
Mathematical Components: language and libraries Ssreflect Tactics

Lean for the Curious Mathematician 2024

SSreflect Tactics in the Rocq/Coq Proof
Assistant

Marie Kerjean

CNRS, LIPN, Université Sorbonne Paris Nord

1 / 17

Mathematical Components: language and libraries Ssreflect Tactics

https://github.com/CohenCyril/LFCM2024

and then Code and Codespace.

The tutorial.v file will be used now, and the practice.v file after the break.

2 / 17

https://github.com/CohenCyril/LFCM2024

Mathematical Components: language and libraries Ssreflect Tactics

The Coq Proof Assistant

Soon to be renamed Rocq, and that is what I will use during this talk.

▶ Based on Dependent Type Theory, as Lean is.

▶ Known for both applications to certification
(e.g. CompCert) and formalization in Maths
(e.g. Math-Comp).

▶ Older than Lean: first release in 1984 (but it
has changed considerably since that time).

3 / 17

Mathematical Components: language and libraries Ssreflect Tactics

Other Proof Assistants

There’s a whole line of research leading to the development of proof
assistants.

▶ ACL (1975 - ..): proofs of correctness of hardware

▶ LCF (1972): tactics

▶ Mizar (73-now): human readable proofs, library

▶ Automath (67): Formalisation of ”grundlagen der analysis (76)”

▶ Isabelle/HOL (1986 - ...): Archive of Mathematical Proofs

▶ Agda, Rocq/Coq, Lean ..

4 / 17

Mathematical Components: language and libraries Ssreflect Tactics

Mathcomp and Ssreflect

▶ The Mathematical Components Library it was a constructive library
for advanced algebra (The Odd Order Theorem), based on the
small-scale reflection proof technique.

▶ While proofs in Rocq use Type Classes as Lean, Math-Comp uses a
bundled approach. It traditionally used Canonical Structures, and
now uses the Hierarchy Builder tool.

▶ Now it is an ecosystem of libraries:
▶ MathComp-Analysis
▶ Hierarchy-Builder

▶ The library is supported by the ssreflect tactic language which comes
hand in hand with a formalization methodology.

5 / 17

Mathematical Components: language and libraries Ssreflect Tactics

Let’s clear the air

Rocq is not intrinsically about constructive mathematics.

▶ The Mathematical Components was, because it could, and hence
relied heavily on reflection between booleans and proposition.

▶ MathComp-Analysis is not:

Definition lim_in {U : Type} (T : filteredType U) :=

fun F : set_system U => get (fun l : T => F --> l).

6 / 17

Mathematical Components: language and libraries Ssreflect Tactics

Why customize your tactic language?

Small-scale reflection

▶ Reflection is a proof technique allowing to play between a proof
oriented definition of an object, and a computation oriented
definition of an object.

▶ This is used at large in Math-Comp, and in particular by making use
of a small-scale reflection between Prop and bool.

▶ Small-scale reflection is facilitated by the ssreflect language.

Maintenance

▶ Rocq was 20 years, now 40

▶ Math-Comp has been maintained for 20 years with minimal effort

▶ By less than 10 people over 20 years.

Interesting research issue, not discussed here.

7 / 17

Mathematical Components: language and libraries Ssreflect Tactics

Ssreflect tactics

8 / 17

Mathematical Components: language and libraries Ssreflect Tactics

Punctuation

In Ssreflect

. ; ? ! [] /() // =

all have a meaning and act on proofs. And that’s were most of the fun is.

9 / 17

Mathematical Components: language and libraries Ssreflect Tactics

Show me your moves

The move tactic allows to move hypothesis back and forth from the top
of your goal and the context.

▶ move=> H

Changes the goal from H → P to P, while putting H in the context.

▶ move: H

If H is an hypothesis, changes the goal from P to H → P.

Also working:

▶ move=> x Hx y P

move=> x Hx + P

▶
move=> [].

move=> [a b].

move=> [a | b].

destructs the hypotheses before introducing it

10 / 17

Mathematical Components: language and libraries Ssreflect Tactics

Easy proof, easy go

▶ move=> //.

Eliminates all goals that correspond to hypotheses in the context

▶ move=> /=.

make computation run.

▶ move=> //=. do both.

▶ by []. do all that and even more.

11 / 17

Mathematical Components: language and libraries Ssreflect Tactics

Rewrites
The Ssreflect language is extremely modular concerning rewrite.

▶ rewrite H; rewrite -H

Transforms a goal P(a) into P(b) with H : a = b or H : b = a.

▶ rewrite !H; rewrite ?H

Rewrite H everywhere, or only where you can in the subgoals.

▶ rewrite [X in A(X)]H

Rewrites H, but only on subterms that could replace X in A(X),
where A(X) is found in the goal.

▶ rewrite -[A]/B

Changes A into B as long as A can be computed into B.

▶ rewrite /def; rewrite -/def Folds and unfolds a definition

12 / 17

Mathematical Components: language and libraries Ssreflect Tactics

An apply a day

▶ apply: H.

uses H : A -> B to transform a goal A into a goal B.

▶ apply/H.

uses H : A -> B to transform a goal A into a goal B or B into A.

▶ move=> /lem H.

moves the hypothesis H from the top of the goal to the context, but
first applies lem on it.

▶ move=> /(_ a) H.

moves the hypothesis H from the top of the goal to the context, but
instantiate it by a.

13 / 17

Mathematical Components: language and libraries Ssreflect Tactics

Forward reasoning

▶ Forward reasoning introduces intermediate statements with have:

have lem : H.

(* proof of my lemma *)

(* rest of the proof that needs to use H *)

have -> : H

▶ Instead of naming lem, one can also describe how it is going to be
used.

have -> : H by [].

have /lemma2 [A B] : H by [].

14 / 17

Mathematical Components: language and libraries Ssreflect Tactics

Case

▶ case=> H.

case: ab => [a | b].

destructs an hypothesis while putting it in the context.

▶ case: H.

destructs inductive object (e.g. bool, nat) while taking it from the
context.

15 / 17

Mathematical Components: language and libraries Ssreflect Tactics

And more:

▶ There some other tactics that have been introduced: suff, wlog, ...
But the idea is generally to keep a small number of tactics to make
maintenance easier.

▶ Some tactics have been developed for Math-Comp Analysis allow
neighborhoods reasoning in metric spaces (Affeldt, Cohen, Rouhling
2018), to avoid explicit ε handling.

▶ forall x \near y, P x

A proposition stating that the property P holds in the filter of
neigborhoods of y.

▶ near=> x.

Suppose that c is close enough to y, and continue with your proof.

16 / 17

Mathematical Components: language and libraries Ssreflect Tactics

Conclusion

There is a lot of material available on Math-Comp. Among them:

http://people.rennes.inria.fr/Assia.Mahboubi/vu.html

https://mathcomp-schools.gitlabpages.inria.fr/

2022-12-school/school

17 / 17

http://people.rennes.inria.fr/Assia.Mahboubi/vu.html
https://mathcomp-schools.gitlabpages.inria.fr/2022-12-school/school
https://mathcomp-schools.gitlabpages.inria.fr/2022-12-school/school

	Mathematical Components: language and libraries
	Ssreflect Tactics

