
A monadic approach to differentiation

Jad Koleilat
under the supervision of Marie Kerjean

September 2024

Université Paris Cité, Université Sorbonne Paris Nord, LIPN

Contents
1 Introduction 1

2 Categorical semantics of Linear Logic 3
2.1 Reminders on LL . 3
2.2 Linear-non-linear adjunctions as models of LL 5

2.2.1 Reminders on categorical semantics . 5
2.2.2 What should be a model of LL? . 5
2.2.3 Semantics of ILL . 6
2.2.4 Digging . 9
2.2.5 Semantics of ILL+& . 10
2.2.6 Semantics of LL . 11

2.3 Seely categories as models of LL . 13
2.4 The relational model, an example of models of LL 15

3 Differential Linear Logic 17
3.1 The calculus and intuitions . 17
3.2 Differential categories, a semantic for DiLL . 20
3.3 The relational model, an example of models of DILL 24

4 Codigging, monads and quantitative semantics 26
4.1 Codigging . 26
4.2 Monads in functional programming . 29
4.3 A programming language for quantitative differentiation ? 32

A Notions of category theory 36
A.1 Adjunction, monad and comonad . 36
A.2 Monoidal categories . 39
A.3 Monoidal functors . 41
A.4 Monoidal adjunctions . 43

1 Introduction
Linear logic was invented by Girard [9] after investigating models of λ-calculus. Differential
linear logic was introduced by Ehrhard and Regnier [7] after investigating some models of
linear logic. Codigging was introduced by Kerjean and Lemay in [10] after investigating
models of differential linear logic. This illustrate a trend that is the motivation of this
memoir: using semantics to extend syntax. This not an usual way of considering semantics
hence, a point needs to be clarified.

Often, one of the requirement of a good definition of semantics is completeness. This is
not absurd (quite the opposite) as completeness allows us to understand the syntax, often
a mathematical theory, from properties of the semantics. Here, we are not interested in
finding syntactic properties of our logical systems but, we are very interested in finding
meaningful way to extend our syntax. When talking about models, we mean categories
(as hinted by the abundance of diagrams) such that we have soundness (Γ ⊢ A⇒ Γ ⊧ A)
and not necessarily completeness, no family of models we describe here is in fact complete.
We use semantics to find families of worlds in which our syntax lives then, by adding more
syntax we try to capture only those in which we are interested.

The goal of the internship was to use semantics of codigging, particular the fact that it
forms a monad, to find a type theory with a monad capturing the semantics of "quantitative
differentiation" (as explained in section 4). Since this semantic is not simple, I chose to
explain it step by step and with accuracy. Section 2 is a description of the semantic of
(propositional) linear logic. Since everything that follows is based on it, I chose to give
a lot more technical details that usually found in the literature. It’s not an exhaustive
description but covers most of what is needed for this memoir. Section 3 presents in detail
the intuition and semantics of differential linear logic. The last section, section 4, is focused
on codigging and a description of a possible path to complete our goal.

The results obtained in this internship are still preliminary: a big part of it was spent
in studying and deeply understanding the litterature, as well as attending a research school
and applying for a PhD grant (successfully obtained). However, we will continue this work
in the forthcoming months. The memoir is a testimony of the science learned during the
internship. I tried to make this memoir as accessible as possible and hope it will constitute
a good introduction to the subject.

This memoir was made with the assumption that the reader has a basic understanding
of categorical semantics, is familiar with linear logic and category theory (monads, ad-
junctions) as we only provide quick reminders. Some well known categorical results are
presented in the appendix (see A).

Notations: When dealing with natural transformation we will often omit the indices,
writing

1

F (A) F (B)

G(A) G(B)

Ff

ν ν

Gf

instead of

F (A) F (B)

G(A) G(B)

Ff

νA νB

Gf

When dealing with monoidal product, we write f ⊗A for f ⊗ idA. By default, the monoid
operation is parenterised to the left, for example: A⊗B⊗C is (A⊗B)⊗C. All implications
(⇒ or ⊸) parenterise to the right, for example: A⊸ B ⊸ C is A⊸ (B ⊸ C).

2

2 Categorical semantics of Linear Logic
In this section we motivate and show that linear-non-linear adjuctions are a good basis for
building models of Linear Logic. We also give a well know example: the relational model.

2.1 Reminders on LL

Linear Logic (LL for short), introduced in 1987 by Girard [9], is part of a family of logics
called sub-structural logics. They are deduction systems where the use of structural rule
(contraction, weakening, . . .) is restricted in some way. In the case of LL, the use of
structural rule is very restricted and monitored, this gives LL the ability to capture more
nuances in reasoning than usual classical logic, distinguishing between "linear steps" and
"non-linear steps".

A presentation of LL and some of its fragments is given in this subsection, for a more
detailed explanation we recommend [12]. For now, we assume sequents to be constructed
on lists of formulas and not multisets, we discus this choice in 2.2.4.

Definition 2.1.1 (LL). Formulas of linear logic are defined as follows:

A ∶= X ∣ A`A ∣ A&A ∣ A⊗A ∣ A⊕A ∣X� ∣ 0 ∣ 1 ∣ � ∣ ⊺ ∣ !A ∣ ?A

For any formula A of Linear Logic we define A� as:

(X�)� ∶=X
(A⊗B)� ∶= A� `B�

(A`B)� ∶= A� ⊗B�

0� ∶= ⊺
1� ∶= �

(A&B)� ∶= A� ⊕B�

(A⊕B)� ∶= A� &B�

⊺� ∶= 0
�� ∶= 1

(!A)� ∶= ?A�

(?A)� ∶= !A�

linear logic is the following one sided sequent calculus:

ax
⊢ A�,A

⊢ Γ,A ⊢∆,A�
cut

⊢ Γ,∆
⊢ Γ,A,B,∆

ex
⊢ Γ,B,A,∆

⊢ Γ,A ⊢∆,B
⊗

⊢ Γ,∆,A⊗B
⊢ Γ,A,B `
⊢ Γ,A`B

3

⊢ Γ,A ⊢ Γ,B
&

⊢ Γ,A&B

⊢ Γ,A
⊕1⊢ Γ,A⊕B

⊢ Γ,B
⊕2⊢ Γ,A⊕B

1
⊢ 1

⊢ Γ �
⊢ Γ,�

⊺
⊢ Γ,⊺

⊢ ?Γ,A
P

⊢ ?Γ, !A
⊢ Γ,A

d
⊢ Γ, ?A

⊢ Γ
w

⊢ Γ, ?A
⊢ Γ, ?A, ?A

c
⊢ Γ, ?A

ax stands for "axiom", ex for "exchange", P for "promotion", d for "dereliction", w for
"weakening" and c for "contraction".

Definition 2.1.2 (ILL). Intuisionistic Linear Logic (ILL) is a fragment of linear logic
obtained by restricting LL to the connectors ⊗, ⊸, ! and considering only intuitionist
sequents (allowing only one formula on the right):

ax
A ⊢ A

Γ ⊢ A ∆1,A,∆2 ⊢ B
cut

∆1,Γ,∆2 ⊢ B
∆1,A1,A2,∆2 ⊢ B

ex
∆1,A2,A1,∆2 ⊢ B

∆1,A,B,∆2 ⊢ C ⊗L
∆1,A⊗B,∆2 ⊢ C

Γ ⊢ A ∆ ⊢ B ⊗R
Γ,∆ ⊢ A⊗B

Γ ⊢ A ∆1,B,∆2 ⊢ C ⊸ L
∆1,Γ,A⊸ B,∆2 ⊢ C

A,Γ ⊢ B
⊸R

Γ ⊢ A⊸ B

∆1,∆2 ⊢ A
1L

∆1,1,∆2 ⊢ A
1R

⊢ 1

!Γ ⊢ A
P

!Γ ⊢ !A
∆1,A,∆2 ⊢ B

d
∆1, !A,∆2 ⊢ B

∆1,∆2 ⊢ B
w

∆1, !A,∆2 ⊢ B
∆1, !A, !A,∆2 ⊢ B

c
∆1, !A,∆2 ⊢ B

Definition 2.1.3 (ILL+&). Intuisionistic Linear Logic with finite products (ILL+&) is an
expansion of ILL adding the connector & and the rules:

∆1,A,∆2 ⊢ C
&1L

∆1,A&B,∆2 ⊢ C
∆1,A,∆2 ⊢ C

&2L
∆1,B &A,∆2 ⊢ C

Γ ⊢ A Γ ⊢ B
&R

Γ ⊢ A&B

⊺
Γ ⊢ ⊺

LL and its fragments enjoy the cut elimination property. For a description of the cut
elimination procedure and further discutions on it, we refer the reader to [14, section 3].

4

2.2 Linear-non-linear adjunctions as models of LL

2.2.1 Reminders on categorical semantics

Categorical semantics is a branch of logic that consists in associating a category to a
particular system, in our case a sequent calculus. This association is done such that each
proposition A is associated to an object of the category, traditionally denoted JAK and each
proof π of a sequent A ⊢ B is associated to a morphism, denoted JπK, from JAK to JBK the
objects respectively associated to A and B. Moreover, this association operation J K must
satisfy an other property: if π and π′ are two proofs that reduce to the same cut free proof
then, JπK = Jπ′K.

The last condition yields commutative diagrams that must be verified in the model
category. The difficulty in this process is often to find the right category such that all
those diagrams commutes.

2.2.2 What should be a model of LL?

We first discus what categorical models of ILL should be in hope of giving some intuition
for what follows, for a more detailed discussion we recommend [14]. Considering linear
logic without the exponential modalities, it is clear that we need our model to be:

• A closed symmetric monoidal category to interpret ILL

• A cartesian category to interpret ILL+&

• A ∗-autonomous1 category to interpret LL

Now, let’s consider the exponentials. The connector ! is functorial:

A ⊢ B
d

!A ⊢ B
P

!A ⊢ !B
Hence, we should look to interpret it as an endofunctor. ! has more structure than simply
an endofunctor, it’s a comonad with counit given by:

A ⊢ A
d

!A ⊢ A
and comultiplication:

A ⊢ A
d

!A ⊢ A
P

!A ⊢ !A
P

!A ⊢ !!A
Moreover, ! should be a lax monoidal functor since we can deduce in ILL the sequent
!A⊗ !B ⊢ !(A⊗B). It should also be strongly monoidal from the cartesian structure to the

1see 2.2.4

5

monoidal structure since we have the isomorphisms !(A&B) ≃ !A⊗ !B. Finally, looking at
the last two rules remaining, contraction and weakening, see that ! has more structure than
simply a comonad. With this in mind, it’s reasonable to search for a model among different
kinds of adjunctions. A particular kind of adjunctions are linear-non-linear adjunction and,
as we will see, they are a basis to build models of LL.

Definition 2.2.1. A linear-non-linear adjunction is a symmetric monoidal adjunction
between lax symmetric monoidal functors (see A.4):

(M,×, e) (L,⊗,1)

(L,m)

(M,n)
⊣

Were × is a product and e a terminal object.

2.2.3 Semantics of ILL

Before tackling the casse of the full LL, we start by presenting how linear-non-linear ad-
junctions are a basis for models of ILL. From this simpler case we build in 2.2.5 models of
ILLFP and then models of LL 2.2.6.

Proposition 2.2.2. Every linear-non-linear adjunction between (L,⊗,1) a symmetric
monoidal closed category and a cartesian category (M,×, e) give rise to a model of ILL.

Proof. Let us consider a linear-non-linear adjunction.

(M,×, e) (L,⊗,1)

(L,m)

(M,n)

⊣

were (L,⊗,1) is symmetric monoidal closed, A⊸ − is the right adjoint of A⊗−, η ∶ 1M⇒
M ○ L the unit and ε ∶ L ○M ⇒ 1L the counit. L will be our denotational category. First
we need to choose a function ρ from the set of propositional variable to the objects of L,
we call it an environment. Once ρ is chosen, we now define the interpretation function J K.
Firstly for terms:

• For a variable X, JXK ∶= ρ(X)

• J1K ∶= 1

• For a term of the form A⊗B, JA⊗BK ∶= JAK⊗ JBK

• For a term of the form A⊸ B, JA⊸ BK ∶= JAK⊸ JBK

6

• For a term of the form !A, J!AK ∶= L ○M JAK. To simplify notations, let us write ! for
L ○M . Hence, with this notation J!AK ∶= ! JAK

Every adjunction gives rise to a comonad, in our case (!, δ, ε) is a comonad with ε the
counit of the adjunction and δ ∶= LηM .

Now for the interpretation of proofs, by induction on the rules of derivations:

ax The axiom rule is interpreted as the identity morphism

cut Let f ∶ JΓK → JAK and g ∶ J∆1K ⊗ JAK ⊗ J∆2K → JBK be the interpretation of 2
proofs then, the interpretation of the proof obtained by applying the cut rule is the
morphism: g ○ (J∆1K⊗ f ⊗ J∆2K) ∶ J∆1K⊗ JΓK⊗ J∆2K→ JBK

ex Let f ∶ J∆1K ⊗ JA1K ⊗ JA2K ⊗ J∆2K → JBK be the interpretation of a proof then, the
interpretation of the proof obtained by applying the exchange rule is the morphism:
f ○ (J∆1K⊗ γJA2K,JA1K ⊗ J∆2K) ∶ J∆1K⊗ JA2K⊗ JA1K⊗ J∆2K→ JBK

⊗L The left ⊗ rule is interpreted as composing with the identity morphism

⊗R Let f ∶ JΓK → JAK and g ∶ J∆K → JBK be the interpretation of 2 proofs then, the
interpretation of the proof obtained by applying the right ⊗ rule is the morphism:
f ⊗ g ∶ JΓK⊗ J∆K→ JAK⊗ JBK

⊸ L Let f ∶ JΓK → JAK and g ∶ J∆1K⊗ JBK⊗ J∆2K → JCK be the interpretation of 2 proofs
then, the interpretation of the proof obtained by applying the left ⊸ rule is the
morphism:

C

J∆1K⊗ JΓK⊗ JBK⊗ J∆2K

J∆1K⊗ JAK⊗ JAK⊸ JBK⊗ J∆2K

J∆1K⊗ JΓK⊗ JAK⊸ JBK⊗ J∆2K

g

J∆1K⊗ evalJAK,JBK ⊗J∆2K

J∆1K⊗f⊗JAK⊸JBK⊗J∆2K

⊸R Let f ∶ JAK ⊗ JΓK → JBK be the interpretation of a proof then, the interpretation of
the proof obtained by applying the right ⊸ rule is the left transpose of f , f̂ ∶ JΓK →
JAK⊸ JBK

1L Let f ∶ J∆1K ⊗ J∆2K → JAK be the interpretation of a proof then, the interpretation
of the proof obtained by applying the left 1 rule if the morphism: f ○ (ρ ⊗ J∆2K) ∶
J∆1K⊗1⊗ J∆2K→ JAK. Notice that we could also have taken f ○ (J∆1K⊗λ) ○α as the

7

interpretation but, since the axioms of monoidal category garanties that this diagram
commutes, this choice does not matter.

J∆1K⊗ J∆2K C

J∆1K⊗ 1⊗ J∆2K J∆1K⊗ J∆2K

f

(J∆1K⊗λ)○α

ρ⊗J∆2K f

1R The right 1 rule is interpreted as the identity morphism of 1

P Let f ∶ J!ΓK → JAK be the interpretation of a proof and assume for simplicity Γ =
B1,B2. Then, the interpretation of the proof obtained by applying the promotion
rule is the morphism:

!! JB1K⊗ !! JB2K !(! JB1K⊗ ! JB2K) ! JAK

J!ΓK = ! JB1K⊗ ! JB2K

L(m)○n !f

δB1
⊗δB2

d Let f ∶ J∆1K ⊗ JAK ⊗ J∆2K → JBK be the interpretation of a proof, then the inter-
pretation of the proof obtained by applying the derelection rule is the morphism:
f ○ (J∆1K⊗ εA ⊗ J∆2K) ∶ J∆1K⊗ ! JAK⊗ J∆2K→ JBK

w Let f ∶ J∆1K ⊗ J∆2K → JBK be the interpretation of a proof and A a formula of ILL.
Let t be the unique morphism of M(JAK) to e. Then, the interpretation of the proof
obtained by applying the weakening rule is the morphism:

J∆1K⊗ 1⊗ J∆2K J∆1K⊗ J∆2K JBK

J∆1K⊗ !1⊗ J∆2K

J∆1K⊗ ! JAK⊗ J∆2K

f

J∆1K⊗ε⊗J∆2K

J∆1K⊗L(n0○t)⊗J∆2K

c Let f ∶ J∆1K ⊗ ! JAK ⊗ ! JAK ⊗ J∆2K → JBK be the interpretation of a proof and δ
the diagonal morphism in (M,×). Applying theorem A.4.6 to the linear-non-linear
adjunction we deduce that (L,m) is a strong monoidal functor. Hence, we can
define the interpretation of the proof obtained by applying the contraction rule as
the morphism:

8

J∆1K⊗ ! JAK⊗ ! JAK⊗ J∆2K JBK

J∆1K⊗L(M(JAK) ×M(JAK)) ⊗ J∆2K

J∆1K⊗ ! JAK⊗ J∆2K

f

J∆1K⊗m−1⊗J∆2K

J∆1K⊗(L○δ)⊗J∆2K

What is left is checking that our semantic is stable by cut-elimination. This verification is
left to the brave reader.

2.2.4 Digging

Notice that the promotion rule is interpreted as the composition of the mediating map of
!, functoriality of ! and comultiplication . From this semantic point of view, it’s natural
to split the promotion rule into two rules: !f expressing the functoriality of ! and it’s lax
monoidal structure, and the digging rule p expressing the comultiplication.

Γ ⊢ A
!f

!Γ ⊢ !A
Γ ⊢ !A

p
Γ ⊢ !!A

Notice that as deduction systems, ILL and ILL with !f and digging are equivalent, meaning
that both systems can infer the same sequents. In fact, !f and digging are admissible rules
of ILL:

Γ ⊢ A
d

!Γ ⊢ A
P

!Γ ⊢ !A Γ ⊢ !A

ax
A ⊢ A

!f
!A ⊢ !A

P
!A ⊢ !!A

cut
Γ ⊢ !!A

and promotion is an admissible rule in ILL with digging and !f (for simplicity, assume
Γ = B,C):

ax
C ⊢ C

!f
!C ⊢ !C

p
!C ⊢ !!C

ax
B ⊢ B

!f
!B ⊢ !B

p
!B ⊢ !!B

!B, !C ⊢ A
!f

!!B, !!C ⊢ !A
cut

!B, !!C ⊢ !A
cut

!B, !C ⊢ !A
The semantics of !f and p is the following:

!f Let f ∶ JΓK → JAK and assume for simplicity Γ = B1,B2. Then, the !f rule applied to
it is interpreted as the morphism

! JB1K⊗ ! JB2K !(JB1K⊗ JB2K) ! JAK
L(m)○n !f

9

p Let f ∶ JΓK→ J!AK then, the digging rule applied to it is interpreted as the morphism
δ ○ f .

This observation is also valid in LL defining !f in the same way (only one formula to
the right) and p by replacing "B" with "Γ" (an arbitrary number of formulas).

Since this new syntax is quite close to the semantics, it’s common to use the vocab-
ulary of the syntax for the semantics. For exemple, it’s not rare to present a comonad
as: a category equipped with a triplet (!,p,d) were ! is an endo-functor, pA a natural
transformation from !A to !!A called a digging and dA a natural transformation from !A
to A called a derelection.

From a categorical point of view, one might thing that considering sequents as lists and
adding an exchange rule is more general then considering sequents as multisets: the first
approach corresponding with symmetric monoidal categories and the second one, strict
symmetric monoidal categories. But, it’s not the case since every symmetric monoidal
category is monoidaly equivalent to a strict symmetric monoidal category [13, ch.7]. We
can always assume that our categories are strict symmetric monoidal. Hence, the choice of
lists or multistets has no impact on the syntax and the semantics. Moreover, considering
a strict symmetric monoidal category eliminates the need to explicit the unit, associative
and symmetric isomorphisms, bringing even closer the syntax and semantics.

2.2.5 Semantics of ILL+&

Proposition 2.2.3. Let (L,⊗,1) be a symmetric monoidal closed category also equipped
with a cartesian structure (L,&,⊺). Every linear-non-linear adjunction between (L,⊗,1)
and a cartesian category (M,×, e) give rise to a model of ILL+&.

Proof. Let us consider a linear-non-linear adjunction.

(M,×, e) (L,⊗,1)

(L,m)

(M,n)

⊣

were (L,⊗,1) is symmetric monoidal closed, (L,&,⊺) is a cartesian category, A⊸ − is the
right adjoint of A ⊗ −, η ∶ 1M ⇒M ○ L the unit and ε ∶ L ○M ⇒ 1L the counit. L will be
our denotational category. As in the previous case (2.2.3), we define ! as L ○M which is a
comonad (!, ε, µ) and the interpretation function J−K we are defining is a strict extension
of what has already been done for the ILL case. Hence, what is left is the case of the &
connector. The interpretation of a formula of the shape A & B is defined as JAK & JBK
and the rules &1L, &2L, &R and ⊺ are interpreted in the usual way. There needs to
be compatibility between the multiplicative structure and the additive structure for this
structure to be a model of ILL+&. In our case, it arrise naturally from the linear-non-linear
adjunction. First, notice that we have an adjunction:

10

(M,×, e) (L,&,⊺)

L

M

⊣

Which lifts from proposition A.4.9 to a symmetric monoidal adjunction between colax
symmetric monoidal functors:

(M,×, e) (L,&,⊺)

(L,k)

(M,l)
⊣

Now, by the dual of theorem A.4.9, (M, l) is a strong symmetric monoidal morphism. This
makes

! ∶ (L,&,⊺) (M,×, e) (L,⊗,1)(M,l−1) (L,m)

A strong symmetric monoidal functor. Finaly, we indeed have the isomorphisms !A⊗ !B ≃
!(A & B) and 1 ≃ !⊺. This results show compatibility between the multiplicative and
additive world in our model. Again, what is left is checking that this interpretation is
stable by cut elimination. This is left to the brave reader.

2.2.6 Semantics of LL

Before building models of LL, some general categorical results are needed.

Definition 2.2.4 (∗-autonomous category). A ∗-autonomous category is a symmetric
closed monoidal category with a distinguished object � such that for all objects A,
∂A,� ∶ A→ (A⊸ �) ⊸ � is an isomorphism. In the context of ∗-autonomous categories, we
write ∂A for ∂A,� (see A.2.8).2

The ∗-autonomy allows us to model classical reasoning. In particular, we can define
new connective from ⊗ and & that will behave as expected.

Proposition 2.2.5. Let (L,⊗,1) be a ∗-autonomous category that is also equipped with a
cartesian structure (L,&,⊺) then, it is also cocartesian. Let us write A� for A⊸ � then,
the coproduct A⊕B is defined as (A� &B�)� and the initial object is ⊺� denoted 0.

Proof. Let ϕ ∶ Hom(B ⊗A,C) → Hom(B,A⊸ C) and ψ ∶ Hom(A⊗B,C) → Hom(B,A⊸
C) be the isomorphisms generated by the adjunction (see A.2.6).

2This definition is not the most general one. It can be defined in the context of biclosed monoidal
categories

11

First, we show that for every objects A and B, there is a map from A to A⊕B and a
map from B to A⊕B. Notice that

Hom(A� &B�,A�) ≃ Hom((A� &B�) ⊗A,�) ≃ Hom(A, (A� &B�)�) = Hom(A,A⊕B)

Since the first projection is an element of Hom(A�&B�,A�), this transformation generates
a morphism from A to A⊕B which we call ι1. Explicitly,

ι1 ∶= ψ(ϕ−1(π1)) ∶ A→ (A⊕B)

Similarly, by taking the second projection we get a morphism ι2 from B to A ⊕B. Now,
we must check that A ⊕ B satisfies the coproduct universal property. Suppose given the
following diagram:

A A⊕B B

C

ι1

fA

ι2

fB

Notice that we have the natural isomrophisms:

Hom(A⊕B,C) ≃ Hom(A⊕B, (C�)�)
≃ Hom(C� ⊗ (A⊕B),�)
≃ Hom(C�, (A⊕B)�)
≃ Hom(C�,A� &B�)
≃ Hom(C�,A�) ×Hom(C�,B�)
≃ Hom(A,C) ×Hom(B,C)

Following this chain from bottom up, we get an explicit construction

∂−1 ○ ψ(ϕ−1(∂ ○ ⟨f�A, f�B⟩)) ∶ (A⊕B) → C

We leave to the reader the proof that this morphism commutes with the diagram and that
it is unique.
We now show that 0 is an initial object. Once again, using isormphisms between Hom sets:

Hom(A�,⊺) ≃ Hom(⊺�, (A�)�) ≃ Hom(0,A)

Since ⊺ is terminal, 0 must be initial.

Proposition 2.2.6. Let (L,⊗,1) be a ∗-autonomous category and let us define A`B as
(A�⊗B�)�. Then, � is a neutral object for the ` operation and the functor A�`− is right
adjoint to − ⊗A.

12

Proof. First, we show that 1 ≃ ��. Using the fact that the yoneda embeding is full and
faithfull:

Hom(1,X) ≃ Hom(X�,1�)
≃ Hom(X� ⊗ 1,�)
≃ Hom(X�,�)
≃ Hom(��, (X�)�)
≃ Hom(��,X)

Hence, 1 ≃ �� and equivalently � ≃ 1�. Let A be an object then:

�`A = (�� ⊗A�)� ≃ (1⊗A�)� ≃ (A�)� ≃ A

Symmetrically, A` � ≃ A.
Let’s show that A� ` − is right adjoint to − ⊗A:

Hom(B ⊗A,C) ≃ Hom(B ⊗A, (C�)�)
≃ Hom(B ⊗A⊗C�,�)
≃ Hom(B ⊗ (A⊗C�),�)
≃ Hom(B, (A⊗C�)�)
≃ Hom(B, ((A�)� ⊗C�)�)
= Hom(B,A� `C)

Since all isomorphisms are natural, − ⊗A ⊣ A� ` − and by uniqueness of adjoint A� ` − ≃
A⊸ −.

Now that it has been established that everything works as expected in classical logic,
it’s very easy to see that the following is a model of LL. The only connector that was not
tackled is ?, as expected it suffises to define it as ?− ∶= (!−�)� which is an endofunctor.

Proposition 2.2.7. Let (L,⊗,1) be a ∗-autonomous category also equipped with a carte-
sian structure (L,&,⊺). Every linear-non-linear adjunction between (L,⊗,1) and a carte-
sian category (M,×, e) give rise to a model of LL.

2.3 Seely categories as models of LL

What has been seen untill now is that linear-non-linear adjunctions give rise to models of
LL. In this section we ask a dual question: when does category equipped with comonad
define a linear-non-linear adjunction? In other words: what structure should we require
on a category for it to be a model of LL? There are multiple answers to this question, we
will only focus on one of them, Seely categories.

Definition 2.3.1 (Seely category). A Seely category is a symmetric closed monoidal cat-
egory (L,⊗,1) that has finite products (L,&,⊺) together with:

13

• a comonad (!,p,d).

• two natural isomorphisms m2
A,B ∶ !A ⊗ !B → !(A&B) and m0 ∶ 1 → !⊺ which induce

as strong symmetric monoidal structure m on !.

• the commutation, for all A and B, of the following coherence diagram:

!A⊗ !B !(A&B)

!!(A&B)

!!A⊗ !!B !(!A& !B)

m

pA⊗pB

p

!⟨!π1,!π2⟩

m

Theorem 2.3.2. Every Seely category L is involved in a linear-non-linear adjunction with
its coKleisli category L! (see ??), making it a model of ILL+&. Hence, every ∗-autonomous
Seely category is a model of LL.

To prove this theorem we must show two things:

• The coKleisli category can be equipped with a cartesian structure

• The adjunction lifts to a symmetric lax monoidal adjunction

Proof. Let L be a Seely category with the notation given in 2.3.1 and L! the coKleisli
category associated to the comonad (!,p,d). We have the following adjunction:

L! L

L

M

⊣

First, let’s show that L! is a cartesian category. Notice that the functor M is surjective
on objects and since it’s a right adjoint, it preserves limits. Hence, we can define A×B as
M(A&B) and e as M(⊺). (L!,×, e) is a cartesian category.
Secondly, we must show that the following adjunction

(L!,×, e) (L,⊗,1)

L

M

⊣

14

lifts to a symmetric monoidal adjunction between lax monoidal functors. Equivalently (see
A.4.9) have to check that (L,m) is a strong symmetric monoidal functor. The axioms of
Seely categories are there specially to ensure that this is the case. The rest of the proof is
straightforward and can be found in [14].

2.4 The relational model, an example of models of LL

We construct an important denotational model of LL: the relational model. This model
is somewhat "degenerate" as it does not distinguish the interpretation of a formula from
the interpretation of its negation. Nevertheless, it’s an important model and enjoy the
property of being quite simple to define. First, we need to define the category Rel.

Definition 2.4.1. Rel is the category of sets are relations, objects are sets and morphisms
are binary relations, in other words: Rel(X,Y) = P(X × Y). If R ∈ Rel(X,Y) and
S ∈Rel(Y,Z) then composition is given by: S ○R ∶= {(x, z) ∈X ×Z ∣ ∃y ∈ Y, xRy ∧ yS z}.
Identity is given by the diagonal relation.

To show that it’s a model of LL we will prove that it’s a ∗-autonomous Seely category.
Firstly, (Rel,⊗,1) is a closed symmetric monoidal category were X ⊗ Y ∶= X × 3Y and 1
is a singleton set. The closed structure is defined as A⊸ B ∶= A⊗B, the natural bijection
Rel(X ⊗Y,Z) ≃Rel(X,Y ⊗Z) is simply the associativity of the cartesian product in Set.
It’s a ∗-autonomous category for � ∶= {⋆} the singleton. It has finite products given by
A&B ∶= A∐ 4B and a terminal object ⊺ ∶= ∅. The projection maps: πi ∶X1 &X2 →Xi are
given by πi ∶= {((i, x), x) ∈ (X1 &X2) ×X1 ∣ x ∈ Xi}. Let R1 ∶ Y → X1 and R2 ∶ Y → X2

then, the paring ⟨R1,R2⟩ is given by {(y, (i, x)) ∈ Y × (X1 &X2) ∣ y Ri x for i = 1,2}. Rel
has a comonad structure (!,p,d) defined as:

• !X is the set of all finite multisets of X. We denote multisets with square brackets
instead of brackets and write + for the union of multisets. Let R ∶ X → Y then
!R ∶= {([x1, . . . , xn], [y1, . . . , yn]) ∣ n ∈ N and xi R yi for i = 1, . . . , n}.

• the digging is defined as pX ∶= {(m1 + ⋅ ⋅ ⋅ + mn, [m1, . . . ,mn]) ∈ !X × !!X ∣ n ∈
N and m1, . . . ,mn ∈ !X}.

• the derelection is defined as dX ∶= {([x], x) ∣ x ∈X}

For the next part we will need the following lemma

Lemma 2.4.2. Isomorphisms in Rel are exactly the relations that are bijections.

The transitions maps m2 and m0 making ! a strong monoidal functor from (Rel,&,⊺)
to (Rel,⊗,1) are defined as follows:

3the cartesian product in Set
4The disjoint union in Set

15

• m2
A,B ∶ !A ⊗ !B → !(A & B) is defined as the bijection ([a1, . . . , an], [b1, . . . , bm]) ↦
[(1, a1), . . . , (1, an), (2, b1), . . . , (2, bm)].

• m0 ∶ 1→ !⊺ is defined as the obvious bijection from 1 = {⋆} to !⊺ = {[]}.

By computing each path, we see that the following diagram commutes:

!A⊗ !B !(A&B)

!!(A&B)

!!A⊗ !!B !(!A& !B)

m

pA⊗pB

p

!⟨!π1,!π2⟩

m

This makes Rel a ∗-autonomous Seely category, thus a model of LL. We can look in more
details at the semantics of his model for example, the formula are interpreted as follows:

JA⊗BK = JA`BK = JAK × JBK
JA&BK = JA⊕BK = JAK ∐ JBK
J1K = J�K = {⋆}
J0K = J⊺K = ∅
J!AK = J?AK =Mfin(A)

Where Mfin(A) is the set of finite multisets of A. The confusion in this model between
a formula and its negation is due to the ∗-autonomous structure: the dual operation −�
is the identity. Looking at the semantics of a few rules, see that the weakening rule and
contraction rule are respectively interpreted as natural transformations: wX = {([],⋆)} ∶
!X → 1 and cX = {(m, (m1,m2)) ∣m =m1 +m2} ∶ !X → !X ⊗ !X.

16

3 Differential Linear Logic
In this section we describe differential linear logic (DiLL), the intuition relating it to dif-
ferentiation and differential categories as a semantics for it.

3.1 The calculus and intuitions

Let’s consider for now only the models of LL that are Seely categories. Every model
involves two categories, the denotational (or model) category L and it’s coKleisli category
L!. L can be thought as a "linear world" and the coKleisli category, corresponds to a
"non linear world". Every morphism A → B in L! is a morphism from !A → B in L and,
according to the ressource interpretation of ! or the translation of classical logic to linear
logic, we can think of morphism of this form as "non linear".

Differentiation is a process to transform a differentiable function into a linear function.
Differential linear logic, is an extension of LL adding rules that capture in the syntax the
notion of differentiation at the point 0 (in the semantics). It was first discovered in 2004
by Ehrhard and Regnier, see [7].

Definition 3.1.1 (DiLL). Formulas of DiLL are the same as the ones of LL:

A ∶= X ∣ A`A ∣ A&A ∣ A⊗A ∣ A⊕A ∣X� ∣ 0 ∣ 1 ∣ � ∣ ⊺ ∣ !A ∣ ?A

As with linear logic, we can choose to present the calculus as a one sided or two sided
calculus. Here, we make the choice of presenting it as a one side calculus with multisets
of formulas. The A� operation is defined in the same way as LL. DiLL is the following
calculus:

ax
⊢ A�,A

⊢ Γ,A ⊢∆,A�
cut

⊢ Γ,∆
⊢ Γ,A,B,∆

ex
⊢ Γ,B,A,∆

⊢ Γ,A ⊢∆,B
⊗

⊢ Γ,∆,A⊗B
⊢ Γ,A,B `
⊢ Γ,A`B

⊢ Γ,A ⊢ Γ,B
&

⊢ Γ,A&B

⊢ Γ,A
⊕1⊢ Γ,A⊕B

⊢ Γ,B
⊕2⊢ Γ,A⊕B

1
⊢ 1

⊢ Γ �
⊢ Γ,�

⊺
⊢ Γ,⊺

⊢ ?Γ,A
P

⊢ ?Γ, !A
⊢ Γ,A

d
⊢ Γ, ?A

⊢ Γ,A
d

⊢ Γ, !A

⊢ Γ
w

⊢ Γ, ?A
w

⊢ !A
⊢ Γ, ?A, ?A

c
⊢ Γ, ?A

⊢ Γ, !A ⊢∆, !A
c

⊢ Γ,∆, !A

17

The rules d, w and c are respectively the coderelection, the coweakeking and the cocon-
traction rules. The promotion rule was not included in the first paper defining DiLL [7] as
it did not (yet) have a dual rule. For our purpose, we consider that the promotion rule (or
digging + !f , as per the discussion in 2.2.4) is included in DiLL.

Differential linear logic is obtained by symmetrising the derelection, weakening and
contraction rules of LL into the coderelection, coweakeking and cocontraction rules.5 In
order to give intuitive meaning to those rules and the link with differentiation, we must
first place ourself into a context of functions spaces. In DiLL, the duality linear/non linear
of LL is replaced by the duality linear maps/smooth maps.

Some models of LL have vector spaces as objects and smooth functions as morphisms.
In those models, JXK is a vector space and JX ⊸ Y K is the linear maps L(X,Y). J�K is R
therefore, JX�K ∶= JX ⊸ �K is interpreted as the dual space L(X,R). JX ⇒ Y K6 is the space
of smooth maps C∞(JXK , JY K). For the interpretation of !, notice that !X ≃ (!X → �) →
� = (X ⇒ �) → �, therefore, J!XK = C∞(JXK ,R)′ the space of distribution with compact
support on X. ?A ≃ (!A�)� hence, J?AK = C∞(A�,R). It’s in those spaces that the rules of
DiLL get their real significance:

• The derelection rule (presented in a monolateral and bilateral style)

l ∶ A ⊢ B
d

l ∶ !A ⊢ B
⊢ Γ, v ∶ A

d
⊢ Γ, (a′ ↦ a′(v)) ∶ ?A

transforms a linear map l ∶ A⊸ B into a non linear one A⇒ B by forgetting it’s a
linear map.

• The coderelection rule

⊢ Γ, v ∶ A
d

⊢ Γ, f ↦D0(f)(v) ∶ !A
f ∶ (!A ⊢ Γ)

d
(v ↦D0(f)(v)) ∶ (A ⊢ Γ)

corresponds to the "differential" operation. This is seen in the cut elimination pro-
cedure were

⊢ Γ, v ∶ A
d

⊢ Γ, f ↦D0(f)(v) ∶ !A
l ∶ A ⊢ B

d
l ∶ !A ⊢ B

cut
⊢ Γ,D0(l)(v) ∶ B

↝
⊢ Γ, v ∶ A l ∶ A ⊢ B

cut
⊢ Γ, l(v) =D0(l)(v) ∶ B

Composing derelection with coderelection lead to identity since the derivative of a
linear map is itself.

5One might wonder if it’s possible to go one step further by symmetrising the promotion or digging
rule and still obtain a meaningful system, this will be answered positively in section 4.

6X ⇒ Y ∶= !X ⊸ Y

18

Remark 3.1.2. Be wary that we giving a backwards explanation: giving the intu-
itions then showing that they behave as expected relatively to cut-elimination. It’s
important to keep in mind that the cut-elimination procedure is what gives us infor-
mation on the semantics of each rule. It allows us to build intuition for those rules,
not the other way arround. If the coderelection is interpreted as a diferentiation,
it’s because of the way it behave in the cut-elimation procedure. We will not detail
the full procedure here, it can be found in [7] for the fragment of DiLL without pro-
motion and in [16] for DiLL with promotion. The cut-elimination procedure will be
illustrated in subsection 3.2 when specifying the required diagram commutations.

• The weakening rule

⊢ γ ∶ Γ
w

a↦ γ ∶ (!A ⊢ Γ)
⊢ Γ

w
⊢ Γ, (a′ ↦ 1) ∶ ?A

builds a constant (hence, non linear) function.

• The coweakeking rule
w

⊢ δ0 ∶ !A
7

f ∶ (!A ⊢ B)
w

⊢ f(0) ∶ B
is the evaluation function at 0. This is illustrated by the cut-elimation procedure

⊢ γ ∶ Γ
w

⊢ Γ, (a′ ↦ 1) ∶ ?A
w

⊢ δ0 ∶ !A
cut

⊢ Γ,1 ∶ �(= R)
↝ ⊢ Γ

• The contraction rule

⊢ Γ, f ∶ ?A,g ∶ ?A
c

⊢ Γ, f ⋅ g ∶ ?A
f ∶ (!A, !A ⊢ Γ)

c
(x↦ f(x,x)) ∶ (!A ⊢ Γ)

multiplies two scalar functions.

• The cocontraction rule

⊢ Γ, ϕ ∶ !A ⊢∆, ψ ∶ !A
c

⊢ Γ,∆, ϕ ∗ ψ ∶ !A
f ∶ !A ⊢ B

c
(ϕ,ψ ↦ f(ϕ ∗ ψ)) ∶ !A, !A ⊢ B

is the convolution of distribution.

• The digging
f ∶ !!A ⊢ Γ

p
(ψ ↦ f(δψ)) ∶ !A ⊢ Γ

maps a distribution ψ to its Diract δψ.
7The Diract function in 0 : δ0(f) = f(0)

19

3.2 Differential categories, a semantic for DiLL

Differential categories were first invented by Blute, Cockett and Seely in [2] to provide a
semantics for DiLL but, quickly became a subject of interest on its own. Here, we present
and use some of the formalism of differential category to provide a semantics for DiLL. We
use the notations and terminology described by Ehrhard in [5], as they are better suited
for this goal. This subsections takes also inspiration from [10] and [1].

First, models of DiLL should also be models of LL hence, we place our self in a similar
setting: symmetric monoidal categories with finite product. As per the discussion in 2.2.4,
we will assume our categories to be strict symmetric monoidal. As explained in 3.1, the
codereliction rule is interpreted as the differential at point 0. Categorically, to be able to
talk about "0" we need additional structure: pre-additive categories89.

Definition 3.2.1 (CMon-enriched category). A CMon-enriched category is a category such
that each Hom-set is a commutative monoid and the composition operation

○ ∶ Hom(A,B) ×Hom(B,C) → Hom(A,C)

is bilinear.

Definition 3.2.2 (Pre-additive category). A pre-additive category is a CMon-enriched
category that is also symmetric monoidal with a compatibility condition between the two
structures:

k ⊗ (f + g) ⊗ h = (k ⊗ f ⊗ h) + (k ⊗ g ⊗ h) k ⊗ 0⊗ h = 0

To interpret DiLL one needs finite product, this leads us to additive categories.

Definition 3.2.3 (Additive category). An additive category C is as pre-additive category
that has all finite biproducts:

• C has all finite products and coproducts.

• The products and coproducts coincide: all products are coproducts and all coproducts
are products. We denote by the same symbol ⊕, the product and coproduct.

• Let A,B be two objects, π1, π2 be the two projections of the product A⊕B, ι1, ι2 the
two injections of the coproduct A⊕B then,

π1ι1 = id
π2ι2 = id

ι1π1ι2π2 = ι2π2ι1π1
8In [10] and [1], pre-additive categories are called additive categories.
9pre-additive categories usually refer to abelian-enriched categories (see pre-additive category), in the

context of DiLL and differential categories it refers to CMon-enriched symmetric monoidal ategories (see
CMon-enriched categories)

20

https://ncatlab.org/nlab/show/Ab-enriched+category
https://ncatlab.org/nlab/show/CMon-enriched+symmetric+monoidal+category

Theorem 3.2.4. A pre-additive category that has all finite (co)products, has all finite
biproducts hence, it is an additive category.

Proof. The proof of this theorem is well know and can be found here.

The consequence of this last theorem is that, in our context, models of DiLL necessarily
equates A&B and A⊕B. This is expected since we are trying to capture a semantic related
to category of vector spaces (see 3.1) which are additive hence, JA&BK = JA⊕BK10.

From now on, we write × for the biproduct and ⊺ for the zero object (a terminal object
which is also an initial object) as we are more interested in its "product nature". We now
give definitions that will lead to a categorical semantics for DiLL.

Definition 3.2.5 (coalgebra modality). A coalgebra modality on a symmetric monoidal
category is a tuple (!,p,d,c,w) such that, (!,p,d) is a comonad and cA ∶ !A → !A ⊗ !A
and wA ∶ !A→ 1 are two natural transformations making all (!A,cA,wA) a cocommutative
comonoid. This means that for all A object, the following diagram commutes:

!A !A⊗ !A

!A⊗ !A !A⊗ !A⊗ !A

c

c c⊗1

1⊗c

!A !A⊗ !A !A

!A

1⊗ww⊗1

c

Moreover, we require that p preserve the comultiplication, that is, that the following diagram
commutes:

!A !A⊗ !A

!!A !!A⊗ !!A

p

c

p⊗p

c

Lemma 3.2.6. For a coalgebra modality (!,p,d,c,w), p also preserves the counit wA, the
following diagram commutes:

!A !!A

1

w

p

w

Definition 3.2.7 (bialgebra modality). A coalgebra modality on a pre-additive symmetric
monoidal category is a tuple (!,p,d,c,w,c,w) where, (!,p,d,c,w) is a coalgebra modality,
cA ∶ !A ⊗ !A → !A and wA ∶ 1 → !A are natural transformations such that, for all A,
(!A,cA,wA) is a comutative monoid (that is, satisfying the opposite diagrams of 3.2.5)
and (!A,cA,wA,cA,wA) is a bialgebra, that is, the following diagrams commutes:

10We refer the reader to section 1 where we discus the notion of model and completeness.

21

https://ncatlab.org/nlab/show/additive+category#ProductsAreBiproducts

!A⊗ !A !A

1

w⊗w

c

w

1 !A

!A⊗ !A

w⊗w

w

c

1 !A

1

w

w

!A⊗ !A !A⊗ !A⊗ !A⊗ !A

!A⊗ !A⊗ !A⊗ !A

!A !A⊗ !A

c⊗c

c

1⊗σ⊗1

c⊗c

c

Moreover, we require that d be compatible with c meaning that the following diagram com-
mutes:

!A⊗ !A !A

A

c

(d⊗w)+(w⊗d)
d

Lemma 3.2.8. For a bialgebra modality (!,p,d,c,w,c,w), d also preserves the unit wA,
the following diagram commutes:

1 !A

A

0

w

d

Definition 3.2.9 (Additive bialgebra modality). An additive bialgebra modality on a pre-
additive symmetric monoidal category is a bialgebra modality (!,p,d,c,w,c,w) compatible
with the pre-additive structure, that is, the following diagrams commutes:

!A !B

!A⊗ !A !B ⊗ !B

c

!(f+g)

!f⊗!g

c

!A !B

1

w

!0

w

Definition 3.2.10. In a symmetric monoidal category with finite product × and terminal
object ⊺, a coalgebra modality has Seely isomorphisms if the maps

χ⊺ ∶ !⊺ 1w χ ∶ !(A ×B) !(A ×B) ⊗ !(A ×B) !A⊗ !Bc !π1⊗!π2

22

are isomorphisms.

Definition 3.2.11 (Storage modality). A storage modality on a symmetric monoidal cate-
gory with finite products is a coalgebra modality (!,p,d,c,w) that has Seely isomorphisms.

Proposition 3.2.12 (Monoidality of !). Every storage modality gives rise to a lax monoidal
structure m on ! defined as

m ∶ !A⊗ !B !(A ×B) !!(A ×B) !(!A⊗ !B) !(A⊗B)χ−1 p !χ !(d⊗d)

m1 ∶ 1 !⊺ !!⊺ !1
χ−1
⊺ p !χ⊺

Theorem 3.2.13. The following are equivalent:

• An additive category equipped with a storage modality.

• An additive category equipped with an additive bialgebra modality.

Moreover, there is a bijective correspondence between them.

Proof. Given a storage modality (!,p,d,c,w), we must construct two natural transfor-
mations c and w in order to get a bialgebra modality. We can do it using the additive
structure and the Seely maps:

cA ∶ !A⊗ !A !(A ×A) !A
χ−1 !∇× wA ∶ 1 !⊺ !A

χ−1
⊺ !0

Given an additive bialgebra modality (!,p,d,c,w,c,w), it’s also a coalgebra modality,
what is left to show is that it has Seely isomorphisms. Using the additive structure, c and
w, we construct inverses of the Seely maps:

χ−1 ∶ !A⊗ !B !(A ×B) ⊗ !(A ×B) !(A ×B)!ι1⊗!ι2 c χ−1⊺ ∶ 1 !⊺w

The proof of bijective correspondance can be found in [1].

Definition 3.2.14 (Differential storage category). A differential storage category is an
additive category equipped with an additive bialgebra modality (!,p,d,c,w,c,w), that comes
equipped with a natural transformation dA ∶ A → !A such that, the following diagrams
commutes:

• The chain rule

!A⊗A !A⊗ !A !A

!A⊗ !A⊗ !A

!A⊗ !A !!A⊗ !!A !!A

A⊗d

c⊗d

c

p

A⊗c

p⊗d c

23

• The linear rule

A !A

A

d

d

• The product rule

A !A

!A⊗ !A

d

(w⊗d)+(d⊗w)
c

• The constant rule

A !A

1

d

0
w

Theorem 3.2.15. ∗-autonomous differential storage categories are models of DiLL. The
interpretation map is given by our choice of notations (see 2.2.4).

Remark 3.2.16. Differential storage categories are models of LL because they are linear
categories (they are not Seely categories). We did not give a definition of linear categories
as it’s not central to the subject of this memoir (it can be found in [14]). Like a Seely
category, a linear category is a category satisfying conditions garantying it’s involved in a
linear-non-linear adjunction (see section 2), in this case with its Eilenberg-Moore category.

3.3 The relational model, an example of models of DILL

Now that we gave a definition of models of DiLL, differential storage categories, we provide
an example: the category Rel (defined in 2.4). The choice to explicit this example can be
seen as paradoxal since the intuition given for DiLL is based on functional analysis yet, Rel
is not of topological or vectorial nature. There exists in the literature multiple examples
of models from functional analysis:

• Blute, Ehrhard and Tasson describe in [3] models in terms of convenient vector spaces.
Convenient vector spaces are vectors spaces endowed with a bornology (a structure
between the notions of topological vector spaces and normed vector space, that al-
lows one to talk about bounded sets without the need for a norm) and additional
conditions.

24

https://ncatlab.org/nlab/show/Eilenberg-Moore+category

• Dabrowski and Kerjean describe in [4] models in terms of particular locally convex
separated topological vector spaces.

• Kerjean and Tasson describe in [11] in terms of particular bornological vectors spaces.

Since those models are quite mathematically complex, they take lots of pages to properly
describe and explain. On the other hand, Rel is quite simple and is an example of most
notions seen throughout this memoir.

Rel is a differential storage category. First, for the additive structure, the addition of
maps R + V is defined as the union R ∪ V , the 0 morphism is the empty relation and the
finite biproduct is given by the disjoint union. Second, the cocontraction cX ∶ !X⊗!X → !X,
coweakening wX ∶ 1→ !X and coderelection dX ∶X → !X are defined as:

cX ∶= {((m1,m2),m1 +m2) ∣m1,m2 ∈ !X}
wX ∶= {(⋆, [])}
dX ∶= {(x, [x]) ∣ x ∈X}

One easily check that, in addition to what has been defined in 2.4, this makes Rel a
∗-autonomous differential storage category.

25

4 Codigging, monads and quantitative semantics
In this section we present codigging, we explain why it corresponds to a notion of quantita-
tive differentiation and why it seams possible to integrate it into functional programming
languages.

4.1 Codigging

This section is an explanation of some key ideas of [10].
When looking at the semantics of DiLL one sees that, (!,p,d) is a comonad, (!X,cX ,wX)

is a cocomutative comonoid and (!X,cX ,wX) is a commutative monoid. On the other
hand, the coderelection rule looks like it could be a unit of a monad (!,−,d) but the mul-
tiplication map has no reason to exists in an arbitrary model. Having presented things
this way, it seams natural that one looking for a dual rule to the digging would bet on a
natural transformation of type !!X → !X making (!,p,d) a monad. Amazingly, as show
by Kerjean and Lemay in [10], defining a "codigging" rule this way makes a lot of sense in
some models.

First let’s define the codigging rule and models of DiLL + codigging.

Definition 4.1.1 (Codigging). The codigging is the rule:

⊢ Γ, ?A
p

⊢ Γ, ??A

It’s the dual of the digging rule of DiLL. An other way to present it, less logically correct
but perhaps more intuitive, is:

⊢ Γ, !!A
p

⊢ Γ, !A
Remark 4.1.2. It’s not yet known whether or not DiLL+p enjoys the cut elimination
property.

Definition 4.1.3 (Monadic differential category). A monadic differential category is a
differential storage category equipped with a natural transformation pA ∶ !!A → !A called a
codigging such that, (!,p,d) is a monad, p is a monoid morphism, that is, the following
diagrams commutes:

!!A⊗ !!A !!A

!A⊗ !A !A

p⊗p

c!A

p

c

1 !!A

!A

w

w!A

p

We also require that p be compatible with d, meaning that the following diagram commutes:

26

!!A !!A⊗ !!A

!A⊗ !A

!A A

p

c!A

p⊗d!A

w⊗d

d

This definition is simply an extension of the notion of differential storage category by
dualising the digging following the already established pattern. Notice that the conditions
required for p are simply the dual conditions required for p. Intuitively, one can think about
codigging as an generalised exponential map from !A ⇒ !A. The exponential function
x ↦ ex has three key properties: it’s its own derivative, ex+y = exey and e0 = 1. Those
properties are capture in the categorical formalism by the following definition:

Definition 4.1.4 (!-differential exponential map). In a differential storage category, a
commutative monoid (A,µ, η) is said to have a !-differential exponential map if there exists
a morphism e ∶ !A→ A such that the following diagram commutes:

A !A

A

d

e

!A⊗ !A !A

A⊗A A

e⊗e

c

e

µ

1 !A

A

w

η
e

A !-differential exponential algebra is a commutative monoid equipped with a !-differential
exponential map.

Rewriting those diagrams with the interpretations in terms of functional analysis, we
get D0(e)(v) = v, eϕ∗ψ = eϕ ⋅ eϕ and eδ0 = 1. The following results makes more rigorous our
intuition about codigging:

Theorem 4.1.5. In a monadic differential category, all tuples (!A,cA,wA,pA) are !-
differential exponential algebra.

Proof. The first diagram is exactly one of the monad axioms pA ○d!A = id!A. The last two
diagrams are exactly the first two diagrams of definition 4.1.3.

Codigging captures a generalised notion of exponentiation and also the notion of Taylor
expansion. To understand why, we can first look at the monad axiom pA○!dA = id!A. Recall
that coderelection is the function x↦D0(−)(x) then rewriting the monad axiom we get:

δx ↦ pA(D0(−)(x)) = id!A

27

From this equation and the interpretation of codigging as an exponential function, one can
guess that codigging is in fact the following function:

pA = δϕ ↦
∞
∑
n=0

ϕ∗n

n!

Where ϕ∗n ∶= ϕ∗ ⋅ ⋅ ⋅ ∗ϕ. This guess intuitively makes sense since δx ↦ ∑∞n=0 D0(−)(x)∗n
n! is the

Taylor expansion (at point 0) of a function, this formula is indeed the identity on distri-
butions and in models where every function is equal to its Taylor expansion (quantitative
models) it’s the identity. Making this intuition more rigorous means finding a categorical
setting expressing the notion of "Taylor expansion" and restricting our function spaces
such that each function is equal to its Taylor expansion at point 0.

To be able to talk about Taylor monomial, we need to able to multiply by 1
n! . This can

be done by requiring our model category to be enriched over Q≥0-modules. This means that
each Hom-set has a Q0<-module structure and the composition operation is Q≥0-bilinear.
A category satisfying the same axioms as a differential storage category and enriched on
Q≥0-modules is called a Q≥0-differential storage category11. In the setting of Q≥0-differential
storage categories, we can always construct morphisms Mn

A ∶ !A→ !A such that, when pre-
composed with a morphisms f ∶ !A → B, it corresponds to the nth Taylor monomial of f .
We can then define T nA ∶= ∑

n
i=0M

i
A the nth Taylor polynomial morphism. This leads to the

following definition:

Definition 4.1.6. Taylor differential category A Taylor differential category is a Q≥0-
differential storage category such that for any pair of parallel coKleisli maps f ∶ !A → B,
g ∶ !A→ B:

(∀n ∈ N, f ○Mn
A = g ○Mn

A) ⇒ f = g

The following two results make rigorous our intuition:

Proposition 4.1.7. A Taylor differential category is a monadic differential category if and
only if, for all object A, there exists a (necessarily unique) morphism pA ∶ !!A → !A such
that,

∀n ∈ N, pA ○Mn
!A =

1

n!
(cnA ○ dn!A)

Proposition 4.1.8. In a Taylor differential category which is also a monadic differential
category, the following series converges to the codigging p with respect to ultrametric D:

pA =
∞
∑
n=0

1

n!
(cnA ○ d⊗

n

!A ○ cn!A)
11In particular, it’s a differential storage category since Q≥0-modules are in particular commutatives

monoids

28

Not all objects appearing in those two propositions were defined here but, we hope it’s
enough to convince the reader that the setting of Taylor differential categories provides a
formal setting in which the codigging corresponds to the intuitions formulated. Moreover,
notice that this setting forces every function to be equal to its Taylor series. It’s a form
of quantitative semantics: interpreting programs by functions equal to their Taylor series,
each Taylor monomial containing some information on the program. This quantitative
setting of differentiation is captured (at least in part) by a monad (!,p,d), which is a
structure that can be integrated to a functional programming language (under some condi-
tions). This well known fact leads to the hope of finding a calculus, here we are interested
in a "resource-calculus", that capture in its semantics this "quantitative differentiation".

Before moving on to the next section we provide an example of a Taylor differential
category which is also a monadic differential category: Rel. Rel is a Q≥0-differential
storage category with the Q≥0-module enriched structure given by q

p ⋅R = R if q
p ≠ 0 and

0 ⋅R = 0. Each Mn
A is defined as Mn

A = {(m,m)∣∀m ∈ !A, ∣m∣ = n}, where ∣m∣ denotes the
cardinality of the multiset. This makes Rel into a Taylor differential category. It’s also a
monadic differential category with codigging defined as

pA = {([m1, . . . ,mn],m1 + ⋅ ⋅ ⋅ +mn) ∣ ∀n ∈ N,∀0 < i ≤ n,mi ∈ !A}

4.2 Monads in functional programming

In this section we explain how monads can be integrated to functional programming lan-
guages (= typed theories). For more details see [15]. First, we need some categorical
definitions.

Definition 4.2.1 (Kleisli triple). Let C be a category then, a Kleisli triple is a tuple
(T, η,−∗) where T is a function from Obj(C) to Obj(C), η a natural transformation from
1C to T and −∗ is a operation on morphisms such that, for all f ∶ A→ TB, f∗ ∶ TA→ TB.
We also require that the following equalities hold:

• η∗A = idA

• f∗ ○ ηA = f

• g∗ ○ f∗ = (g∗ ○ f)∗

Remark 4.2.2. For the reader familiar with some functional programming languages (like
Haskel), this corresponds to the operations:

a ∶ A↦ [a] ∶ TA
a ∶ A↦ f(a) ∶ TB

c ∶ TA↦ (let c⇒ x inf(x)) ∶ TB

Proposition 4.2.3. There is a one to one correspondance between Kleisli triple and mon-
ads.

29

Proof. Let (TK , η,−∗) be a Kleisli triple then, the associated monad is (Tm, η, µ) where Tm
is the extension of T on morphisms by T (f) ∶= (η ○ f)∗ and µA ∶= id∗TA. Let (Tm, η, µ) be
a monad then, the associated Kleisli triple is (TK , η,−∗) where TK is the restriction of Tm
on objects and f∗ ∶= µB ○ Tf

Kleisli triples provides an alternative formalism for monads, a formalism more suited
for implementation in a type theory. For example, consider the following theory:

A
⊢ A ∶ Type

⊢ τ ∶ Type
T

⊢ Tτ ∶ Type
⊢ τ ∶ Type

var
x ∶ τ ⊢ x ∶ τ

x ∶ τ ⊢ e ∶ τ1
f ∶ τ1 → τ2

x ∶ τ ⊢ f(e) ∶ τ2
x ∶ τ ⊢ e ∶ τ1 [−]T

x ∶ τ ⊢ [e]T ∶ Tτ1
x ∶ τ ⊢ e1 ∶ Tτ1 x1 ∶ τ1 ⊢ e2 ∶ Tτ2 let
x ∶ τ ⊢ (let e1⇒ x1 in e2) ∶ Tτ2

x ∶ τ ⊢ e1 ∶ τ1 x ∶ τ ⊢ e2 ∶ τ1 eq
x ∶ τ ⊢ e1 =τ1 e2

x ∶ τ ⊢ e1 =τ1 e2 [−].ξ
x ∶ τ ⊢ [e1]T =Tτ1 [e2]T

x ∶ τ ⊢ e1 =Tτ1 e2 x′ ∶ τ1 ⊢ e′1 =Tτ2 e′2 let.ξ
x ∶ τ ⊢ (let e1⇒ x′ in e′1) =Tτ2 (let e2⇒ x′ in e′2)

x ∶ τ ⊢ e1 ∶ Tτ1 x1 ∶ τ1 ⊢ e2 ∶ Tτ2 x2 ∶ τ2 ⊢ e3 ∶ Tτ3 ass
x ∶ τ ⊢ (let (let x1⇒ e1 in e2) ⇒ x2 in e3) =Tτ3 (let e1⇒ x1 in (let e2⇒ x2 in e3))

x ∶ τ ⊢ e1 ∶ τ1 x1 ∶ τ1 ⊢ e2 ∶ Tτ2 T.β
x ∶ τ ⊢ x ∶ τ ⊢ (let [e1]T ⇒ x1 in x2) =Tτ2 e2[e1/x1]

x ∶ τ ⊢ e1 ∶ Tτ1 T.η
x ∶ τ ⊢ (let e1⇒ x1 in [x1]T) =Tτ1 e1

It’s a very simple theory providing a framework to implement different monads. To
implement a monad one must specify additional reduction rules capturing its behaviour.
For example, lets consider the following monad

Definition 4.2.4 (Partiality monad). To a set A it associates the set A+ {�} denoted A�
where + is the disjoint union and � is a fixed set. It defines a Kleisli triple where ηA is the
inclusion from A to A� and f∗ is defined as: f∗� = � and f∗(a) = f(a).

To implement it, we must add the rules of the form (let � ⇒ x in f(x)) = � and
(let a⇒ x in f(x)) = f(a).

When trying to generalise to a more complex theory, allowing multiple variable in the
context, we run into a problem in the semantics. A sequent of the form A,B,C ⊢ D, will
be interpreted using the monoidal structure A⊗B ⊗C → D hence, we need compatibility
conditions between the monad structure and the monoidal structure of the category. The
right compatibility conditions are given in the definition of Strong monads:

30

Definition 4.2.5 (Strong monad). A strong monad on a monoidal category C is a monad
(T, η, µ), together with a natural transformation tA,B ∶ A⊗TB → T (A⊗B), called a strength,
such that, the following diagrams commutes:

1⊗ TA TA

T (1⊗A)

λTA

t1,A
TλA

(A⊗B) ⊗ TC T ((A⊗B) ⊗C)

A⊗ (B ⊗ TC) A⊗ T (B ⊗C) T (A⊗ (B ⊗C))

tA⊗B,C

αA,B,TC
TαA,B,C

A⊗tB,C tA,B⊗C

A⊗B

A⊗ TB T (A⊗B)

A⊗ TTB T (A⊗ TB) TT (A⊗B)

A⊗η
η

tA,B

A⊗µ

tA,TB TtA,B

µ

Is codigging a strong monad? From [8] and [1], we know that we can equivalently replace
the chain rule by an alternative chain rule and a strength rule (also called a monoidal rule):

• Alternative chain rule

A !A

!A⊗ !A !!A⊗ !!A !!A

d

w⊗d p

p⊗d c

• Strength rule (monoidal rule)

A⊗ !B !A⊗ !B

A⊗B !(A⊗B)

d⊗!B

A⊗d m

d

31

By defining tA,B as m ○ (d⊗ !B) ∶ A⊗ !B → !(A⊗B) and using the strength rule we can
prove that tA,B satisfies all of the diagrams of definition 4.2.5 where the codigging dose not
appear.

For example, we explicit the commutation in the top part of the last diagram:

A⊗B

A⊗ !B !(A⊗B)

A⊗dB

dA⊗B

tA,B

Using the strength rule, we rewrite it as

A⊗B !(A⊗B)

A⊗ !B A⊗B

A⊗dB

dA⊗B

A⊗dB

dA⊗B

Using the fact that ⊗ is a bifunctor and the linear rule (3.2.14) we obtain

A⊗B !(A⊗B)

A⊗B

dA⊗B

dA⊗B

Which is of course a commutative diagram.

4.3 A programming language for quantitative differentiation ?

The goal is to find a typed theory with a monad capturing in its semantics quantitative
differentiation. To find it, we looked at what already existed in close proximity to LL and
DiLL: ressource λ-calculus.

Ressource λ-calculus is a form of λ-calculus where redexes are formed from and ab-
straction (λx.t) and a bag [u1, . . . , un]. The key idea is that, much like in LL, we care
about ressources: how many times "x" appears in the construction of "t". If "x" appears
3 times then, we need to provide 3 inputs, a bag of size 3: [u1, u2, u3], for the substitution
to make sense. This kind of substitution is called (without surprises) linear substitution.
This kind of calculus is in essence quantitative hence, my hope of being able to endow
it with the codigging monad. An example of untyped ressource λ-calculus can be found
in [17]. A problem I faced was in finding a typed system for ressource λ-calculus as the
codigging monad acts on linear types. My attention was also grabbed by differential λ-
calculus (introduced in 2004 by Ehrhard [6]) which allows to interpret ressource calculus

32

in terms of differential nets. Much like differential λ-calculus, it’s not improbable to be
able to find a calculus that would allow to interpret ressource calculus and some monadic
untyped structure in terms of DiLL + codigging.

In the future, I plan to investigate when the codigging monad is strong. I also plan
to investigate models of ressource calculus in hope of finding intersections with models of
codigging.

33

References
[1] Blute, R. F. ; Cockett, J. R. B. ; Lemay, J.-S. P. ; Seely, R. A. G.: Dif-

ferential Categories Revisited. http://dx.doi.org/10.48550/arXiv.1806.04804.
Version:Mai 2019. – arXiv:1806.04804 [math]

[2] Blute, R. F. ; Cockett, J. R. B. ; Seely, R. A. G.: Differential cat-
egories. In: Mathematical Structures in Computer Science 16 (2006), Dezem-
ber, Nr. 06, 1049. http://dx.doi.org/10.1017/S0960129506005676. – DOI
10.1017/S0960129506005676. – ISSN 0960–1295, 1469–8072

[3] Blute, Richard ; Ehrhard, Thomas ; Tasson, Christine: A convenient differential
category.

[4] Dabrowski, Yoann ; Kerjean, Marie: Models of linear logic based on the Schwartz
epsilon-product. In: Theory and Applications of Categories (2020)

[5] Ehrhard, Thomas: An introduction to differential linear logic: proof-nets, models
and antiderivatives. In: Mathematical Structures in Computer Science 28 (2018),
August, Nr. 7, 995–1060. http://dx.doi.org/10.1017/S0960129516000372. – DOI
10.1017/S0960129516000372. – ISSN 0960–1295, 1469–8072

[6] Ehrhard, Thomas ; Regnier, Laurent: The differential lambda-calculus. In: Theo-
retical Computer Science 309 (2003), Dezember, Nr. 1-3, 1–41. http://dx.doi.org/
10.1016/S0304-3975(03)00392-X. – DOI 10.1016/S0304–3975(03)00392–X. – ISSN
03043975

[7] Ehrhard, Thomas ; Regnier, Laurent: Differential interaction nets. In: Theoretical
Computer Science 364 (2006), November, Nr. 2, 166–195. http://dx.doi.org/10.
1016/j.tcs.2006.08.003. – DOI 10.1016/j.tcs.2006.08.003. – Publisher: Elsevier

[8] Fiore, Marcelo P.: Differential Structure in Models of Multiplicative Biadditive Intu-
itionistic Linear Logic: (Extended Abstract). Version: 2007. http://link.springer.
com/10.1007/978-3-540-73228-0_13. In: Typed Lambda Calculi and Applications
Bd. 4583. Berlin, Heidelberg : Springer Berlin Heidelberg, 2007. – ISBN 978–3–540–
73227–3 978–3–540–73228–0, 163–177. – Series Title: Lecture Notes in Computer
Science

[9] Girard, Jean-Yves: Linear logic. In: Theoretical Computer Science 50 (1987),
Januar, Nr. 1, 1–101. http://dx.doi.org/10.1016/0304-3975(87)90045-4. – DOI
10.1016/0304–3975(87)90045–4. – ISSN 0304–3975

[10] Kerjean, Marie ; Lemay, Jean-Simon P.: Taylor Expansion as a Monad in Models
of DiLL. In: 2023 38th Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS). Boston, United States : IEEE, Juni 2023, 1–13

34

http://dx.doi.org/10.48550/arXiv.1806.04804
http://dx.doi.org/10.1017/S0960129506005676
http://dx.doi.org/10.1017/S0960129516000372
http://dx.doi.org/10.1016/S0304-3975(03)00392-X
http://dx.doi.org/10.1016/S0304-3975(03)00392-X
http://dx.doi.org/10.1016/j.tcs.2006.08.003
http://dx.doi.org/10.1016/j.tcs.2006.08.003
http://link.springer.com/10.1007/978-3-540-73228-0_13
http://link.springer.com/10.1007/978-3-540-73228-0_13
http://dx.doi.org/10.1016/0304-3975(87)90045-4

[11] Kerjean, Marie ; Tasson, Christine: Mackey-complete spaces and power series
– a topological model of differential linear logic. In: Mathematical Structures in
Computer Science 28 (2018), April, Nr. 4, 472–507. http://dx.doi.org/10.1017/
S0960129516000281. – DOI 10.1017/S0960129516000281. – ISSN 0960–1295, 1469–
8072

[12] Laurent, Olivier: Théorie de la démonstration. https://perso.ens-lyon.fr/
olivier.laurent/thdem.pdf

[13] Mac Lane, Saunders: Categories for the working mathematician. 2nd ed. New York
: Springer, 1998 (Graduate texts in mathematics 5). – ISBN 978–0–387–98403–2

[14] Melliès, Paul-André: Categorical Semantics of Linear Logic. https://www.irif.
fr/~mellies/papers/panorama.pdf

[15] Moggi, Eugenio: Notions of computation and monads. In: Information and Compu-
tation 93 (1991), Juli, Nr. 1, 55–92. http://dx.doi.org/10.1016/0890-5401(91)
90052-4. – DOI 10.1016/0890–5401(91)90052–4. – ISSN 08905401

[16] Pagani, Michele: The Cut-Elimination Thereom for Differential Nets with Promo-
tion. In: 9th International Conference on Typed Lambda Calculi and Applications
(TLCA 2009) Bd. 5608. Brasilia, Brazil : Springer, Juli 2009 (Lectures Notes in
Computer Science), 219–233

[17] Pagani, Michele ; Tranquilli, Paolo: Parallel Reduction in Re-
source Lambda-Calculus. Version: 2009. http://link.springer.com/10.1007/
978-3-642-10672-9_17. In: Programming Languages and Systems Bd. 5904. Berlin,
Heidelberg : Springer Berlin Heidelberg, 2009. – ISBN 978–3–642–10671–2 978–3–
642–10672–9, 226–242. – Series Title: Lecture Notes in Computer Science

35

http://dx.doi.org/10.1017/S0960129516000281
http://dx.doi.org/10.1017/S0960129516000281
https://perso.ens-lyon.fr/olivier.laurent/thdem.pdf
https://perso.ens-lyon.fr/olivier.laurent/thdem.pdf
https://www.irif.fr/~mellies/papers/panorama.pdf
https://www.irif.fr/~mellies/papers/panorama.pdf
http://dx.doi.org/10.1016/0890-5401(91)90052-4
http://dx.doi.org/10.1016/0890-5401(91)90052-4
http://link.springer.com/10.1007/978-3-642-10672-9_17
http://link.springer.com/10.1007/978-3-642-10672-9_17

A Notions of category theory
In this appendix we recall some well know notions of category theory and others the reader
might not be familiar with. Often, theorems will be given without proofs as they are easily
found in the literature, see nLab, [13] or [14]. Moreover, concepts wont be defined in the
outmost generality, they will be defined in the context that is of interest for this memoir.

A.1 Adjunction, monad and comonad

Definition A.1.1 (Adjunction). Let C and D be two categories, L ∶ C → D and R ∶ D → C
two functors. We say that L is left adjoint to R (or equivalently that R is a right adjoint
to L) denoted L ⊣ R and diagrammatically written

C D

L

R

⊣

if there exists a natural transformation η ∶ 1C ⇒ R ○L such that for any C ∈ C, D ∈ D and
f ∶ C → R(D), there exists a unique g ∶ L(C) →D such that f = R(g) ○ ηC

L(C) D
g

RL(C) R(D)

C

R(g)

ηC
f

η is called the unit of the adjunction.

Theorem A.1.2. Let C and D be two categories, L ∶ C → D and R ∶ D → C two functors.

C D

L

R

The following are equivalent:

• L ⊣ R

• There exists a natural transformation ε ∶ L ○R → 1D, called a counit, such that for
any C ∈ C, D ∈ D and G ∶ L(C) → D, there exists a unique f ∶ C → R(D) such that
g = εD ○L(f)

36

https://ncatlab.org/nlab/show/HomePage

C R(D)f

L(C) LR(D)

D

g

L(f)

εD

• For all C ∈ C and D ∈ D, there exists an isomorphism

ϕ ∶ HomD(L(C),D) ≃ HomC(C,R(D))

natural in both C and D.

Definition A.1.3 (Monad). Let C be a category then, a monad on C is a triplet (T,µ, η)
such that:

• T is a C endofunctor.

• µ is a natural transformation from TT ⇒ T called the multiplication.

• η is a natural transformation from 1C ⇒ T called the unit.

• The following associativity and unit law diagrams commutes:

TTT TT

TT T

Tµ

µT µ

µ

T TT T

T

ηT

µ

Tη

Definition A.1.4 (Comonad). Let C be a category then, a comonad on C is a triplet
(T,µ, η) such that:

• T is a C endofunctor.

• µ is a natural transformation from T ⇒ TT called the comultiplication.

• η is a natural transformation from T ⇒ 1C called the counit.

• The following coassociativity and counit law diagrams commutes:

TTT TT

TT T

Tµ

µT µ

µ

T TT T

T

ηT Tη

µ

37

Theorem A.1.5. Let C and D be two categories, L ∶ C → D and R ∶ D → C two adjoint
functors:

C D

L

R

⊣

Then, (R ○L,RεL, η) is a monad on C and (L ○R,LηR, ε) is a comonad on D.

Definition A.1.6 (Kleisli category). Let (T,µ, η) be a monad on a category C then the
Kleisli category of this monad is the category CT defined as:

• The objects of CT are the objects of C.

• A morphism A→ B in CT is a morphism from A→ TB in C. If f ∶ A→ B and g ∶ B →
C are two morphisms in CT then the composition is defined as g ○ f ∶= µC ○ T (g) ○ f .

Theorem A.1.7. Let (T,µ, η) be a monad on a category C. Then, the functors

• F∗ ∶ C → CT that maps A to A and f ∶ A→ B to ηB ○ f ∶ A→ T (B).

• F ∗ ∶ CT → C that maps A to TA and f ∶ A→ TB to µB ○ Tf ∶ T (A) → T (B).

are adjoint functors F∗ ⊣ F ∗ and the monad (T,µ, η) is the monad generated by this
adjonction.

Definition A.1.8 (coKleisli category). Let (T,µ, η) be a comonad on a category C then
the coKleisli category of this monad is the category CT defined as:

• The objects of CT are the objects of C.

• A morphism A → B in CT is a morphism from TA → B in C. If f ∶ A → B and g ∶
B → C are two morphisms in CT then the composition is defined as g○f ∶= g○Tf ○µA.

Theorem A.1.9. Let (T,µ, η) be a comonad on a category C. Then, the functors

• F ∗ ∶ C → CT that maps A to A and f ∶ A→ B to f ○ ηA ∶ TA→ B.

• F∗ ∶ CT → C that maps A to TA and f ∶ TA→ B to Tf ○ µA ∶ T (A) → T (B).

are adjoint functors F∗ ⊣ F ∗ and the comonad (T,µ, η) is the comonad generated by this
adjonction.

38

A.2 Monoidal categories

Definition A.2.1 (Monoidal category). A monoidal category is a category C equipped
with a bifunctor ⊗ ∶ C ×C → C, associative up to natural transformation and with unit 1.
More formally, it is the data of ⊗ a bifunctor, 1 a distinguished object and tree natural
isomorphism:

αA,B,C ∶ (A⊗B) ⊗C → A⊗ (B ⊗C) λA ∶ 1⊗A→ A ρA ∶ A⊗ 1→ A

Such that, for all A,B,C and D, the pentagram and the triangular diagrams commutes:

(A⊗B) ⊗ (C ⊗D)

((A⊗B) ⊗C) ⊗D A⊗ (B ⊗ (C ⊗D))

(A⊗ (B ⊗C)) ⊗D A⊗ ((B ⊗C) ⊗D)

αα

α⊗D

α

A⊗α

and the triangular diagram commutes for all A and B

(A⊗ 1) ⊗B A⊗ (1⊗B)

A⊗B
ρ⊗B

α

A⊗λ

A monoidal category is said to be strict if α,λ and ρ are the identity morphism.

Proposition A.2.2. In any monoidal category, the following triangles commutes:

(1⊗A) ⊗B 1⊗ (A⊗B)

A⊗B
λ⊗B

α

λ

(A⊗B) ⊗ 1 A⊗ (B ⊗ 1)

A⊗B
ρ

α

A⊗ρ

Corollary A.2.3. In any monoidal category the morphisms λ1 and ρ1 are equal.

Definition A.2.4 (Braided monoidal category). A braided monoidal category is a monoidal
category (C,⊗,1) equipped with a braiding, that is a natural isomorphism γA,B ∶ A ⊗B →
B ⊗A. Such that, for all A,B and C, the hexagonal diagrams commutes:

39

A⊗ (B ⊗C) (B ⊗C) ⊗A

(A⊗B) ⊗C B ⊗ (C ⊗A)

(B ⊗A) ⊗C B ⊗ (A⊗C)

γ α

γ⊗C

α

α B⊗γ

(A⊗B) ⊗C C ⊗ (A⊗B)

A⊗ (B ⊗C) (C ⊗A) ⊗B

A⊗ (C ⊗B) (A⊗C) ⊗B

γ α−1

A⊗γ

α−1

α−1 γ⊗B

Definition A.2.5 (Symmetric monoidal category). A symmetric monoidal category is a
braided monoidal category (C,⊗,1, γ) such that for all A and B, γ−1A,B = γB,A. A symmetric
monoidal category is said to be strict if γ is the identity morphism.

Definition A.2.6 (Monoidal closed category). A monoidal (right) closed category is a
monoidal category equipped with a bifunctor ⊸ ∶ Cop ×C→ C such that, for all A, −⊗A is
left adjoint to A⊸ −. In other words:

HomC(B ⊗A,C) ≃ HomC(B,A⊸ C)

Equivalently, we can define a monoidal closed category as a monoidal category such that
for every pair of objects A and B there exists an object denoted A ⊸ B and a morphism
evalA,B ∶ (A ⊸ B) ⊗ A → B, the (right) evaluation morphism, that satisfy the following
condition: for every morphism f ∶ X ⊗ A → B, there exists a morphism f̂ ∶ X → A ⊸ B
called the (right) transpose of f , such that the following diagram commutes

X ⊗A

(A⊸ B) ⊗A B

f̂⊗A f

evalA,B

Dualy, for every morphism of the shape f ∶ X → A ⊸ B, there exists a morphism f̃ ∶
X ⊗A → B such that ̂̃f = f . The definition of a left closed monoidal category is obtained
in the same way by requiring that the functor A⊗ − admits a right adjoint. This is again
equivalent to requiring the existence of a left transpose and left evaluation morphism that
satisfy a similar triangle diagram.

40

Proposition A.2.7 (Symmetric monoidal closed category). If a symmetric monoidal cat-
egory is closed then, by symmetry the functor A ⊸ − (given by the closed structure) is a
right adjoint to the functor A⊗ − hence, it is left and right closed. In those cases, we will
often not distinguish between the left and right transpose and the left and right evaluation
morphism, calling them simply transpose and evaluation morphism.

Definition A.2.8. Let C be a symmetric closed monoidal category, then for every pair of
objects A and B let us define ∂A,B ∶ A→ (A⊸ B) ⊸ B as :

B

(A⊸ B) ⊗A

evalA,B ↝
(A⊸ B) ⊸ B

A

̂evalA,B =∶ ∂A,B

A.3 Monoidal functors

Definition A.3.1 (Lax monoidal functor). Let (C,⊗, e) and (D, ●, u) be two monoidal
categories. A lax monoidal functor from (C,⊗, e) to (D, ●, u) is the data of a functor
F ∶ C→ D and two natural transformations

m2
A,B ∶ FA ● FB → F (A⊗B) m0 ∶ u→ Fe

Such that the following three diagrams commutes

(FA ● FB) ● FC FA ● (FB ● FC)

F (A⊗B) ● FC FA ● F (B ⊗C)

F ((A⊗B) ⊗C) F (A⊗ (B ⊗C))

m●FC

α●

FA●m

m m

Fα⊗

FA ● u FA

FA ● Fe F (A⊗ e)

FA●m

ρ●

m

Fρ⊗

u ● FA FA

Fe ● FA F (e⊗A)

m●FA

λ●

m

Fλ⊗

m2 and m0 are called the mediating maps of F .

Definition A.3.2 (Colax monoidal functor). Let (C,⊗, e) and (D, ●, u) be two monoidal
categories. A colax monoidal functor from (C,⊗, e) to (D, ●, u) is the data of a functor
F ∶ C→ D and two natural transformations

n2
A,B ∶ F (A⊗B) → FA ● FB n0 ∶ Fe→ u

Such that the following three diagrams commutes

41

F ((A⊗B) ⊗C) F (A⊗ (B ⊗C))

F (A⊗B) ● FC FA ● F (B ⊗C)

(FA ● FB) ● FC FA ● (FB ● FC)

n

Fα⊗

n

n●FC FA●n

α●

F (A⊗ e) FA

FA ● Fe FA ● u

n

Fρ⊗

FA●n

ρ●

F (e⊗A) FA

Fe ● FA u ● FA

n

Fλ⊗

n●FA

λ●

n2 and n0 are called the mediating maps of F .

Definition A.3.3 (Strong monoidal functor). A strong monoidal functor or simply monoidal
functor, is a lax monoidal functor whose mediating maps are isomorphisms. Equivalently,
it’s also a colax monoidal functor whose mediating maps are isomorphisms. A strict
monoidal functor is a strong monoidal functor whose mediating maps are the intentity
morphisms.

Definition A.3.4 (Symmetric (co)lax monoidal functors). A lax monoidal functor (F,m) ∶
(C,⊗, e,) → (D, ●, u) between two symmetric monoidal categories is called symmetric when
the following diagram commutes:

FA ● FB FB ● FA

F (A⊗B) F (B ⊗A)

m

γ●

m

γ⊗

A colax monoidal functor (F,n) ∶ (C,⊗, e,) → (D, ●, u) between two symmetric monoidal
categories is called symmetric when the following diagram commutes:

F (A⊗B) F (B ⊗A)

FA ● FB FB ● FA

n

γ⊗

n

γ●

Proposition A.3.5. The composition of (co)lax monoidal functors is (co)lax monoidal.
The composition of strong monoidal functors is strong monoidal. The composition of sym-
metric (co)lax monoidal functors is symmetric (co)lax monoidal.

42

Proposition A.3.6. Let C and D be cartesian categories and F ∶ C→ D a functor. Then,
F lifts in a unique way to a symmetric colax monoidal functor (F,n) ∶ (C,×C,1C) →
(D,×D,1D).

A.4 Monoidal adjunctions

Definition A.4.1 (Monoidal natural transformation). A monoidal natural transforma-
tion between two lax monoidal functors (F,m), (G,n) ∶ (C,⊗, e,) → (D, ●, u) is a natural
transformation η ∶ F ⇒ G such that the following diagrams commutes:

FA ● FB GA ●GB

F (A⊗B) G(A⊗B)

m

ηA●ηB

n

ηA⊗B

u

Fe Ge

m n

ηe

Similarly, a monoidal natural transformation between two colax monoidal functors (F,m), (G,n) ∶
(C,⊗, e,) → (D, ●, u) is a natural transformation η ∶ F ⇒ G such that the following dia-
grams commutes:

F (A⊗B) G(A⊗B)

FA ● FB GA ●GB

m

ηA⊗B

n

ηA●ηB

Fe Ge

u

m

ηe

n

Proposition A.4.2. Let C and D be cartesian categories F,G ∶ C → D two functors and
η ∶ F ⇒ G a natural transformation. Then, η is a monoidal natural transformation between
the colax monoidal functors F and G (see A.3.6).

Definition A.4.3 (Monoidal adjunction). Let (C,⊗, e) and (D, ●, u) be two monoidal cat-
egories and (F∗,m), (F ∗, n) be an adjoint pair of (co)lax monoidal functors

(C,⊗, e) (D, ●, u)

(F∗,m)

(F ∗,n)

⊣

This adjunction is said to be monoidal if the unit and counit are monoidal in the sense of
definition A.4.1

Proposition A.4.4 (lax-colax duality). Let (C,⊗, e) and (D, ●, u) be two monoidal cate-
gories and F∗, F ∗ be an adjoint pair of functors

(C,⊗, e) (D, ●, u)

F∗

F ∗

⊣

43

with unit η ∶ 1C ⇒ F ∗F∗ and counit ε ∶ F∗F ∗ ⇒ 1D. Then, every lax monoidal structure p
on F ∗ gives rise to a colax monoidal structure n on F∗ defined as follows:

n2 ∶ F∗(A⊗B) F∗(F ∗F∗A⊗ F ∗F∗B) F∗F ∗(F∗A ● F∗B) F∗A ● F∗B
F∗η⊗η F∗p ε

n0 ∶ F∗e F∗F ∗u u
F∗p ε

Dualy, every colax monoidal structure n on F∗ gives rise to a lax monoidal structure p on
F ∗ defined as follows:

p2 ∶ F ∗A⊗ F ∗B F ∗F∗(F ∗A⊗ F ∗B) F ∗(F∗F ∗A ● F∗F ∗B) F ∗(A ●B)η F ∗n F ∗ε●ε

p0 ∶ e F ∗F∗e F ∗u
η F ∗n

The first transformation defines a function ϕ from the lax monoidal structures on F ∗ to
the colax monoidal structures on F∗. The second transformation defines a function as well,
which we can prove to be the inverse of ϕ.

Proposition A.4.5. Let (C,⊗, e) and (D, ●, u) be two monoidal categories and F∗, F ∗ be
an adjoint pair of functors

(C,⊗, e) (D, ●, u)

F∗

F ∗

⊣

with unit η ∶ 1C⇒ F ∗F∗ and counit ε ∶ F∗F ∗⇒ 1D. If (F∗,m) and (F ∗, p) are lax monoidal
functors then:

• the colax structure n ∶= ϕ−1(p) is a right inverse of m (meaning m2 ○ n2 = id and
m0 ○ n0 = id) if and only if η is monoidal.

• the colax structure n ∶= ϕ−1(p) is a left inverse of m (meaning n2 ○ m2 = id and
n0 ○m0 = id) if and only if ε is monoidal.

Theorem A.4.6. Let (C,⊗, e) and (D, ●, u) be two monoidal categories, F∗, F ∗ be an
adjoint pair of functors

(C,⊗, e) (D, ●, u)

F∗

F ∗

⊣

44

and (F∗,m) a lax monoidal functor then, the adjuction F∗ ⊣ F ∗ lifts to a monoidal adjuction
(F∗,m) ⊣ (F ∗, p) if and only if (F∗,m) is strong monoidal. In that case, the lax monoidal
structure p on F ∗ is given by ϕ(m−1). In particular, if (F∗,m) ⊣ (F ∗, p) is a monoidal
adjunction between lax functors then, (F∗,m) is strong monoidal.

Definition A.4.7 (Symmetric monoidal adjunction). A Symmetric monoidal adjunction
is a monoidal adjunction in which the two categories (C,⊗, e) and (D, ●, u) are symmetric
monoidal and the functors (F∗,m) and (F ∗, p) are symmetric monoidal.

Proposition A.4.8. Every adjunction between two cartesian categories lifts in a unique
way to a monoidal symmetric adjunction between colax symmetric monoidal functors. This
result is a corollary of A.4.2 and A.3.6

Theorem A.4.9. Let (C,⊗, e) and (D, ●, u) be two symmetric monoidal categories, F∗, F ∗
be an adjoint pair of functors

(C,⊗, e) (D, ●, u)

F∗

F ∗

⊣

and (F∗,m) a lax symmetric monoidal functor then, the adjuction F∗ ⊣ F ∗ lifts to a sym-
metric monoidal adjuction (F∗,m) ⊣ (F ∗, p) if and only if (F∗,m) is strong symmetric
monoidal. In that case, the lax symmetric monoidal structure p on F ∗ is given by ϕ(m−1).
In particular, if (F∗,m) ⊣ (F ∗, p) is a symmetric monoidal adjunction between lax sym-
metric functors then, (F∗,m) is strong symmetric monoidal.

The theorems A.4.6 and A.4.9 can be adapted to the dual case where a colax structure
p is given on F ∗.

45

	Introduction
	Categorical semantics of Linear Logic
	Reminders on LL
	Linear-non-linear adjunctions as models of LL
	Reminders on categorical semantics
	What should be a model of LL?
	Semantics of ILL
	Digging
	Semantics of ILL+
	Semantics of LL

	Seely categories as models of LL
	The relational model, an example of models of LL

	Differential Linear Logic
	The calculus and intuitions
	Differential categories, a semantic for DiLL
	The relational model, an example of models of DILL

	Codigging, monads and quantitative semantics
	Codigging
	Monads in functional programming
	A programming language for quantitative differentiation ?

	Notions of category theory
	Adjunction, monad and comonad
	Monoidal categories
	Monoidal functors
	Monoidal adjunctions

