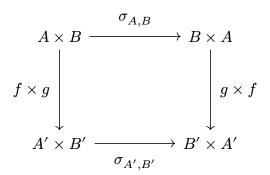
Devoir Maison 1

Devoir à rendre pour le 17 Novembre 2025. Sauf exception, chaque étudiant doit rendre une copie **manuscrite**. Justifier minutieusement chaque réponse.

Exercice 1 (Symétrie du Produit)

Soit $(\mathcal{C}, \times, 1)$ une catégorie cartésienne.

- 1) Montrer que pour toute paire d'objets $A, B \in \mathcal{C}$, le morphisme canonique $\sigma_{A,B} := \langle \pi_2^{A,B}, \pi_1^{A,B} \rangle : A \times B \to B \times A$ est un isomorphisme.
- 2) Montrer que pour tous morphismes $f:A\to A'$ et $g:B\to B'$ le diagramme suivant commute.



Exercice 2 (Catégorie Distributive)

Une catégorie bicartésienne $(\mathcal{C}, \times, 1, +, 0)$ est la donné d'une catégorie \mathcal{C} , d'une structure cartésienne $(\mathcal{C}, \times, 1)$ et cocartésienne $(\mathcal{C}, +, 0)$ sur \mathcal{C} . Une catégorie bicartésienne est distributive si pour tous objets $A, B, C \in \mathcal{C}$, le morphisme canonique

$$\mathrm{dist}_{A,B,C}\coloneqq\left[\mathrm{id}_A\times\iota_1^{B,C},\mathrm{id}_A\times\iota_2^{B,C}\right]:(A\times B)+(A\times C)\to A\times(B+C)$$

est un isomorphisme.

- 0) Écrire la propriété universelle du coproduit dans le cas particulier de ${\rm dist}_{A,B,C}.$
- 1) Donner sans justifier un exemple de catégorie distributive et un exemple de catégorie bicartésienne non distributive.

Le but de cet exercice est de montrer que dans une catégorie distributive $A \times 0 \simeq 0$.

2) Soit $(A, +, \times, 0, 1)$ un anneau, montrer en utilisant la distributivité que pour tout $a \in A, a \times 0 = 0$.

Dans la suite on considère une catégorie distributive $(\mathcal{C}, \times, 1, +, 0)$.

3) Montrer que pour tout objets $A, B \in \mathcal{C}$ il existe au moins un morphisme de $A \times 0$ vers B.

Nous allons maintenant montrer qu'il est unique.

- 4) Montrer que les deux injections $\iota_1^{0,0}: 0 \to 0+0$ et $\iota_2^{0,0}: 0 \to 0+0$ sont égales.
- 5) Soit A un objet de \mathcal{C} , montrer que les deux injections vers $(A \times 0) + (A \times 0)$ sont égales. Indice: considérer le diagramme de la question 0.
- 6) Soit A et B deux objets de \mathcal{C} et $f, g: A \times 0 \to B$ deux morphismes parallèles. Montrer que f = g et conclure.

Un objet initial 0 est dit strict si pour tout objet A, s'il existe un morphisme $f: A \to 0$ alors $A \simeq 0$.

7) Montrer que l'objet initial d'une catégorie distributive est toujours strict. *Indice:* construire un isomorphisme entre A et $A \times 0$.

Exercice Bonus (Catégorie des Fonctions Partielles)

On note $\operatorname{Set}_{\operatorname{part}}$ la catégorie des ensembles et des fonctions partielles entre ensembles. Concrètement, les objets de $\operatorname{Set}_{\operatorname{part}}$ sont les ensembles et les morphismes, les fonctions partielles.

- 1) Décrire les coproduits binaire et l'élément initial dans Set_{part} .
- 2) Décrire les produits binaire et l'élément terminal dans $\operatorname{Set}_{\operatorname{part}}$.
- 3) Set_{part} est elle distributive ?