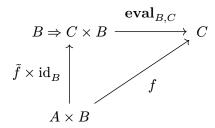
Notes du Séminaire de Catégories 10/11/2025

1 Catégories Cartésiennes Closes

Définition 1.1 (Catégorie Cartésienne Close). Une catégorie cartésienne close (CCC) est la donné des éléments suivants :

- Une catégorie cartésienne $(\mathcal{C}, \times, 1)$.
- Pour chaque paire d'objets $A, B \in \mathcal{C}$ la donné d'un objet noté $A \Rightarrow B$ (aussi noté B^A ou [A, B]), appelé objet exponentielle ou Hom-interne.
- Pour chaque paire d'objets $A, B \in \mathcal{C}$ la donné d'un morphisme $\mathbf{eval}_{A,B} : (A \Rightarrow B) \times A \rightarrow B$, appelé morphisme d'évaluation.
- Pour chaque morphisme $f: A \times B \to C$ la donné d'un morphisme $\tilde{f}: A \to B \Rightarrow C$, appelé la transposé de f.
- Pour chaque $f: A \times B \to C$, \tilde{f} est l'unique morphisme tel que le diagramme suivant commute :



1.1 Exemples

Proposition 1.1.1. Set muni du produit usuelle est une catégorie cartésienne close.

Preuve. On définit l'objet exponentielle, le morphisme d'évaluation et la transposition comme suit :

- $A \Rightarrow B$ l'ensemble des fonctions de A vers B.
- $eval_{A,B}: (f,b) \mapsto f(b)$.
- Pour tout $f: A \times B \to C$ on définit $\widetilde{f}: a \mapsto (b \mapsto f(a,b))$.

Il est aisé de vérifier l'unicité de la transposé.

Définition 1.1.2 (Pos). Pos est la catégorie des ensembles partiellement ordonnés avec les fonctions croissantes :

П

- Objets : les ensembles partiellement ordonnés (X, \leqslant) .
- Morphisme : les fonctions croissantes $f: \left(X, \underset{X}{\leqslant}\right) \to \left(Y, \underset{Y}{\leqslant}\right)$

Proposition 1.1.3. Pos est une catégorie cartésienne avec le produit donné par :

$$\left(X, \underset{X}{\leqslant}\right) \times \left(Y, \underset{Y}{\leqslant}\right) \coloneqq \left(X \times Y, \underset{X \times Y}{\leqslant}\right)$$

avec l'ordre produit définit par, $(x,y) \leqslant_{X \times Y} (x',y')$ si et seulement si $x \leqslant_X x'$ et $y \leqslant_Y y'$.

Preuve. Exercice.
$$\Box$$

Proposition 1.1.4. Pos est une catégorie cartésienne close.

Définition 1.1.5 (Treillis). Un treillis est un ensemble partiellement ordonne (E, \leq) qui admet tout les inf et sup finis. En particulier, il admet un inf 0-aire : \top l'élément maximum et un sup 0-aire : \bot l'élément minimum.

Proposition 1.1.6. Les treillis sont des catégories bicartésienne.

Définition 1.1.7 (Algèbre de Heyting). Une algèbre de Heyting est un treillis (E, \leq) tel que pour chaque paire d'éléments a et b, il existe un élément noté $a \Rightarrow b$ tel que :

$$\forall a, b, c \in E, \quad a \land b \leqslant c \Leftrightarrow a \leqslant b \Rightarrow c$$

Proposition 1.1.8. Les algèbres de Heyting sont des catégories bicartésienne close c'est à dire, des catégories bicartésienne qui sont aussi des catégories cartésiennes closes.

Preuve. Exercice.
$$\Box$$

1.2 Quelques Résultats Important sur les CCC

Définition 1.2.1 ((l'autre) Transposé). Soit \mathcal{C} une CCC et $g: A \to B \Rightarrow C$, on définit $\overline{g}: A \times B \to C$ la transposé de g:

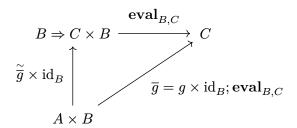
$$\overline{g} \coloneqq A \times B \xrightarrow{g \times \operatorname{id}_B} B \Rightarrow C \times B \xrightarrow{\mathbf{eval}_{B,C}} C$$

Proposition 1.2.2. Soit \mathcal{C} une CCC, $f: A \times B \to C$ et $g: A \to B \Rightarrow C$ alors,

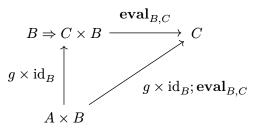
$$\overline{\widetilde{f}} = f \text{ et } \widetilde{\overline{g}} = g$$

Preuve. Considérons d'abord $\overline{\widetilde{f}}$. En dépliant la définition on a $\overline{\widetilde{f}} = \widetilde{f} \times \mathrm{id}_B$; $\mathrm{eval}_{B,C}$. Par la propriété d'unicité de la transposition on a $\overline{\widetilde{f}} = f$.

Considérons maintenant \overline{g} . Comme c'est la transposé du morphisme \overline{g} , on sait que le diagramme suivant commute :



On remarque que g vérifie aussi la même égalité



Par unicité de la transposé on a, $\widetilde{\overline{g}} = g$.

Proposition 1.2.3 (Foncteur $A \Rightarrow -$). Soit \mathcal{C} une CCC et A un objet de \mathcal{C} alors, on peut construire un foncteur $A \Rightarrow -: \mathcal{C} \to \mathcal{C}$ qui à un objet B associe l'objet exponentielle $A \Rightarrow B$.

Preuve. On définit ce foncteur :

- Sur les objets : $A \Rightarrow B := A \Rightarrow B$.
- Sur les morphismes : soit $f: B \to C$, on définit

$$h \coloneqq A \Rightarrow B \times A \xrightarrow{\quad \textbf{eval}_{A,B} \quad B \quad \xrightarrow{\quad f \quad } \quad C$$

On pose $A \Rightarrow f := \tilde{h} : A \Rightarrow B \to A \Rightarrow C$.

Proposition 1.2.4. Soit $\mathcal C$ une CCC, A,B,C trois objets de $\mathcal C$, on a une bijection

$$\varphi: \operatorname{Hom}(B \times A, C) \to \operatorname{Hom}(B, A \Rightarrow C)$$

Preuve. On définit $\varphi:(f:B\times A\to C)\mapsto \widetilde{f}$. Son inverse est donné par l'autre transposé $\psi:(g:B\to A\Rightarrow C)\mapsto \overline{g}$. La preuve que ces fonctions sont bien inverse l'une de l'autre est donné par la Proposition 1.2.2.

□ Remarque

En particulier on a une bijection entre $\operatorname{Hom}(1\times A,B)\simeq\operatorname{Hom}(1,A\Rightarrow B)$. Comme $A\simeq 1\times A$ on a donc $\operatorname{Hom}(A,B)\simeq\operatorname{Hom}(1,A\Rightarrow B)$. Cette remarque justifie l'appellation « Hom interne » en effet, la catégorie « voit » ses morphismes au travers des objets exponentielles.