Lean for the Curious Mathematician 2024

SSreflect Tactics in the Rocq/Coq Proof Assistant

Marie Kerjean

CNRS, LIPN, Université Sorbonne Paris Nord

https://github.com/CohenCyril/LFCM2024

and then Code and Codespace.

The *tutorial*.v file will be used now, and the *practice*.v file after the break.

The Coq Proof Assistant

Soon to be renamed Rocq, and that is what I will use during this talk.

- Based on Dependent Type Theory, as Lean is.
- Known for both applications to certification (e.g. CompCert) and formalization in Maths (e.g. Math-Comp).
- Older than Lean: first release in 1984 (but it has changed considerably since that time).

Other Proof Assistants

There's a whole line of research leading to the development of proof assistants.

- ► ACL (1975 ..): proofs of correctness of hardware
- ▶ LCF (1972): tactics
- Mizar (73-now): human readable proofs, library
- Automath (67): Formalisation of "grundlagen der analysis (76)"
- ▶ Isabelle/HOL (1986 ...): Archive of Mathematical Proofs
- Agda, Rocq/Coq, Lean ...

Mathcomp and Ssreflect

- The Mathematical Components Library it was a *constructive* library for advanced algebra (The Odd Order Theorem), based on the small-scale reflection proof technique.
- While proofs in Rocq use Type Classes as Lean, Math-Comp uses a bundled approach. It traditionally used Canonical Structures, and now uses the Hierarchy Builder tool.
- Now it is an ecosystem of libraries:
 - MathComp-Analysis
 - Hierarchy-Builder
- The library is supported by the *ssreflect* tactic language which comes hand in hand with a formalization methodology.

Let's clear the air

Rocq is not intrinsically about constructive mathematics.

The Mathematical Components was, because it could, and hence relied heavily on reflection between booleans and proposition.

MathComp-Analysis is not:

Definition lim_in {U : Type} (T : filteredType U) := fun F : set_system U => get (fun l : T => F --> l).

Why customize your tactic language?

Small-scale reflection

- Reflection is a proof technique allowing to play between a proof oriented definition of an object, and a computation oriented definition of an object.
- This is used at large in Math-Comp, and in particular by making use of a small-scale reflection between Prop and bool.
- Small-scale reflection is facilitated by the ssreflect language.

Maintenance

- Rocq was 20 years, now 40
- Math-Comp has been maintained for 20 years with minimal effort
- By less than 10 people over 20 years.

Interesting research issue, not discussed here.

Ssreflect tactics

 Mathematical Components: language and libraries 000000 Ssreflect Tactics

Punctuation

In Ssreflect

. ; ? ! $[_{-}]$ /(_) //=

all have a meaning and act on proofs. And that's were most of the fun is.

Show me your moves

The move tactic allows to move hypothesis back and forth from the top of your goal and the context.

```
▶ move=> H
```

Changes the goal from $H \rightarrow P$ to P, while putting H in the context.

▶ move: H

If H is an hypothesis, changes the goal from P to $H \rightarrow P$. Also working:

```
move=> x Hx y P
move=> x Hx + P
move=> [].
move=> [a b]. destructs the hypotheses before introducing it
move=> [a | b].
```

Easy proof, easy go

▶ move=> //.

Eliminates all goals that correspond to hypotheses in the context

▶ move=> /=.

make computation run.

- ▶ move=> //=. do both.
- **by** []. do all that and even more.

Rewrites

The Ssreflect language is extremely modular concerning rewrite.

```
▶ rewrite H; rewrite -H
```

Transforms a goal P(a) into P(b) with H : a = b or H : b = a.

rewrite !H; rewrite ?H

Rewrite H everywhere, or only where you can in the subgoals.

rewrite [X in A(X)]H

Rewrites H, but only on subterms that could replace X in A(X), where A(X) is found in the goal.

rewrite -[A]/B

Changes A into B as long as A can be computed into B.

rewrite /def; rewrite -/def Folds and unfolds a definition

An apply a day

▶ apply: H.

uses $H : A \rightarrow B$ to transform a goal A into a goal B.

▶ apply/H.

uses $H : A \rightarrow B$ to transform a goal A into a goal B or B into A.

▶ move=> /lem H.

moves the hypothesis H from the top of the goal to the context, but first applies lem on it.

▶ move=> /(_ a) H.

moves the hypothesis H from the top of the goal to the context, but instantiate it by a.

Forward reasoning

Forward reasoning introduces intermediate statements with have:

```
have lem : H.
  (* proof of my lemma *)
  (* rest of the proof that needs to use H *)
have -> : H
```

Instead of naming lem, one can also describe how it is going to be used.

```
have -> : H by [].
have /lemma2 [A B] : H by [].
```

Mathematical Components: language and libraries 000000


```
case=> H.
case: ab => [a | b].
```

destructs an hypothesis while putting it in the context.

▶ case: H.

destructs inductive object (e.g. bool, nat) while taking it from the context.

Mathematical Components: language and libraries

And more:

- There some other tactics that have been introduced: suff, wlog, ... But the idea is generally to keep a small number of tactics to make maintenance easier.
- Some tactics have been developed for Math-Comp Analysis allow neighborhoods reasoning in metric spaces (Affeldt, Cohen, Rouhling 2018), to avoid explicit ε handling.

▶ forall x \near y, P x

A proposition stating that the property P holds in the filter of neigborhoods of y.

▶ near=> x.

Suppose that c is close enough to y, and continue with your proof.

Conclusion

There is a lot of material available on Math-Comp. Among them:

http://people.rennes.inria.fr/Assia.Mahboubi/vu.html

https://mathcomp-schools.gitlabpages.inria.fr/ 2022-12-school/school