
LICS 2024

∂ is for Dialectica

Marie Kerjean, Pierre-Marie Pédrot

CNRS & Inria

1 / 18

What this talk is about

Joining Dialectica and Differentiation

September 2015 in Paris, about Pédrot’s thesis:
”that’s (just) differential lambda-calculus”

2 / 18

What this talk is about

Joining Dialectica and Reverse Differentiation

June 2019 in Nantes, about ”λ the ultimate backpropagator”:
”That’s (just) Dialectica”

2 / 18

What this talk is about

Joining Dialectica and Differential λ-calculus
through

Reverse Differentiation

June 2024 in Tallinn

2 / 18

What this talk is not about

▶ Joining Dialectica and Differential Linear Logic through Reverse
Differentiation

▶ Joining Dialectica and Differential Categories through Reverse
Differentiation

3 / 18

Gödel’s Dialectica Transformation

Kurt Gödel (1958). Über eine bisher noch nicht benützte Erweiterung des finiten

Standpunktes. Dialectica.

▶ Validates semi-classical axioms:
▶ Markov’s principle : ¬¬∃xA → ∃xA when A is decidable.

▶ Numerous applications :
▶ Soundness results
▶ Proof mining: applying Dialectica to theorems in analysis extract

quantitative information.

▶ Reformulated through Linear logic, or Dialectica Categories

V. de Paiva. 1989. A Dialectica-like Model of Linear Logic.,

4 / 18

Differentiation

▶ Differentiation is finding the best linear approximation to a function at a
point.

f ∈ C∞(R,R)

d(f)(0)

For f : R → R, x ∈ R
Dxf : v ∈ R 7→ f ′(x) · v ∈ R

For f : E → F , x ∈ E

Dxf : v ∈ E 7→ Dxf(v) ∈ F

Chain Rule : Dx(f ◦ g) = Dg(x)f ◦Dxg

▶ Differentiation is a mathematical operation which needs to be fitted to
logical and computer science use.
▶ Algorithmic Differentiation : differentiating sequences of many-valued

functions efficiently.
▶ Differential Linear Logic and Differential λ-calculus : Differentiating proofs

and λ-terms.

5 / 18

Differentiation

▶ Differentiation is finding the best linear approximation to a function at a
point.

f ∈ C∞(R,R)

d(f)(0)

For f : R → R, x ∈ R
Dxf : v ∈ R 7→ f ′(x) · v ∈ R

For f : E → F , x ∈ E

Dxf : v ∈ E 7→ Dxf(v) ∈ F

Chain Rule : Dx(f ◦ g) = Dg(x)f ◦Dxg

▶ Differentiation is a mathematical operation which needs to be fitted to
logical and computer science use.
▶ Algorithmic Differentiation : differentiating sequences of many-valued

functions efficiently.
▶ Differential Linear Logic and Differential λ-calculus : Differentiating proofs

and λ-terms.

5 / 18

A peek into Dialectica interpretation of functions

(A→ B)D = ∃fg∀xy(AD(x, gxy)→ BD(fx, y))

Question: (A⇒ B)D; (B ⇒ C)D ⇝ (A⇒ C)D?
Usual explanation : least unconstructive prenexation.

Dynamic behaviour : agrees to a chain rule.

▶ Variables f agree to the usual composition rule.

▶ Variables g agree to a chain rule: g3(x, y) = g1(x, g2(f1x, y))

Mathematical meaning : it’s some kind of approximation.

6 / 18

Algorithmic Differentiation

How does one compute the differentiation of an algebraic expression,
computed as a sequence of elementary operations ?

E.g. : z = y + cos(x2)
x1 = x2

0 x′
1 = 2x0x

′
0

x2 = cos(x1) x′
2 = −x′

0sin(x0)
z = y + x2 z′ = y′ + 2x2x

′
2

Derivative of a sequence of instruction

⇓

sequence of instruction × sequence of derivatives

Forward Mode differentiation [Wengert, 1964]
(x1, x

′
1)→ (x2, x

′
2)→ (z, z′).

Reverse Mode differentiation: [Speelpenning, Rall, 1980s]
x1 → x2 → z → z′ → x′

2 → x′
1 while keeping formal the unknown derivative.

7 / 18

Typing Algorithmic Differentiation

Algorithmic differentiation:
making a choice when computing the chain rule: Du(f ◦ g) = Dg(u)f ◦Du(g)

Typing Forward Mode differentiation :

g : E ⇒ F ⇝
−→
Dg : E ⇒ E ⊸ F .

The Linear negation: A⊥ ≡ A⊸ ⊥ ≡ L(A,R) ≡ A′

Typing Reverse Mode differentiation

g(u)→ f(g(u))→ Dg(u)f → Dg(u)f ◦Du(g)

g : E ⇒ F ⇝
←−
Dg : E ⇒ F⊥⊸ E⊥; ℓ 7→ ℓ ◦Dug

Brunel, Mazza, Pagani. Backpropagation in the simply typed λ-calc. with linear negation.

Reverse differentiation : (g,
←−
D(g)) : (E ⇒ F)× (E ⇒ F⊥⊸ E⊥)

8 / 18

Typing Algorithmic Differentiation

Algorithmic differentiation:
making a choice when computing the chain rule: Du(f ◦ g) = Dg(u)f ◦Du(g)

Typing Forward Mode differentiation :

g : E ⇒ F ⇝
−→
Dg : E ⇒ E ⊸ F .

The Linear negation: A⊥ ≡ A⊸ ⊥ ≡ L(A,R) ≡ A′

Typing Reverse Mode differentiation

g(u)→ f(g(u))→ Dg(u)f → Dg(u)f ◦Du(g)

g : E ⇒ F ⇝
←−
Dg : E ⇒ F⊥⊸ E⊥; ℓ 7→ ℓ ◦Dug

Brunel, Mazza, Pagani. Backpropagation in the simply typed λ-calc. with linear negation.

Reverse differentiation : (g,
←−
D(g)) : (E ⇒ F)× (E ⇒ F⊥⊸ E⊥)

8 / 18

Typing Algorithmic Differentiation

Algorithmic differentiation:
making a choice when computing the chain rule: Du(f ◦ g) = Dg(u)f ◦Du(g)

Typing Forward Mode differentiation :

g : E ⇒ F ⇝
−→
Dg : E ⇒ E ⊸ F .

The Linear negation: A⊥ ≡ A⊸ ⊥ ≡ L(A,R) ≡ A′

Typing Reverse Mode differentiation

g(u)→ f(g(u))→ Dg(u)f → Dg(u)f ◦Du(g)

g : E ⇒ F ⇝
←−
Dg : E ⇒ F⊥⊸ E⊥; ℓ 7→ ℓ ◦Dug

Brunel, Mazza, Pagani. Backpropagation in the simply typed λ-calc. with linear negation.

Reverse differentiation : (g,
←−
D(g)) : (E ⇒ F)× (E ⇒ F⊥⊸ E⊥)

8 / 18

Types !
Programs and variable are typed
by logical formulas which describe their behavior

A⇝ ∃
witness︷ ︸︸ ︷

x : W(A),∀u : C(A)︸ ︷︷ ︸
opponent

, AD[x, u]

Witness and counter types :

C(A⇒ B) = C(A)× C(B)
W(A⇒ B) = (W(A)⇒W(B)) × (W(A)⇒ C(B)⇒ C(A))

Reverse Mode differentiation:

Functorial : (h,
←−
Dh) : (A⇒ B)× (A⇒ B⊥⊸ A⊥)

However:

▶ Having the same type does not mean you’re the same program.

▶ Some french (linear) logicians have a strong opinion on what proof/program
differentiation should be.

9 / 18

Types !
Programs and variable are typed
by logical formulas which describe their behavior

A⇝ ∃

global witness︷ ︸︸ ︷
x : W(A) ,∀ u : C(A)︸ ︷︷ ︸

local opponent

, AD[x, u]

Witness and counter for implication types :

C(A⇒ B) = C(A)× C(B)

W(A⇒ B) =

function︷ ︸︸ ︷
(W(A)⇒W(B))×

W(A)⇒ C(B)⇒ C(A)︸ ︷︷ ︸
reverse derivative

Reverse Mode differentiation:

Functorial : (h,
←−
Dh) : (A⇒ B)× (A⇒ B⊥⊸ A⊥)

However:

▶ Having the same type does not mean you’re the same program.

▶ Some french (linear) logicians have a strong opinion on what proof/program
differentiation should be.

9 / 18

A⇝ ∃
witness︷ ︸︸ ︷

x : W(A),∀u : C(A)︸ ︷︷ ︸
opponent

, AD[x, u]

Let’s say x, u, f , g are λ-terms.

The computational Dialectica : a reverse Differential λ-calculus

”Behind every successful proof there is an exhausted program”

10 / 18

Pédrot’s Dialectica Transformation

Making Dialectica act on λ-terms instead of formulas.

Soundness [Ped14]

If Γ ⊢ t : A in the source then we have in the target

▶ W(Γ) ⊢ t• : W(A)

▶ W(Γ) ⊢ tx : C(A)⇒MC(X) provided x : X ∈ Γ.

A global and a local transformation

x• := x (λx. t)• := (λx. t•, λπx. tx π)
xx := λπ. {π} (λx. t)y := λπ. (λx. ty) π.1 π.2
xy := λπ.∅ if x ̸= y (t u)• := (t•.1) u•

(t u)y := λπ. (ty (u
•, π))⊛ ((t•.2)π u• >>=uy)

11 / 18

Differential λ-calculus

Inspired by denotational models of Linear Logic in vector spaces of sequences,
it introduces a differentiation of λ-terms.

D(λx.t) is the linearization of λx.t, it substitute x linearly, and then it
remains a term t′ where x is free.

Syntax:

Λd : S, T, U, V ::= 0 | s | s+T
Λs : s, t, u, v ::= x | λx.s | sT | Ds·t

Operational Semantics:

(λx.s)T →β s[T/x]
D(λx.s) · t→βD

λx. ∂s∂x · t

where ∂s
∂x · t is the linear substitution of x by t in s.

T. Ehrhard, L. Regnier. The differential lambda-calculus. TCS, 2004

See the Alonzo Church award’ talk on Wednesday !

12 / 18

The linear substitution ...

... which is not exactly a substitution

∂y

∂x
· t = { t if x = y

0 otherwise

∂

∂x
(tu) · s = (

∂t

∂x
· s)u+ (Dt · (∂u

∂x
· s))u

∂

∂x
(λy.s) · t = λy.

∂s

∂x
· t ∂

∂x
(Ds · u) · t = D(

∂s

∂x
· t) · u+Ds · (∂u

∂x
· t)

∂0

∂x
· t = 0

∂

∂x
(s+ u) · t = ∂s

∂x
· t+ ∂u

∂x
· t

∂s
∂x · t represents s where x is linearly (i.e. one time) substituted by t.

13 / 18

The linear substitution ...

The computational Dialectica

∂y

∂x
· t = { t if x = y

0 otherwise

∂

∂x
(tu) · s = (

∂t

∂x
· s)u+ (Dt · (∂u

∂x
· s))u

xy · π = { π if x = y
∅ otherwise

(t u)y := λπ. (ty (u
•, π))⊛ ((t•.2)π u• >>=uy)

∂

∂x
(λy.s) · t = λy.

∂s

∂x
· t ∂

∂x
(Ds · u) · t = D(

∂s

∂x
· t) · u+Ds · (∂u

∂x
· t)

∂0

∂x
· t = 0

∂

∂x
(s+ u) · t = ∂s

∂x
· t+ ∂u

∂x
· t

13 / 18

Tracking differentiation in Dialectica

Soundness [Ped14]

If Γ ⊢ t : A in the source then we have in the target

▶ W(Γ) ⊢ t• : W(A)

▶ W(Γ) ⊢ tx : C(A)⇒MC(X) provided x : X ∈ Γ.

That’s reverse differentiation [KP24]

▶ ()•.2 obeys the chain rule, ()• is the functorial differentiation.

▶ tx is contravariant in x, representing a reverse linear substitution.

Other formulations:

▶ The Linear Dialectica and Differential Linear Logic

▶ Dialectica Categories and Differential Categories

14 / 18

Recap

Programs Logic Semantics
fun (x:A)-> (t:B) Proof of A ⊢ B f : A→ B.

Types Formulas Objects
Execution Cut-elimination Equality

λ-calculus Min. Logic Normal functors

Linear Logic [Gir87]

Vectorial Models

Differential Linear

Logic [Ehrhard06]

Differential

λ-calculus [Ehr04]

15 / 18

Recap

Programs Logic Semantics
fun (x:A)-> (t:B) Proof of A ⊢ B f : A→ B.

Types Formulas Objects
Execution Cut-elimination Equality

λ-calculus Min. Logic Normal functors

Linear Logic [Gir87]

Vectorial Models

Differential Linear

Logic [Ehrhard06]

Differential

λ-calculus [Ehr04]

15 / 18

Recap

Programs Logic Semantics
fun (x:A)-> (t:B) Proof of A ⊢ B f : A→ B.

Types Formulas Objects
Execution Cut-elimination Equality

λ-calculus Min. Logic Normal functors

Linear Logic [Gir87]

Algorithmic
Differentiation [80s]

Dialectica [Göd58]

Vectorial Models

Differential Linear

Logic [Ehrhard06]

Differential

λ-calculus [Ehr04]

15 / 18

Recap

Programs Logic Semantics
fun (x:A)-> (t:B) Proof of A ⊢ B f : A→ B.

Types Formulas Objects
Execution Cut-elimination Equality

λ-calculus Min. Logic Normal functors

Linear Logic [Gir87]

Algorithmic
Differentiation [80s]

Dialectica [Göd58]

Vectorial Models

Differential Linear

Logic [Ehrhard06]

Differential

λ-calculus [Ehr04]

Differentiable Programming

15 / 18

Recap
Programs Logic Semantics

fun (x:A)-> (t:B) Proof of A ⊢ B f : A→ B.
Types Formulas Objects

Execution Cut-elimination Equality

λ-calculus Min. Logic Normal functors

Linear Logic [Gir87]

Algorithmic
Differentiation [80s]

Dialectica [Göd58]

Vectorial Models

Differential Linear

Logic [Ehrhard06]

Differential

λ-calculus [Ehr04]

Differentiable Programming

A good point for logicians : Gödel invented Dialectica 40 years before reverse
differentiation was put to light

15 / 18

Conclusion and applications

16 / 18

Take home message:

Dialectica computes higher-order functorial reverse differentiation,
extracting intensional local content from proofs.

A new semantical correspondence between computations and mathematics :
intentional meaning of program is local behavior of functions.

Is this result obvious? Maybe, and I’m happy if it is.

Related work and potential applications:

▶ Markov’s principle and delimited continuations on positive formulas.

▶ Proof mining and backpropagation.

▶ Bar Induction and Taylor Exponentiation.

17 / 18

Dialectica is differentiation ...

... We knew it already !

Differentiation : (?P = (P ⊸ ⊥)⇒ ⊥)→ ((P ⊸ ⊥)⊸ ⊥) ≡ P)

Hugo Herbelin, “An intuitionistic logic that proves Markov’s principle”, LICS ’10 .

Are mathematical transformation realizing the axioms they need ?

18 / 18

