunction): A linear-non-linear adjunction is a lax monoidal adjunction between a monoidal category and a cartesian category.

LHC, June 2025 7

Linear-non-Linear Simple Category

Simple Category

Definition (Simple Category): Let (\mathcal{C}, \times, I) be a cartesian category, define $\mathbb{S}(\mathcal{C})$ as the category :

- Objects : pairs (X, A), $X, A \in \mathcal{C}$.
- Morphisms : pairs $(f,u):(X,A)\to (Y,B)$ where $f:X\to Y$ and $u:X\times A\to B$.

Composition (f, u); (g, v) is given by f; g on the first component and

$$\begin{array}{c} \Delta_X \times \operatorname{id}_A & f \times u \\ X \times A \xrightarrow{\hspace*{0.5cm}} X \times X \times A \xrightarrow{\hspace*{0.5cm}} Y \times B \xrightarrow{\hspace*{0.5cm}} C \\ \text{on the second} \end{array}$$

Simple Category More Intuitively

Definition (Simple Category): Let (\mathcal{C}, \times, I) be a cartesian category, define $\mathbb{S}(\mathcal{C})$ as the smallest full subcategory of \mathcal{C}^{\to} containing the projections $\pi_X: X \times A \to X$. Morphisms are thus given by a pair (f, F) such that

Simple slice Fibration

- The projection $\pi_0: \mathbb{S}(\mathcal{C}) \to \mathcal{C}$ is a Grothendieck fibration.
- Intuitively, each fibre above I is the category with object a type X and morphisms $X \to Y$ a term of type $I, X \vdash Y$
- Plays an important role in the semantic of simple type theory

What do we want?

- We want to define a notion of trivial vector bundle above \mathcal{C} .
- Problem : we can not define it "naively" by

Because

LNL Simple Category

Given an LNL:

Define the linear-non-linear simple category $\mathbb{S}(\mathcal{C},\mathcal{L})$ as the category :

- objects are the pairs (X, A) with $X \in \mathcal{C}$ and $A \in \mathcal{L}$.
- morphisms are given by a pair of morphisms $(f,u):(X,A)\to (Y,B)$ with $f:X\to Y$ and $u:\mathcal{F}(X)\otimes A\to B$.

LNL Simple Category

Composition is given in the same way as in the simple category, using the contraction :

$$\text{Let } (f,u): (X,A) \to (Y,B) \text{ and } (g,v): (Y,B) \to (Z,C) \text{ define } (f,u); (g,v) := (f;g \ , \ \mathbf{c}_X \otimes \mathrm{id}_A; \mathcal{F}(f) \otimes u; v))$$

$$\begin{array}{ccc} \mathbf{c}_X \otimes \mathrm{id}_A & \mathcal{F}(f) \otimes u & v \\ \mathcal{F}(X) \otimes A & \longrightarrow & \mathcal{F}(X) \otimes \mathcal{F}(X) \otimes A & \longrightarrow & \mathcal{F}(Y) \otimes B & \longrightarrow & C \end{array}$$

LNL Simple Slice Fibration

Theorem: The functor $p_0: \mathbb{S}(\mathcal{C}, \mathcal{L}) \to \mathcal{C}$, defined as

- $p_0(X, A) = X$
- $p_0(f,u) = f$

is a fibration.

LNL Simple Slice Fibration

 $\mathbb{S}(\mathcal{C})$

 $\mathbb{S}(\mathcal{C},\mathcal{L})$

Fibration over \mathcal{C}

Morphisms $(X,A) \to (Y,B)$ are "non-linear" $f:X \to Y$ "non-linear" $u:X \times A \to B$

Objects are projections

$$X \times A \to X$$

Fibration over \mathcal{C}

Morphisms $(X,A) \to (Y,B)$ are "non-linear" $f:X \to Y$ "linear" $u:\mathcal{F}(X) \otimes A \to B$

Objects are trivial vector bundles

$$X \times A \to X$$

 $\mathbb{S}(\mathcal{C}) \leftarrow \mathcal{S}(\mathcal{C}, \mathcal{L})$

More Functors on LNL Simple Category

Definition: $p_1: \mathbb{S}(\mathcal{C}, \mathcal{L}) \to \mathcal{L}$ is the functor defined as

- $p_1(X,A) = \mathcal{F}(X) \otimes A$
- $p_1(f, u) = \mathbf{c}_X \otimes \mathrm{id}_A; \mathcal{F}(f) \otimes u$

Definition: $L_{\mathbb{S}}: \mathcal{L} \to \mathbb{S}(\mathcal{C}, \mathcal{L})$ is the functor defined as

- $L_{\mathbb{S}}(A) = L_{\mathbb{S}}(A) = (\mathcal{U}(A), A)$
- $L_{\mathbb{S}}(l) = (\mathcal{U}(l), \mathbf{w}_A \otimes l)$

Final Picture of LNL Simple Category

Differential Linear Logic

The semantics of Differential Linear Logic

Definition (Monoidal Coalgebra Modality): A monoidal Coalgebra Modality on a symmetric monoidal category is the data of:

- $(!, \mathbf{d}, \mathbf{p})$ a comonad on \mathcal{L} .
- $(!, m_{\infty})$ a lax monoidal structure on !.
- natural transformations $\mathbf{c}_A: !A \to !A \otimes !A$ and $\mathbf{w}_A: !A \to 1$ making $(!A, \mathbf{c}_A, \mathbf{w}_A)$ a cocomutative comonoid.
- compatibility conditions between all of this.

The semantics of Differential Linear Logic

Definition (Differential Category): A Differential Category is the data:

- $(\mathcal{L}, \otimes, 1)$ an additive symmetric monoidal category.
- $((!, m_{\otimes}), \mathbf{d}, \mathbf{p}, \mathbf{c}, \mathbf{w})$ a monoidal Coalgebra Modality on \mathcal{L}
- a natural transformation $\partial_A: !A\otimes A\to !A$ called the deriving transform that satisfies the following equations :
 - $\quad \boldsymbol{\partial}_A; \mathbf{d}_A = \mathbf{w}_A \otimes \mathrm{id}_A$
 - $\bullet \ \partial_A; \mathbf{w}_A = 0$
 - $\bullet \ \partial_A; \mathbf{c}_A = \mathbf{c}_A \otimes \mathrm{id}_A; (\mathrm{id}_{!A} \otimes \partial_A) + (\mathrm{id}_{!A} \otimes \sigma_{!A,A}; \partial_A \otimes \mathrm{id}_A)$
 - $ightharpoonup \partial_A; \mathbf{p}_A = \mathbf{c}_A \otimes \mathrm{id}_A; \mathbf{p}_A \otimes \partial_A; \partial_{!A}$
 - $\bullet \ \operatorname{id}_A \otimes \sigma_{A,A}; \partial_A \otimes \operatorname{id}_A; \partial_A = \partial_A \otimes \operatorname{id}_A; \partial_A$

Linear Tangent Functor

Preliminary

Definition: Given an LNL adjunction:

Define $\mathcal{C}_{|\mathcal{U}}$ as the smallest full subcategory of \mathcal{C} containing the image of \mathcal{U} .

Preliminary

Linear Tangent Functor

Definition (linear tangent functor): A linear tangent functor \mathcal{T} for a linear-non-linear adjunction is a functor $\mathcal{T}:\mathcal{C}_{|\mathcal{U}}\to\mathbb{S}(\mathcal{C},\mathcal{L})_{|\mathcal{U}}$ such that :

- 1. \mathcal{T} is a section of of p_0
- 2. \mathcal{T} satisfies a linearity condition : \mathcal{U} ; $\mathcal{T} = L_{\mathbb{S}}$
- 3. \mathcal{T} satisfies the Leibniz identity:

$$\mathcal{T}\!\left(\mathbf{c}_A^\dagger\right) = \left(\mathbf{c}_A^\dagger, \mathbf{c}_A \otimes \mathrm{id}_A; (\mathrm{id}_{!A} \otimes \partial_A) + \left(\mathrm{id}_{!A} \otimes \sigma_{!A,A}; \partial_A \otimes \mathrm{id}_A\right)\right)$$

Call a Tangent LNL adjunction a LNL adjunction equipped with a linear tangent functor.

LHC, June 2025 25

Linear Tangent Functor

Differential Category = LNL + Linear Tangent

Theorem: Every model of DiLL is a Tangent LNL adjunction with its Eilenberg-Moore category. The monoidal category of a Tangent LNL is a model of DiLL.

Work in Progress

Tangent LNL adjunction \Rightarrow Fiber Bundles (Work in progress)

Almost Theorem: \mathcal{O} is an isomorphisms in every Tangent LNL adjunction.

Fiber Bundles \Rightarrow Tangent LNL adjunction (Work in progress)

Surely Theorem: If \mathcal{C} is a Tangent Category and \mathcal{O} is an isomorphisms then it defines a Tangent LNL adjunction.

