Devoir Maison 2

Devoir à rendre pour le 1 Décembre 2025. Sauf exception, chaque étudiant doit rendre une copie **manuscrite**. Justifier minutieusement chaque réponse.

Exercice 1

Soit G un groupe, on considère BG la catégorie associée. Décrire les transformations naturelles du foncteur identité $\mathrm{id}_{BG}: BG \to BG$ vers lui même.

Exercice 2

Un groupoïde est une catégorie ou tout les morphismes sont inversibles. Par exemple, pour tout groupe G, la catégorie BG est un groupoïde à un objet¹. Soit \mathbf{Grpd} la catégorie des groupoïdes, ses objets sont les groupoïdes et les morphismes sont les foncteurs entre groupoïdes. Montrer que \mathbf{Grpd} est une catégorie cartésienne close.

Exercice 3

Montrer que dans toute catégorie cartésienne close, pour tout objets A, B, C

$$C \Rightarrow (A \times B) \simeq (C \Rightarrow A) \times (C \Rightarrow B)$$

Exercice 4

Soit **Set**_{*} la catégorie des ensembles pointés :

- Ses objets sont les pairs (X, x_0) avec X un ensemble et $x_0 \in X$.
- Ses morphismes sont les fonctions qui préservent le point distingué : $f:(X,x_0) \to (Y,y_0)$ est une fonction $f:X\to Y$ tel que $f(x_0)=y_0$.
- 1) Décrire les produits dans **Set**_{*} (objet terminal et produit binaire).
- 2) Décrire les coproduits dans **Set**_{*} (objet initial et coproduit binaire).
- 3) **Set**_{*} elle-est cartésienne close (indice: est-elle distributive?)?

Exercice 5

Montrer que dans une catégorie cartésienne close, l'exponentiation avec base fixé A, $-\Rightarrow A$ est un foncteur contravariant $\mathcal{C}^{\text{op}} \to \mathcal{C}$.

Exercice 6 (Bonus)

Donnez une catégorie que vous aimez bien et justifiez en quelques mots pourquoi vous l'aimez.

¹La réciproque est vrai, tout groupoïde avec un unique objet correspond à un unique groupe.