LICS 2024

0 is for Dialectica

Marie Kerjean, Pierre-Marie Pédrot

CNRS & Inria

UNI VERSI TE

IN\E
SNCRD

1/18

What this talk is about

Joining Dialectica and Differentiation

September 2015 in Paris, about Pédrot’s thesis:
"that’s (just) differential lambda-calculus”

2/18

What this talk is about

Joining Dialectica and Reverse Differentiation

June 2019 in Nantes, about "\ the ultimate backpropagator”:
"That’s (just) Dialectica”

2/18

What this talk is about

Joining Dialectica and Differential \-calculus
through
Reverse Differentiation

June 2024 in Tallinn

2/18

What this talk is not about

» Joining Dialectica and Differential Linear Logic through Reverse
Differentiation

» Joining Dialectica and Differential Categories through Reverse
Differentiation

3/18

Godel’s Dialectica Transformation

1. (FAGY =@y (zw) [A (¥, 2z,) A B (v, w, u)].

2. (F\/ G) =@yl (zw) [t=0 NA(y, 2, 2)-\/-t=1 A B (v, w, 0)].
3. [(s)FI =@AY) (s2) A(Y ($), 2, 7).

4. [As)FY = @3sy) @) A (y, 2, 2).

5. (F 2 G = (VZ) (yw) [A (3. Z(yw). 3) D B (V @), w,)]

6. ("F)Y =@Z)(y) 7A@y Z@),).

@ Kurt Gédel (1958). Uber eine bisher noch nicht beniitzte Erweiterung des finiten
Standpunktes. Dialectica.

» Validates semi-classical axioms:
» Markov’s principle : ——3JxA — JxA when A is decidable.
» Numerous applications :

» Soundness results
> Proof mining: applying Dialectica to theorems in analysis extract
quantitative information.

» Reformulated through Linear logic, or Dialectica Categories

@ V. de Paiva. 1989. A Dialectica-like Model of Linear Logic.,

4/18

Differentiation

» Differentiation is finding the best linear approximation to a function at a

point.
For f:R—-R,zeR
D,f:veERw f'(z)-veER
faC”(R,R)
For f:E—>F,zeFE
/ Dyf :ve Er Dyf(v) € F
(£10)

Chain Rule : Dy(f og) = Dy f o Dzg

5/18

Differentiation

» Differentiation is finding the best linear approximation to a function at a

point.
For f:R—-R,zeR
Dyf :veRw— fi(z)-veER
faC”(R,R)
For f:E—>F,zeFE
/ Dyf :ve Er Dyf(v) € F
(£10)

Chain Rule : Dy(f og) = Dy f o Dzg

» Differentiation is a mathematical operation which needs to be fitted to
logical and computer science use.
> Algorithmic Differentiation : differentiating sequences of many-valued
functions efficiently.
» Differential Linear Logic and Differential A-calculus : Differentiating proofs
and A-terms.

5/18

A peek into Dialectica interpretation of functions

(A — B)p =3fgVay(Ap(z, gzy) — Bp(fz,y))

Question: (A= B)p;(B=C)p ~ (A= C)p?
Usual explanation : least unconstructive prenexation.

Dynamic behaviour : agrees to a chain rule.

» Variables f agree to the usual composition rule.

> Variables g agree to a chain rule: gs(z,y) = ¢1(z, 92(f12,y))

Mathematical meaning : it’s some kind of approximation.

6/18

Algorithmic Differentiation
How does one compute the differentiation of an algebraic expression,
computed as a sequence of elementary operations ?

x = a8 @) = 2z,
E.g. : 2 =y+cos(x?) my =cos(x1) xh= —xysin(xo)

2=y+ 19 2 =y 4 2x91f

Derivative of a sequence of instruction

I

sequence of instruction x sequence of derivatives

Forward Mode differentiation [Wengert, 1964]

(21, 2) = (22, 7) = (5, 7).

Reverse Mode differentiation: [Speelpenning, Rall, 1980s]

x1 = T2 — z = 2 = ah = &) while keeping formal the unknown derivative.

7/18

Typing Algorithmic Differentiation

Algorithmic differentiation:

making a choice when computing the chain rule: D, (f o g) = Dy, f o Du(g)

Typing Forward Mode differentiation :

g:E=F~Dg:E=FE — F.

8/18

Typing Algorithmic Differentiation

Algorithmic differentiation:
making a choice when computing the chain rule: D, (f o g) = Dy, f o Du(g)

Typing Forward Mode differentiation :

g:E=F~Dg:E=FE — F.

The Linear negation: A* =4 — | = L(A,R) = A’

Typing Reverse Mode differentiation

g(u) — f(g(u)) - Dg(u)f — Dy(’u,)f o Du(g)

g:E=>F -~ Dg:E=F-—E' 0 (oD,g

D Brunel, Mazza, Pagani. Backpropagation in the simply typed A-calc. with linear negation.

8/18

Typing Algorithmic Differentiation

Algorithmic differentiation:
making a choice when computing the chain rule: D, (f o g) = Dy, f o Du(g)

Typing Forward Mode differentiation :

g:E=F~Dg:E=FE — F.

The Linear negation: A* =4 — | = L(A,R) = A’

Typing Reverse Mode differentiation

g(u) — f(g(u)) - Dg(u)f — Dy(’u,)f o Du(g)

g:E=>F -~ Dg:E=F-—E' 0 (oD,g

D Brunel, Mazza, Pagani. Backpropagation in the simply typed A-calc. with linear negation.

Reverse differentiation : (g,g(g)) (E=F)x (E=F+ — E')

8/18

Types !

Programs and variable are typed
by logical formulas which describe their behavior

witness

—_——
A~ TJx: W(A),Vu:C(A), Aplz,u]
——

opponent

Witness and counter types :

C(A = B) = C(A) x C(B)
W(A = B) = (W(A) = W(B)) x (W(4) = C(B) = C(4))

Reverse Mode differentiation:

Functorial : (h, gh (A= B) x (A= B+ — A')

9/18

Types !
Programs and variable are typed
by logical formulas which describe their behavior

global witness

—_——
A~3F z:WA) ¥V u:C(A) ,Aplz,u]
———

local opponent
Witness and counter for implication types :

C(A = B) = C(A) x C(B)

function
W(A = B) = (W(A) = W(B)) x | W(4) = C(B) = C(4)
—_———

reverse derivative

Reverse Mode differentiation:

Functorial : (h, 5h (A= B) x (A= Bt — A1)
However:
» Having the same type does not mean you’re the same program.

» Some french (linear) logicians have a strong opinion on what proof/program
differentiation should be.

9/18

witness

—
A~ Jx: W(A),Vu: C(A), Aplz, u
———

opponent

Let’s say x, u, f, g are A-terms.

The computational Dialectica : a reverse Differential A-calculus

”Behind every successful proof there is an exhausted program”

10/18

Pédrot’s Dialectica Transformation

Making Dialectica act on A-terms instead of formulas.

Soundness [Ped14]

If T F¢: A in the source then we have in the target
> W(T) F¢t*: W(A)
> W)kt : C(A) = MC(X) provided z : X €T.

A global and a local transformation

@ = @ Az.t)® = (Az.t*, A\mx.t, 7)
x, = Am.{nm} (Az.t), = Ar.(Az.t,) 7172
z, = Mm@ifzx#y (tu = (t*.1) u®

(tw)y, = A (t, (u,m) ® ((t*.2) Tu® >=u,)

11/18

Differential A-calculus

Inspired by denotational models of Linear Logic in vector spaces of sequences,
it introduces a differentiation of A-terms.

D(\x.t) is the linearization of Ax.t, it substitute x linearly, and then it
remains a term t' where x 1is free.

Syntax:

A ST, UV :=0]s|s+T
A s itu,vi=x | Ae.s | sT | Ds+t

Operational Semantics:

(Az.s)T —p s[T/x]
D(A\z.s) -t =5, /\‘L(())*; 1

where % -t is the linear substitution of z by ¢ in s.

@ T. Ehrhard, L. Regnier. The differential lambda-calculus. TCS, 200/
See the Alonzo Church award’ talk on Wednesday !

12/18

The linear substitution ...

.. which is not exactly a substitution

@.[_{Lifxzy o

dxz ' 0 otherwise oz

9] ds 0
%(Ay.s)-t—)\y.% -t %(Ds-u) -t
90 0

5 1=0 G(stu-t=

% -t represents s where x is linearly (i.e. one time) substituted by ¢.

13/18

The linear substitution ...

The computational Dialectica

%-t—{ tifr=y
dx ' 0 otherwise

_q mifr=y
— L) otherwise

0 ot

ou
%(tu) -5 = (% -s)u + (Dt-(a—x -8))u

(tw)y = Am. (ty (u®, 7)) ® ((t°.2) Tu® >=uy)
0 Os ou
%(Ds-u)-t—D(% t)-u+Ds- (820 t)
0 0Os ou

%(s—ku)wﬁ— %454—%45

13/18

Tracking differentiation in Dialectica

Soundness [Ped14]

If ' ¢: A in the source then we have in the target
> W()F¢*: W(A)
> W) k¢, : C(A) = MC(X) provided z : X €T

That’s reverse differentiation [KP24]

> (_)°.2 obeys the chain rule, (_)°® is the functorial differentiation.

» {. is contravariant in x, representing a reverse linear substitution.

Other formulations:
» The Linear Dialectica and Differential Linear Logic

» Dialectica Categories and Differential Categories

14 /18

Recap

Programs Logic Semantics

fun (x:4)-> (t:B) Proofof A-B f:A— B.
Types Formulas Objects
Execution Cut-elimination Equality

15/18

Recap

Programs Logic Semantics

fun (x:4)-> (t:B) Proofof A-B f:A— B.
Types Formulas Objects
Execution Cut-elimination Equality

Differential Differential Linear
A-calculus [Ehr04] Logic [Ehrhard06]

[Linear Logic [Gir87]

Vectorial Models

15/18

Recap

Programs Logic Semantics

fun (x:4)-> (t:B) Proofof A-B f:A— B.
Types Formulas Objects
Execution Cut-elimination Equality

Differential Differential Linear
A-calculus [Ehr04] Logic [Ehrhard06]

[Linear Logic [Gir87]

Vectorial Models

[Dialectica [G6d58] J

Min. Logic

Algorithmic
Differentiation [80s]

Normal functors

15/18

Recap

Programs Logic Semantics

fun (x:A)-> (t:B) Proofof AFB f:A— B.
Types Formulas Objects
Execution Cut-elimination Equality

[Differentiable Programming]

Differential
A-calculus [Ehr04]

Differential Linear
Logic [Ehrhard06]

Vectorial Models

[Linear Logic [Gir87]

Algorithmic
Differentiation [80s]

[Dialectica [G6d58]]

Min. Logic

Normal functors

15/18

Recap

Programs Logic Semantics

fun (x:A)-> (¢:B) Proofof AFB f:A— B.
Types Formulas Objects
Execution Cut-elimination Equality

Differentiable Programming j

\

Differential W, (Differential Linear
A-calculus [Ehr04] Logic [Ehrhard06]

Vectorial Models

[Linear Logic [Gir87]]

Algorithmic
Differentiation [80s]

A-calculus Normal functors]

A good point for logicians : Gédel invented Dialectica 40 years before reverse
differentiation was put to light

Dialectica [G6d58]

15/18

Conclusion and applications

16/18

Take home message:

Dialectica computes higher-order functorial reverse differentiation,
extracting intenstonal local content from proofs.

A new semantical correspondence between computations and mathematics :
intentional meaning of program is local behavior of functions.

Is this result obvious? Maybe, and I'm happy if it is.

Related work and potential applications:
» Markov’s principle and delimited continuations on positive formulas.
» Proof mining and backpropagation.

» Bar Induction and Taylor Exponentiation.

17/18

Dialectica is differentiation ...

The codereliction of differential proof nets: In terms
of polarity in linear logic [23], the V-—-free constraint
characterizes the formulas of intuitionistic logic that can be
built only from positive connectives (&, ®, 0, 1, !) and the
why-not connective (“?”). In this framework, Markov’s prin-
ciple expresses that from such a V-—-free formula A (e.g.
7@, (PA(x)®?B(x))) where the presence of “7” indicates
that the proof possibly used weakening (efq or throw) or
contraction (catch), a linear proof of A purged from the
occurrences of its “7” connective can be extracted (meaning
for the example above a proof of @.(A(x) ® B(x))).
Interestingly, the removal of the “7”, ie. the steps from
7P to P, correspond to applying the codereliction rule of
differential proof nets [24].

... We knew it already !

Differentiation : ("P=(P —-l)= 1)+ ((P—-l) —oL1)=P)

@ Hugo Herbelin, “An intuitionistic logic that proves Markov’s principle”, LICS ’10 .
Are mathematical transformation realizing the axioms they need ?

18/18

