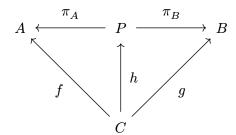
Notes du Séminaire de Catégories 20/10/2025

1 Produit

Définition 1.1 (Produit). Soit \mathcal{C} une catégorie et A,B deux objets de \mathcal{C} , on dit que A et B admettent un produit s'il existe un objet P et deux morphismes $\pi_A:P\to A$ et $\pi_B:P\to B$ tel que : pour tout objet C et pour toute paire de morphismes $f:C\to A$ et $g:C\to B$, il existe un unique morphisme $h:C\to P$ tel que le diagramme suivant commute



On appelle alors π_A et π_B des projections. On note souvent $h := \langle f, g \rangle$.

(!) Attention

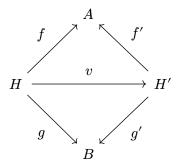
Un produit est avant tout une paire de morphismes π_A et π_B . Un produit de A et B n'est pas un objet, c'est une paire de morphismes.

Proposition 1.2. Soit \mathcal{C} une catégorie et A, B deux objets de \mathcal{C} tel que (P, π_A, π_B) et (P', π'_A, π'_B) soient deux produits de A et B. Alors, P et P' sont isomorphes.

Cette proposition n'est pas très satisfaisante car elle exprime une propriété sur les objets P et P' au lieu d'une propriété sur les produits (P, π_A, π_B) et (P', π'_A, π'_B) . Un théorème d'unicité du produit devrait avoir pour énoncé $(P, \pi_A, \pi_B) \simeq (P', \pi'_A, \pi'_B)$. Pour rendre cela formel, il faudrait pouvoir voir les triplets $(H, f: H \to A, g: H \to B)$ comme des objets d'une catégorie, on pourrait alors énoncer l'isomorphisme voulu.

Définition 1.3 (Catégorie Proj). Soit \mathcal{C} une catégorie et A, B deux objets de \mathcal{C} . On définit la catégorie Proj_{AB} comme suit :

- $\bullet \ \ Objets: les \ triplet \ (H,f:H\to A,g:H\to B).$
- Morphismes : un morphisme $v:(H,f:H\to A,g:H\to B)\to (H',f':H'\to A,g':H'\to B)$ est un morphisme $v:H\to H'$ dans $\mathcal C$ tel que le diagramme suivante commute.



Ce nouveau point de vue simplifie beaucoup les choses, on a l'équivalence suivante :

Proposition 1.4. Soit \mathcal{C} une catégorie et A, B deux objets de \mathcal{C} . (P, π_A, π_B) est un produit de A et B si et seulement si (P, π_A, π_B) est un objet terminal de la catégorie \mathbf{Proj}_{AB} .

Preuve. Exercice.

Théorème 1.5 (Unicité du produit). Soit \mathcal{C} une catégorie et A, B deux objets de \mathcal{C} . Si A et B admettent un produit alors il est unique à unique isomorphisme près. Concrètement, cela signifie qu'il existe un unique isomorphisme dans Proj_{AB} entre deux produits.

Preuve. C'est une conséquence immédiate de la proposition 1.4 et de l'unicité de l'objet terminal. Exercice.

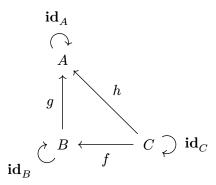
2 Catégorie Opposée

La notion de dualité est très importante en théorie des catégories.

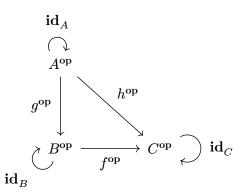
Définition 2.1 (Catégorie opposée). Soit \mathcal{C} une catégorie, la catégorie opposée de \mathcal{C} notée \mathcal{C}^{op} est la catégorie définie comme suit :

- Objets: pour tout objet $A \in \mathcal{C}$, A^{op} est un objet de \mathcal{C}^{op} .
- Morphismes: pour tout morphisme $f: A \to B$ dans \mathcal{C} , on définit $f^{op}: B \to A$ dans \mathcal{C}^{op} . La composition est donnée par g^{op} ; $f^{op} = (f; g)^{op}$.

Exemple. La catégorie opposée de cette catégorie

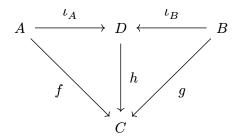


est la catégorie :



3 Coproduit

Définition 3.1 (Coproduit). Soit \mathcal{C} une catégorie et A, B deux objets de \mathcal{C} , on dit que A et B admettent un coproduit s'il existe un objet D et deux morphismes $\iota_A : D \to A$ et $\iota_B : D \to B$ tel que : pour tout objet C et pour toute paire de morphismes $f : A \to C$ et $g : B \to C$, il existe un unique morphisme $h : D \to C$ tel que le diagramme suivant commute



On appelle alors ι_A et ι_B des injections. On note souvent h := [f, g].

(!) Attention

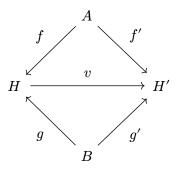
Un produit est avant tout une paire de morphismes ι_A et ι_B . Un coproduit de A et B n'est pas un objet, c'est une paire de morphismes.

Proposition 3.2 (Dualité Produit Coproduit). (D, ι_A, ι_B) est un coproduit de A et B si et seulement si $(D^{op}, \iota_A^{op}, \iota_B^{op})$ est un produit de A^{op} et B^{op} dans \mathcal{C}^{op} .

Preuve. Il suffit de remarquer que le diagramme de la définition du coproduit est l'opposé de celui du produit.

Définition 3.3 (Catégorie Inj). Soit \mathcal{C} une catégorie et A, B deux objets de \mathcal{C} . On définit la catégorie \mathbf{Inj}_{AB} comme suit :

- Objets: les triplet $(H, f : A \to H, g : B \to H)$.
- Morphismes: un morphisme $v: (H, f: A \to H, g: B \to H) \to (H', f: A \to H', g': B \to H')$ est un morphisme $v: H \to H'$ dans \mathcal{C} tel que le diagramme suivante commute.



Proposition 3.4. La catégorie $\operatorname{Inj}_{A,B}$ est exactement la catégorie $\operatorname{Proj}_{A^{\operatorname{op}}B^{\operatorname{op}}}$.

Preuve. Il suffit d'écrire les définitions.

Proposition 3.5. Soit \mathcal{C} une catégorie et A, B deux objets de \mathcal{C} . (D, ι_A, ι_B) est un coproduit de A et B si et seulement si (D, ι_A, ι_B) est un objet initial de la catégorie \mathbf{Inj}_{AB} .

Preuve. On pourrait faire la preuve à la main, on choisit ici de la faire en utilisant la dualité. (D, ι_A, ι_B) est un coproduit de A et B si et seulement si $(D^{op}, \iota_A^{op}, \iota_B^{op})$ est un produit de A^{op} et B^{op} . $(D^{op}, \iota_A^{op}, \iota_B^{op})$ est un produit de A^{op} et B^{op} si et seulement si c'est un objet terminal dans $\operatorname{\mathbf{Proj}}_{A^{op}B^{op}}$. Un objet est terminal dans $\operatorname{\mathbf{Proj}}_{A^{op}B^{op}}$ si et seulement si il est initial dans $\operatorname{\mathbf{Inj}}_{A,B}$ (exercice).

Corollaire 3.5.1 (Unicité du Coproduit). Soit C une catégorie et A, B deux objets de C. Si A et B admettent un coproduit alors il est unique à unique isomorphisme près.

Preuve. En appliquant le théorème 1.5 à la catégorie \mathcal{C}^{op} on obtient le résultat voulu.