∂ is for Dialectica

Marie Kerjean

CNRS & LIPN, Université Sorbonne Paris Nord

Work in collaboration with Pierre-Marie Pédrot
Gödel’s Dialectica Transformation

- Gödel Dialectica transformation [1958]: a translation from intuitionistic arithmetic to a finite type extension of primitive recursive arithmetic.

\[A \leadsto \exists u : \mathbb{W}(A), \forall x : \mathbb{C}(A), A^D[u, x] \]

- De Paiva [1991]: the linearized Dialectica translation operates on Linear Logic (types) and \(\lambda \)-calculus (terms).

- Pedrot [2014] A computational Dialectica translation preserving \(\beta \)-equivalence, via the introduction of an ”abstract multiset constructor” on types on the target.
Gödel’s Dialectica

1. \((F \land G)' = (\exists yv) (zw) [A (y, z, x) \land B (v, w, u)]\).
2. \((F \lor G)' = (\exists yvt) (zw) [t=0 \land A (y, z, x) \lor t=1 \land B (v, w, u)]\).
3. \([(s) F]' = (\exists Y) (sz) A (Y (s), z, x)\).
4. \([(\exists s) F]' = (\exists sy) (z) A (y, z, x)\).
5. \((F \supset G)' = (\exists VZ) (yw) [A (y, Z (yw), x) \supset B (V (y), w, u)]\).
6. \((\neg F)' = (\exists \bar{Z}) (y) \neg A (y, \bar{Z} (y), x)\).

Gödel’s Dialectica

- Validates semi-classical axioms:
 - Markov’s principle: \(\neg\neg\exists x A \rightarrow \exists x A\) when \(A\) is decidable.
 - Independant of premises: \((A \rightarrow \exists x B) \rightarrow (\exists x.(A \rightarrow B))\)

- Numerous applications:
 - Soundness results
 - Proof mining

A further distinguishing feature of the D-interpretation is its nice behavior with respect to modus ponens. In contrast to cut-elimination, which entails a global (and computationally infeasible) transformation of proofs, the D-interpretation extracts constructive information through a purely local procedure: when proofs of \(\varphi\) and \(\varphi \rightarrow \psi\) are combined to yield a proof of \(\psi\), witnessing terms for the antecedents of this last inference are combined to yield a witnessing term for the conclusion. As a result of this modularity, the interpretation of a theorem can be readily obtained from the interpretations of the lemmata used in its proof.

A peek into Dialectica interpretation of functions

\[(A \rightarrow B)_D = \exists f g \forall xy (A_D (x, gxy) \rightarrow B_D (fx, y))\]

Usual explanation: least unconstructive prenexation.
- Start from \(\exists x, \forall u, A_D [x, u] \rightarrow \exists y, \forall v, B_D [y, v]\).
- Obvious prenexation: \(\forall x (\forall u, A_D [x, u] \rightarrow \exists y, \forall v, B_D [y, v])\)
- Weak form of IP: \(\forall x \exists y, \forall v, \exists u (A_D [x, u] \rightarrow B_D [y, v])\).
- Prenexation: \(\forall x \exists y, \forall v, \exists u (A_D [x, u] \rightarrow B_D [y, v])\).
- Markov: \(\forall x, \exists y, \forall v, \exists u (A_D [x, u] \rightarrow B_D [y, v])\).
- Axiom of choice: \(\exists f, \exists g, \forall u, \forall v, (A_D (u, guv) \rightarrow B_D [fu, v])\).

Dynamic behaviour: agrees to a chain rule.

Mathematical meaning: it’s some kind of approximation.

Outline of the talk

- The Historical Dialectica
- Differentiation and Differentiable Programming.
- Factorizing Dialectica through differential linear logic.
- Dialectica acting on λ-terms.
- Applications and related work.
Differentiable Programming
Differentiation

- Differentiation is finding the best linear approximation to a function at a point.

\[f \in C^\infty(\mathbb{R}, \mathbb{R}) \]

Chain Rule: \[D_0(f \circ g) = D_{g(0)}f \circ D_0g \]

- Differentiation is a mathematical operation which needs to be fitted to logical and computer science use.
 - Algorithmic Differentiation: differentiating sequences of many-valued functions efficiently.
 - Differential Linear Logic: Differentiating proofs and \(\lambda \)-terms.
Differentiation

▶ Differentiation is finding the best linear approximation to a function at a point.

$$f \in C^\infty(\mathbb{R}, \mathbb{R})$$

Chain Rule: $$D_0(f \circ g) = D_{g(0)}f \circ D_0g$$

▶ Differentiation is a mathematical operation which needs to be fitted to logical and computer science use.

▶ Algorithmic Differentiation: differentiating sequences of many-valued functions efficiently.
▶ Differential Linear Logic: Differentiating proofs and λ-terms.
Dialectica verifies the chain rule

Composing the Dialectica interpretation of arrows:

\[(A \Rightarrow B)_D[\phi_1; \psi_1, u_1; v_1] := AD(u_1, \psi_1 u_1 v_1) \Rightarrow BD(\phi_1 u_1, v_1)\]

\[(B \Rightarrow C)_D[\phi_2; \psi_2, u_2; v_2] := BD(u_2, \psi_2 u_2 v_2) \Rightarrow CD(\phi_2 u_2, v_2)\]

\[(A \Rightarrow C)_D[\phi_3; \psi_3, u_3; v_3] := AD(u_3, \psi_3 u_3 v_3) \Rightarrow CD(\phi_3 u_3, v_3)\]

The Dialectica interpretation amounts to the following equations:

\[u_3 = u_1\]
\[v_3 = v_2\]
\[u_2 = \phi_1 u_1\]
\[\psi_3, u_3, v_3 = \psi_1, u_1, v_1\]
\[\phi_2 u_2 = \phi_1, u_1\]
\[v_1 = \psi_2(u_2, v_2)\]

which can be simplified to:

\[\phi_3(u_3) = \phi_2(\phi_1(u_3)) \text{ composition of functions}\]
\[\psi_3(u_3, v_3) = \psi_1(u_3, \psi_2(\phi_1 u_3, v_3)) \text{ composition of their differentials}\]

Thanks to T. Powell for noticing typos here.
But verifying the chain rule does not make you differentiation!

- More modern presentations of Dialectica.

- More Computer Science Friendly presentations of Differentiation.

- Linearity must enter the game.
Curry-Howard for semantics

<table>
<thead>
<tr>
<th>Programs</th>
<th>Logic</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>fun (x:A) -> (t:B)</code></td>
<td>Proof of $A \vdash B$</td>
<td>$f : A \rightarrow B$.</td>
</tr>
<tr>
<td>Types</td>
<td>Formulas</td>
<td>Objects</td>
</tr>
<tr>
<td>Execution</td>
<td>Cut-elimination</td>
<td>Equality</td>
</tr>
</tbody>
</table>

Dialectica

- Differential λ-calculus
- Differential Linear Logic
- Differential Categories

Dialectica is Backward Differentiation in Logic
And now for something completely different: Automatic Differentiation

How does one compute the differentiation of an algebraic expression, computed as a sequence of elementary operations?

E.g.:

\[z = y + \cos(x^2) \]

\[x_1 = x_0^2 \quad x_1' = 2x_0x_0' \]

\[x_2 = \cos(x_1) \quad x_2' = -x_0' \sin(x_0) \]

\[z = y + x_2 \quad z' = y' + 2x_2x_2' \]

Derivative of a sequence of instruction

\[\downarrow \]

sequence of instruction \times sequence of derivatives

Forward Mode differentiation [Wengert, 1964]

\((x_1, x'_1) \rightarrow (x_2, x'_2) \rightarrow (z, z') \).

Reverse Mode differentiation: [Speelpenning, Rall, 1980s]

\(x_1 \rightarrow x_2 \rightarrow z \rightarrow z' \rightarrow x_2' \rightarrow x_1' \) while keeping formal the unknown derivative.
Curry-Howard for semantics

The syntax mirrors the semantics.

<table>
<thead>
<tr>
<th>Programs</th>
<th>Logic</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{fun} \ (x:A) \rightarrow (t:B))</td>
<td>Proof of (A \vdash B)</td>
<td>(f : A \rightarrow B.)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Types</th>
<th>Formulas</th>
<th>Objects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Execution</td>
<td>Cut-elimination</td>
<td>Equality</td>
</tr>
</tbody>
</table>

- Programs acts on programs.
 - Functions are higher-order: they act not only on \(\mathbb{R}^n \), but also on \(C^\infty(\mathbb{R}^n, \mathbb{R}) \).

- Programs are typed.
 - Add: \(C^\infty(\mathbb{R}^n, \mathbb{R}) \times C^\infty(\mathbb{R}^n, \mathbb{R}) \rightarrow C^\infty(\mathbb{R}^n, \mathbb{R}) \)

- Everything is interpreted in Categories.
 - Objects are Data
 - Functions are Programs
 - Transformations are functorial:

\[
\mathcal{F}(p_1; p_2) = \mathcal{F}(p_1) ; \mathcal{F}(p_2)
\]

\[
\mathcal{F}(f_2 \circ f_1) = \mathcal{F}(f_2) \circ \mathcal{F}(f_1)
\]
Back to AD: I hate graphs

\[D_u(f \circ g) = D_{g(u)} f \circ D_u(g) \]

- **Forward Mode differentiation:**
 \[g(u) \rightarrow D_u g \rightarrow f(g(u)) \rightarrow D_{g(u)} f \rightarrow D_{g(u)} f \circ D_u(g). \]

- **Reverse Mode differentiation:**
 \[g(u) \rightarrow f(g(u)) \rightarrow D_{g(u)} f \rightarrow D_u(g) \rightarrow D_{g(u)} f \circ D_u(g) \]

The choice of an algorithm is due to complexity considerations:
- **Forward mode** for \(f \circ g : \mathbb{R} \rightarrow \mathbb{R}^n \).
- **Reverse mode** for \(f \circ g : \mathbb{R}^n \rightarrow \mathbb{R} \).

\(\rightsquigarrow \) *Differentiable programming* is a new research area triggered by the advances of deep learning algorithms on neural networks, it tries to attach two very old domains: lambda-calculus and automatic differentiation, with *correctness* and *modularity* goals in mind.
AD from a functorial point of view

\[D_u(f \circ g) = D_{g(u)}f \circ D_u(g) \]

Non-functorial !!!

How to make differentiation functorial? Make it act on pairs!

\[f : E \Rightarrow F \]

Forward Mode differentiation:

\[f : E \Rightarrow E \rightsquigarrow \overrightarrow{D}f : E \Rightarrow E \rightarrow F. \]

\[\overrightarrow{D}(f) : \begin{cases}
E \Rightarrow E \rightarrow F \\
 u \mapsto v \mapsto D_u(f)(v)
\end{cases} \]

Functorial forward differentiation:

\[(f, \overrightarrow{D}(f)) : \begin{cases}
E \times E \rightarrow F \times F \\
 (a, x) \mapsto (f(a), (D_a f \cdot x))
\end{cases} \]
Reverse AD from a functorial point of view

How to make reverse differentiation functorial?

Make it act on pairs with linear duals!
Reverse functorial differentiation

Linear Dual

\[A^\perp \equiv A \rightarrow \perp \equiv \mathcal{L}(A, \mathbb{R}) \]

- **Reverse Mode differentiation:**

 \[g(u) \rightarrow f(g(u)) \rightarrow D_{g(u)}f \rightarrow D_{g(u)}f \circ D_u(g) \]

 \[f : E \Rightarrow F \rightsquigarrow \overset{\leftarrow}{D} f : E \Rightarrow F^\perp \Rightarrow E^\perp. \]

 \[\overset{\leftarrow}{D}(f) : \left\{ \begin{array}{c} E \Rightarrow F^\perp \rightarrow E^\perp \\
 u \mapsto \ell \mapsto \ell \circ D_u(f) \end{array} \right. \]

 [Mazza, Pagani, POPL2020]

- **Reverse functorial differentiation:**

 \[(f, \overset{\leftarrow}{D}(f)) : (E \Rightarrow F) \times (E \Rightarrow F^\perp \Rightarrow E^\perp) \]
Reverse functorial differentiation

Linear Dual

\[A^\perp \equiv A \rightarrow \perp \equiv \mathcal{L}(A, \mathbb{R}) \]

▶ **Reverse Mode differentiation:**

\[g(u) \rightarrow f(g(u)) \rightarrow D_{g(u)}f \rightarrow D_{g(u)}f \circ D_u(g) \]

\[
f : E \Rightarrow F \rightsquigarrow \overset{\leftarrow}{D} f : E \Rightarrow F^\perp \Rightarrow E^\perp.
\]

\[
\overset{\leftarrow}{D}(f) : \begin{cases}
E \Rightarrow F^\perp & \rightarrow E^\perp \\
u \mapsto \ell \mapsto \ell \circ D_u(f)
\end{cases}
\]

[Mazza, Pagani, POPL2020]

▶ **Reverse functorial differentiation:**

\[
(f, \overset{\leftarrow}{D}(f)) : (E \Rightarrow F) \times (E \Rightarrow F^\perp \Rightarrow E^\perp)
\]
Reverse functorial differentiation

Linear Dual

\[A^\perp \equiv A \to \perp \equiv \mathcal{L}(A, \mathbb{R}) \]

▸ **Reverse Mode differentiation:**

\[
g(u) \to f(g(u)) \to D_{g(u)} f \to D_{g(u)} f \circ D_u(g)
\]

\[
f : E \Rightarrow F \rightsquigarrow \overset{\leftarrow}{D} f : E \Rightarrow F^\perp \Rightarrow E^\perp.
\]

\[
\overset{\leftarrow}{D}(f) : \begin{cases}
E \Rightarrow F^\perp \to E^\perp \\
u \mapsto \ell \mapsto \ell \circ D_u(f)
\end{cases}
\]

[Mazza, Pagani, POPL2020]

▸ **Reverse functorial differentiation :**

\[
(f, \overset{\leftarrow}{D}(f)) : (E \Rightarrow F') \times (E \Rightarrow F^\perp \Rightarrow E^\perp)
\]
Types!
Programs and variable are **typed**
by logical formulas which describe their behavior

\[A \rightsquigarrow \exists x : W(A), \forall u : C(A), A_D[x, u] \]

Witness and counter types :

\[C(A \Rightarrow B) = C(A) \times C(B) \]

\[W(A \Rightarrow B) = (W(A) \Rightarrow W(B)) \times (W(A) \Rightarrow C(B) \Rightarrow C(A)) \]

Reverse Mode differentiation:

Functorial : \((h, \overleftarrow{D} h) : (A \Rightarrow B) \times (A \Rightarrow B^\perp \rightarrow A^\perp)\)

However:

- Having the same type does not mean you’re the same program.
- Some french (linear) logicians have a strong opinion on what proof differentiation should.
Types!

Programs and variable are **typed** by logical formulas which describe their behavior.

\[A \leadsto \exists x : W(A) , \forall u : C(A) , A_D[x,u] \]

Witness and counter for implication types:

\[C(A \Rightarrow B) = C(A) \times C(B) \]

\[W(A \Rightarrow B) = (W(A) \Rightarrow W(B)) \times \left(W(A) \Rightarrow C(B) \Rightarrow C(A) \right) \]

Reverse Mode differentiation:

Functorial: \((h, \vec{D} h) : (A \Rightarrow B) \times (A \Rightarrow B^\perp \rightarrow A^\perp)\)

However:

- Having the same type does not mean you’re the same program.
- Some french (linear) logicians have a strong opinion on what proof differentiation should.
A Linear Logic Refinement
Curry-Howard for semantics

The syntax mirrors the semantics.

<table>
<thead>
<tr>
<th>Programs</th>
<th>Logic</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>fun (x:A) -> (t:B)</code></td>
<td><code>Proof of A ⊢ B</code></td>
<td><code>f : A → B</code></td>
</tr>
<tr>
<td>Types</td>
<td>Formulas</td>
<td>Objects</td>
</tr>
<tr>
<td>Execution</td>
<td>Cut-elimination</td>
<td>Equality</td>
</tr>
</tbody>
</table>

Doing to proofs everything we do to functions
Curry-Howard for semantics

The syntax mirrors the semantics.

<table>
<thead>
<tr>
<th>Programs</th>
<th>Logic</th>
<th>Semantics</th>
</tr>
</thead>
</table>

Types | Formulas | Objects |
Execution | Cut-elimination | Equality |

Differential λ-calculus [Ehr04] Differential Linear Logic [Ehrhard06] Vectorial Models

Linear Logic [Gir87]

λ-calculus Min. Logic Normal functors

Doing to proofs everything we do to functions
Linear Logic

Usual Implication

Linear and Non Linear Arrows

\[A \Rightarrow B = ! A \multimap B \]
\[C^\infty (A, B) \simeq \mathcal{L}(!A, B) \]

A proof is linear when it uses only once its hypothesis \(A \).

- Notions of ressources which have made their way into programmation through linear types.
- The dynamics of linearity gets encoded through the rules of the ! connective, and its dual ?.

\[A, B := A \otimes B \mid A \bowtie B \mid A \oplus B \mid A \& B \mid !A \mid ?A \]
Linear Logic

Usual implication

Linear and Non Linear Arrows

\[A \Rightarrow B = ! A \rightarrow B \]
\[C^\infty(A, B) \simeq L(!A, B) \]

A proof is linear when it uses only once its hypothesis \(A \).

- Notions of ressources which have made their way into programmation through linear types.
- The dynamics of linearity gets encoded through the rules of the ! connective, and its dual ?.}

\[A, B := A \otimes B | A \bowtie B | A \oplus B | A \& B | !A | ?A \]
Linear Logic

Usual implication

Linear and Non Linear Arrows

\[A \Rightarrow B = ! A \multimap B \]
\[C^\infty(A, B) \simeq \mathcal{L}(!A, B) \]

Linear Implication

Exponential

A proof is linear when it uses only once its hypothesis A.

- Notions of ressources which have made their way into programmation through linear types.
- The dynamics of linearity gets encoded through the rules of the ! connective, and its dual ?.

\[A, B := A \otimes B | A \bowtie B | A \oplus B | A \& B | !A | ?A \]
Dialectica factorizes through Linear Logic

The call by name arrow

\[A \Rightarrow B := !A \rightarrow B := ((!A) \otimes B^\perp)^\perp \]

\[
\begin{align*}
\mathbb{W}(A^\perp) &:= \mathbb{C}(A) & \mathbb{C}(A^\perp) &:= \mathbb{W}(A) \\
\mathbb{W}(!A) &:= \mathbb{W}(A) & \mathbb{C}(!A) &:= \mathbb{W}(A) \Rightarrow \mathbb{C}(A) \\
\mathbb{W}(A \otimes B) &:= \mathbb{W}(A) \times \mathbb{W}(B) & \mathbb{C}(A \otimes B) &:= (\mathbb{W}(A) \Rightarrow \mathbb{C}(B)) \times (\mathbb{W}(B) \Rightarrow \mathbb{C}(A))
\end{align*}
\]

Valeria de Paiva, 1989, A dialectica-like model of linear logic.
Differential Linear Logic

\[\vdash \ell : A \rightarrow B \quad d \]
\[\vdash \ell : !A \rightarrow B \]

A linear proof

is in particular non-linear.

\[\vdash f : !A \rightarrow B \quad \bar{d} \]
\[\vdash D_0 f : A \rightarrow B \]

From a non-linear proof

we can extract a linear proof

\[f \in C^\infty(\mathbb{R}, \mathbb{R}) \]

Differential interaction nets, Ehrhard and Regnier, TCS (2006)
Exponential rules of Differential Linear Logic

Exponential connectives:

\[[!A] := C^\infty([A], K)' \quad [?A] := C^\infty([A]', K) \]

\[\frac{\vdash \Gamma}{\vdash \Gamma, cst_1 : ?A} \quad w \]
\[\frac{\vdash \Gamma}{\vdash \Gamma, \delta_0 : !A} \quad \bar{w} \]
\[\frac{\vdash \Gamma, f : ?A, g : ?A}{\vdash \Gamma, f.g : ?A} \quad c \]
\[\frac{\vdash \Gamma, \ell : ?A}{\vdash \Gamma, \ell : A} \quad d \]
\[\frac{\vdash \Gamma, \phi : !A}{\vdash \Gamma, \Delta, \psi * \phi : !A} \quad \bar{c} \]
\[\frac{\vdash \Gamma, x : A}{\vdash \Gamma, D_0(_x)(x) : !A} \quad \bar{d} \]
\[\frac{?\Gamma \vdash x : A}{?\Gamma \vdash \delta_x : !A} \quad p \]
Differentiation in Differential Linear Logic

The only thing you need to know:

\[
\vdash \Gamma, \delta_u : !A \quad \vdash \Gamma, v : A \quad \vdash \Gamma, D_0(-)(v) : !A
\]

\[
\frac{\vdash \Gamma, \delta_u : !A \quad \vdash \Gamma, v : A}{\vdash \Gamma, \Delta, D_u(-)(v) : !A}
\]

\[
\frac{\vdash \Gamma, v : A \quad \vdash \Gamma, D_0(-)(v) : !A}{\vdash \Gamma, \Delta, D_u(-)(v) : !A}
\]
Dialectica factorizes through Differential Linear Logic

Witnesses are functorial reverse derivative

\[\mathcal{W}(A \Rightarrow B) = (\mathcal{W}(A) \Rightarrow \mathcal{W}(B)) \times (\mathcal{W}(A) \Rightarrow \mathcal{C}(B) \Rightarrow \mathcal{C}(A)) \]

\[
\begin{align*}
\mathcal{W}(A \otimes B) &:= \mathcal{W}(A) \otimes \mathcal{W}(B) & \mathcal{C}(A \otimes B) &:= (\mathcal{W}(A) \Rightarrow \mathcal{C}(B)) \\
\mathcal{W}(A \multimap B) &:= (\mathcal{W}(A) \multimap \mathcal{W}(B)) & \mathcal{C}(A \multimap B) &:= \mathcal{W}(A \otimes \mathcal{C}(B)) \\
\mathcal{W}(A \& B) &:= \mathcal{W}(A) \& \mathcal{W}(B) & \mathcal{C}(A \& B) &:= \mathcal{C}(A) \oplus \mathcal{C}(B) \\
\mathcal{W}(A \oplus B) &:= \mathcal{W}(A) \oplus \mathcal{W}(B) & \mathcal{C}(A \oplus B) &:= \mathcal{C}(A) \& \mathcal{C}(B) \\
\mathcal{W}(!A) &:= !\mathcal{W}(A) & \mathcal{C}(!A) &:= !\mathcal{W}(A) \Rightarrow \mathcal{C}(A)
\end{align*}
\]

If \(\Gamma \vdash A \) in LL, then \(\mathcal{W}(\Gamma) \vdash \mathcal{W}(A) \) in classical DiLL.

\[
\begin{align*}
\Gamma \vdash A, A &\quad \text{ax} \\
\Gamma \vdash A, !A &\quad \text{\textdagger} \\
\Gamma \vdash ?A, !A &\quad \text{ax} \\
\Gamma \vdash ?A, A, !A &\quad \text{\textdagger} \\
\Gamma \vdash ?A, A &\quad \text{cut}
\end{align*}
\]
Dialectica factorizes through Differential Linear Logic

The economical translation

\[
\begin{align*}
\lbrack A \Rightarrow B\rbrack_e & := !A \multimap B \\
\lbrack A \times B\rbrack_e & := A \& B \\
\lbrack A + B\rbrack_e & := A \oplus B
\end{align*}
\]

ILL \quad \xrightarrow{\mathcal{W}, \mathcal{C}} \quad IDiLL

IDiLL : Intuitionnistic Differential Linear Logic ? Oh no ...
Let's say x, u, f, g are λ-terms.

The computational Dialectica: a reverse Differential λ-calculus

"Behind every successful proof there is a program", Gödel's wife
A computational Dialectica

Making Dialectica act on λ-terms instead of formulas.

λ-terms with an extra type allowing for sums

\[
\begin{align*}
\Gamma \vdash \emptyset : \mathcal{M}A & \quad \Gamma \vdash m_1 : \mathcal{M}A \quad \Gamma \vdash m_2 : \mathcal{M}A \\
\Gamma \vdash t : A & \quad \Gamma \vdash m_1 \otimes m_2 : \mathcal{M}A \\
\Gamma \vdash \{t\} : \mathcal{M}A & \quad \Gamma \vdash m : \mathcal{M}A \quad \Gamma \vdash f : A \Rightarrow \mathcal{M}B \\
& \quad \Gamma \vdash m >>> f : \mathcal{M}B
\end{align*}
\]

\[
\begin{align*}
\mathcal{W}(A \Rightarrow B) & := (\mathcal{W}(A) \Rightarrow \mathcal{W}(B)) \\
& \quad \times (\mathcal{C}(B) \Rightarrow \mathcal{W}(A) \Rightarrow \mathcal{M}\mathcal{C}(A)) \\
\mathcal{C}(A \Rightarrow B) & := \mathcal{W}(A) \times \mathcal{C}(B)
\end{align*}
\]
Pédrot’s Dialectica Transformation

Soundness [Ped14]

If $\Gamma \vdash t : A$ in the source then we have in the target

- $W(\Gamma) \vdash t^\bullet : W(A)$

- $W(\Gamma) \vdash t_x : C(A) \Rightarrow M C(X)$ provided $x : X \in \Gamma$.

A global and a local transformation

\[
\begin{align*}
x^\bullet & := x \\
x_x & := \lambda \pi. \{\pi\} \\
x_y & := \lambda \pi. \emptyset \text{ if } x \neq y \\
(\lambda x. t)^\bullet & := (\lambda x. t^\bullet, \lambda \pi x. t_x \pi) \\
(\lambda x. t)_y & := \lambda \pi. (\lambda x. t_y) \pi.1 \pi.2 \\
(t u)^\bullet & := (t^\bullet.1) u^\bullet \\
(t u)_y & := \lambda \pi. (t_y (u^\bullet, \pi)) \otimes ((t^\bullet.2) \pi u^\bullet \gg u_y)
\end{align*}
\]
Flashback: Differential λ-calculus [Ehrhard, Regnier 04]

Inspired by denotational models of Linear Logic in vector spaces of sequences, it introduces a differentiation of λ-terms.

$D(\lambda x.t)$ is the **linearization** of $\lambda x.t$, it substitute x linearly, and then it remains a term t' where x is free.

Syntax:

$$\begin{align*}
\Lambda^d &: S, T, U, V ::= 0 \mid s \mid s + T \\
\Lambda^s &: s, t, u, v ::= x \mid \lambda x.s \mid sT \mid Ds.t
\end{align*}$$

Operational Semantics:

$$(\lambda x.s)T \rightarrow_\beta s[T/x]$$

$$D(\lambda x.s) \cdot t \rightarrow_\beta D \lambda x. \frac{\partial s}{\partial x} \cdot t$$

where $\frac{\partial s}{\partial x} \cdot t$ is the **linear substitution** of x by t in s.
Linearity in Linear Logic

Linearity is about resources: A proof/program is *linear* iff it uses only once its hypotheses/argument.

<table>
<thead>
<tr>
<th>Linear</th>
<th>Non-linear</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A \vdash A \lor B)</td>
<td>(A \vdash A \land A)</td>
</tr>
<tr>
<td>(\lambda f \lambda x. fxx)</td>
<td>(\lambda x. \lambda f. fxx)</td>
</tr>
</tbody>
</table>

Differentiation is about making a \(\lambda \)-term linear:

\(\rightsquigarrow \) about making a \(\lambda \)-term have a linear usage of its arguments.

\[
\lambda x \lambda f. fxx \rightsquigarrow ?
\]
Linearity in Linear Logic

Linearity is about resources: A proof/program is *linear* iff it uses only once its hypotheses/argument.

<table>
<thead>
<tr>
<th>Linear</th>
<th>Non-linear</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A \vdash A \lor B)</td>
<td>(A \vdash A \land A)</td>
</tr>
<tr>
<td>(\lambda f \lambda x. f xx)</td>
<td>(\lambda x. \lambda f. f xx)</td>
</tr>
</tbody>
</table>

Differentiation is about making a \(\lambda \)-term linear:

\[\rightsquigarrow \text{about making a } \lambda \text{-term have a linear usage of its arguments.} \]

\[D(\lambda x \lambda f. f xx) \cdot v := \lambda x. \lambda f. vx + ? \]
Linearity in Linear Logic

Linearity is about resources: A proof/program is *linear* iff it uses only once its hypotheses/argument.

<table>
<thead>
<tr>
<th>Linear</th>
<th>Non-linear</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A \vdash A \lor B$</td>
<td>$A \vdash A \land A$</td>
</tr>
<tr>
<td>$\lambda f \lambda x. fxx$</td>
<td>$\lambda x. \lambda f. fxx$</td>
</tr>
</tbody>
</table>

Differentiation is about making a λ-term linear:

\rightsquigarrow about making a λ-term have a linear usage of its arguments.

$$D(\lambda x \lambda f. fxx) \cdot v := \lambda x. \lambda f. vx + \lambda x. \lambda f. Dxv$$
The linear substitution ...

... which is not exactly a substitution

\[
\frac{\partial y}{\partial x} \cdot t = \begin{cases}
 t & \text{if } x = y \\
 0 & \text{otherwise}
\end{cases}
\]

\[
\frac{\partial}{\partial x} (tu) \cdot s = (\frac{\partial t}{\partial x} \cdot s)u + (Dt \cdot (\frac{\partial u}{\partial x} \cdot s))u
\]

\[
\frac{\partial}{\partial x} (\lambda y.s) \cdot t = \lambda y \cdot \frac{\partial s}{\partial x} \cdot t
\]

\[
\frac{\partial}{\partial x} (Ds \cdot u) \cdot t = D(\frac{\partial s}{\partial x} \cdot t) \cdot u + Ds \cdot (\frac{\partial u}{\partial x} \cdot t)
\]

\[
\frac{\partial 0}{\partial x} \cdot t = 0
\]

\[
\frac{\partial}{\partial x} (s + u) \cdot t = \frac{\partial s}{\partial x} \cdot t + \frac{\partial u}{\partial x} \cdot t
\]

\[
\frac{\partial s}{\partial x} \cdot t \text{ represents } s \text{ where } x \text{ is linearly (i.e. one time) substituted by } t.
\]
The linear substitution ...

The computational Dialectica

\[\frac{\partial y}{\partial x} \cdot t = \begin{cases} t & \text{if } x = y \\ 0 & \text{otherwise} \end{cases} \]

\[\frac{\partial}{\partial x} (tu) \cdot s = (\frac{\partial t}{\partial x} \cdot s)u + (Dt \cdot (\frac{\partial u}{\partial x} \cdot s))u \]

\[x_y \cdot \pi = \begin{cases} \pi & \text{if } x = y \\ \emptyset & \text{otherwise} \end{cases} \]

\[(t \ u)_y := \lambda \pi. (t_y (u^\ast, \pi)) \oslash ((t^\ast.2) \pi u^\ast \gg u_y) \]

\[\frac{\partial}{\partial x} (\lambda y.s) \cdot t = \lambda y. \frac{\partial s}{\partial x} \cdot t \]

\[\frac{\partial}{\partial x} (Ds \cdot u) \cdot t = D(\frac{\partial s}{\partial x} \cdot t) \cdot u + Ds \cdot (\frac{\partial u}{\partial x} \cdot t) \]

\[\frac{\partial 0}{\partial x} \cdot t = 0 \]

\[\frac{\partial}{\partial x} (s + u) \cdot t = \frac{\partial s}{\partial x} \cdot t + \frac{\partial u}{\partial x} \cdot t \]
Tracking differentiation in Dialectica

\[x_x := \lambda \pi. \{ \pi \} \quad x^\bullet := x \]

\[x_y := \lambda \pi. \varnothing \quad \text{if } x \neq y \]

\[(\lambda x. t)_y := \lambda \pi. (\lambda x. t_y) \pi.1 \pi.2 \]

\[(t u)_y := \lambda \pi. (t_y (u^\bullet, \pi)) \oplus ((t^\bullet.2) u^\bullet \pi \ggg u_y) \]
Tracking differentiation in Dialectica

\[
\begin{align*}
 x_x & := \lambda\pi. \{\pi\} & x^\bullet & := x \\
 x_y & := \lambda\pi. \emptyset \text{ if } x \neq y & (\lambda x. t)^\bullet & := (\lambda x. t^\bullet, \lambda x\pi. t_x \pi) \\
 (\lambda x. t)_y & := \lambda\pi. (\lambda x. t_y) \pi.1 \pi.2 & (t u)^\bullet & := (t^\bullet.1) u^\bullet \\
 (t u)_y & := \lambda\pi. (t_y (u^\bullet, \pi)) \otimes (t^\bullet.2) u^\bullet \pi \gg= u_y
\end{align*}
\]
Tracking differentiation in Dialectica

\[
x_x := \lambda \pi. \frac{\partial x}{\partial x} \cdot \pi \\
x_y := \lambda \pi. \frac{\partial x}{\partial y} \cdot \pi \quad \text{if } x \neq y \\
(\lambda x. t)_y := \lambda \pi. (\lambda x. t_y) \pi.1 \pi.2 \\
(t u)_y := \equiv (\lambda x.(t x)_\cdot) u_\cdot
\]

That’s reverse differentiation

- \((_)_\cdot.2\) obeys the chain rule, \((_)_\cdot\) is the functorial differentiation.
- \(t_x\) is contravariant in \(x\), representing a reverse linear substitution.

Theorem [K. Pédrot 22]

\[
[u \gg > t_x[\Gamma \leftarrow r_\cdot]] \equiv_{\beta,\eta} \lambda z. ([u] ((\partial x.t[\Gamma \leftarrow r])z))
\]
Tracking differentiation in Dialectica

\[
\begin{align*}
xx & := \lambda \pi. \frac{\partial x}{\partial x} \cdot \pi \\
x^* & := x \\
xy & := \lambda \pi. \frac{\partial x}{\partial y} \cdot \pi \quad \text{if} \ x \neq y \\
(\lambda x. t)^* & := (\lambda x. t^*, \lambda x\pi. t_x \pi) \\
(\lambda x. t)_y & := \lambda \pi. (\lambda x. t_y) \pi.1 \pi.2 \\
(tu)^* & \equiv (\lambda x. (tx)^*)u^*
\end{align*}
\]

That’s reverse differentiation

- \((_)^*2\) obeys the chain rule, \((_)^*\) is the functorial differentiation.
- \(t_x\) is contravariant in \(x\), representing a reverse linear substitution.

Theorem [K. Pédrot 22]

\[
[u \ggg t_x[\Gamma \leftarrow \vec{r}^*]] \equiv_{\beta, \eta} \lambda z. ([u] ((\partial x.t[\Gamma \leftarrow \vec{r}])z))
\]
Dialectica is differentiation in categories

That’s already known through lenses!
What’s categorical differentiation?

To cook a good differential category, one needs:

- A category of regular/continuous/non-linear functions

 \[C(A, B) = !A \to B \]

- A category of linear functions, in which differentiation embeds

 \[\mathcal{L}(A, B) = A \to B. \]

- Something which linearizes:

 \[\bar{d} : A \to !A \]

- A notion of duality, if one wants to encode reverse differentiation.

 \[\leadsto \text{Basically, one wants a categorical model of DiLL.} \]
Dialectica categories

Categories representing specific relations

Consider a category \mathcal{C}. $\text{Dial}(\mathcal{C})$ is constructed as follows:

- **Objects**: relations $\alpha \subseteq U \times X$, $\beta \subseteq V \times Y$.

- **Maps from α to β**:

$$(f : U \to V, F : U \times Y \to X)$$

- **Composition**: the chain rule!

Consider

$$(f, F) : \alpha \subseteq (A, X) \to \beta \subseteq (B, Y)$$

and

$$(g, G) : \beta \subseteq (B, Y) \to \gamma \subseteq (C, Z)$$

two arrows of the Dialectica category. Then their composition is defined as

$$(g, G) \circ (f, F) := (g \circ f, (a, z) \mapsto F(a, G(f(a), z))).$$
Dialectica categories through Differential Categories

In a \(*\)-autonomous differential category:

\[\partial : \text{Id} \otimes ! \to ! \]

\[\mathcal{L}(B \otimes A, C^\perp) \simeq \mathcal{L}(A, (B \otimes C)^\perp) \]

from \(f : !A \to B \) one constructs:

\[\overleftarrow{D}(f) \in \mathcal{L}(!A \otimes B^\perp, A^\perp). \]

Dialectica categories factorize through differential categories

If \(\mathcal{L} \) is a model of DiLL such that \(\mathcal{L}! \) has finite limits:

\[
\begin{align*}
\mathcal{L}! & \to \mathcal{D}(\mathcal{L}!) \\
A & \mapsto A \times A^\perp \\
f & \mapsto (f, \overleftarrow{D}(f))
\end{align*}
\]

We have an obvious forgetful functor:

\[
\mathcal{U} : \left\{ \begin{array}{c}
\mathcal{D}(\mathcal{L}!) \to \mathcal{L}! \\
\alpha \subseteq A \times X \mapsto A \\
(f, F) \mapsto f
\end{array} \right.
\]
Recap

<table>
<thead>
<tr>
<th>Programs</th>
<th>Logic</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{fun } (x:A) \rightarrow (t:B))</td>
<td>Proof of (A \vdash B)</td>
<td>(f : A \rightarrow B).</td>
</tr>
</tbody>
</table>

- **Types**
- **Formulas**
- **Objects**
- **Execution**
- **Cut-elimination**
- **Equality**

- **\(\lambda \)-calculus** [Ehr04]
- **Linear Logic** [Gir87]
- **Differential Linear Logic** [Ehrhard06]
- **Vectorial Models**
- **\(\lambda \)-calculus**
- **Min. Logic**
- **Normal functors**
Recap

<table>
<thead>
<tr>
<th>Programs</th>
<th>Logic</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>fun (x:A) -> (t:B)</code></td>
<td><code>Proof of A ⊢ B</code></td>
<td><code>f : A → B</code></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Types</th>
<th>Formulas</th>
<th>Objects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Execution</td>
<td>Cut-elimination</td>
<td>Equality</td>
</tr>
</tbody>
</table>

- Differential \(\lambda\)-calculus [Ehr04]
- Differential Linear Logic [Ehrhard06]
- Vectorial Models
- Linear Logic [Gir87]
- \(\lambda\)-calculus
- Min. Logic
- Normal functors
Recap

<table>
<thead>
<tr>
<th>Programs</th>
<th>Logic</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{fun} (x:A) \rightarrow (t:B))</td>
<td>Proof of (A \vdash B)</td>
<td>(f : A \rightarrow B).</td>
</tr>
</tbody>
</table>

Types
Formulas
Execution
Cut-elimination
Objects
Equality

Differential \(\lambda\)-calculus [Ehr04]
Differential Linear Logic [Ehrhard06]
Linear Logic [Gir87]
Vectorial Models

Automatic Differentiation [80s]
Dialectica [Göd58]
\(\lambda\)-calculus
Min. Logic
Normal functors
Recap

<table>
<thead>
<tr>
<th>Programs</th>
<th>Logic</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{fun } (x:A) \rightarrow (t:B))</td>
<td>Proof of (A \vdash B)</td>
<td>(f : A \rightarrow B).</td>
</tr>
<tr>
<td>Types</td>
<td>Formulas</td>
<td>Objects</td>
</tr>
<tr>
<td>Execution</td>
<td>Cut-elimination</td>
<td>Equality</td>
</tr>
</tbody>
</table>

- Differentiable Programming
- Differential λ-calculus [Ehr04]
- Automatic Differentiation [80s]
- λ-calculus
- Min. Logic
- Normal functors
- Differential Linear Logic [Ehrhard06]
- Vectorial Models
- Linear Logic [Gir87]
- Dialectica [Göd58]
Recap

<table>
<thead>
<tr>
<th>Programs</th>
<th>Logic</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{fun} \ (x:A) \to (t:B))</td>
<td>(\text{Proof of } A \vdash B)</td>
<td>(f : A \to B).</td>
</tr>
<tr>
<td>Types</td>
<td>Formulas</td>
<td>Objects</td>
</tr>
<tr>
<td>Execution</td>
<td>Cut-elimination</td>
<td>Equality</td>
</tr>
</tbody>
</table>

- Linear Logic \([\text{Gir87}]\)
- Vectorial Models
- Linear Logic \([\text{Gir87}]\)
- Differential Linear Logic \([\text{Ehrhard06}]\)
- Differentiable Linear \(\lambda\)-calculus \([\text{Ehr04}]\)
- Dialectica \([\text{Göd58}]\)
- Normal functors
- Min. Logic
- \(\lambda\)-calculus
- Automatic Differentiation \([80s]\)
- Differentiable Programming

A good point for logicians: Gödel invented Dialectica 40 years before reverse differentiation was put to light
Conclusion and applications
Take home message:

Dialectica is functorial reverse differentiation, extracting intensional local content from proofs.

A new semantical correspondence between computations and mathematics: **intentional meaning** of program is **local behaviour** of functions.

<table>
<thead>
<tr>
<th>Program</th>
<th>Proof</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantitative Resources</td>
<td>Classical Principles</td>
<td>Linearity Differentiation</td>
</tr>
<tr>
<td>Control</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Related work and potential applications:

- **Markov’s principle** and delimited continuations on positive formulas.
- **Proof mining** and backpropagation.
- **Bar Induction** and Taylor Exponentiation.
Dialectica is differentiation ...

... We knew it already!

The codereliction of differential proof nets: In terms of polarity in linear logic [23], the ∀→-free constraint characterizes the formulas of intuitionistic logic that can be built only from positive connectives (⊕, ⊗, 0, 1, !) and the why-not connective (“?”). In this framework, Markov’s principle expresses that from such a ∀→-free formula A (e.g., ? ⊕ x (?A(x) ⊗ ?B(x))) where the presence of “?” indicates that the proof possibly used weakening (efq or throw) or contraction (catch), a linear proof of A purged from the occurrences of its “?” connective can be extracted (meaning for the example above a proof of ⊕ x (A(x) ⊗ B(x))). Interestingly, the removal of the “?” , i.e. the steps from ?P to P, correspond to applying the codereliction rule of differential proof nets [24].

Differentiation: (?P = (P → ⊥) ⇒ ⊥) → ((P → ⊥) → ⊥) ≡ P

Hugo Herbelin, “An intuitionistic logic that proves Markov’s principle”, LICS ’10.
Markov’s principle is proved by allowing catch and throw operations on hereditary positive formulas.

Figure 3. Proof of MP
Effective moduli from ineffective uniqueness proofs. An unwinding of de La Vallée Poussin’s proof for Chebycheff approximation*

Ulrich Kohlenbach
Fachbereich Mathematik, J.W. Goethe Universität
Robert-Mayer Str. 6 10, 6000 Frankfurt am Main, FRG

Abstract
We consider uniqueness theorems in classical analysis having the form

\[(+) \forall u \in U, v_1, v_2 \in V_u \left(G(u, v_1) = 0 = G(u, v_2) \rightarrow v_1 = v_2 \right) ,\]

where \(U, V \) are complete separable metric spaces, \(V_u \) is compact in \(V \) and \(G : U \times V \rightarrow \mathbb{R} \) is a constructive function.

If \((+)\) is proved by arithmetical means from analytical assumptions

\[(+++) \forall x \in X \exists y \in Y_x \forall z \in Z \left(F(x, y, z) = 0 \right) \]

only (where \(X, Y, Z \) are complete separable metric spaces, \(Y_x \subset Y \) is compact and \(F : X \times Y \times Z \rightarrow \mathbb{R} \) constructive), then we can extract from the proof of \((+++) \rightarrow (+)\) an effective modulus of uniqueness, i.e.

\[(+++) \forall u \in U, v_1, v_2 \in V_u, k \in \mathbb{N} \left(|G(u, v_1)|, |G(u, v_2)| \leq 2^{-\Phi u_k} \rightarrow d_V(v_1, v_2) \leq 2^{-k} \right) .\]
Proof Mining

Markov’s principle and the independence of premises are necessary for most of mathematical analysis proofs:

Proof mining allows to refine these proofs by taking away these principles as guaranteed by (some variant of) Dialectica’s transformation.

Conjecture

Does it differentiate the function \((\epsilon \rightarrow \eta)\) in:

\[
\forall u, v_1 v_2, \forall \epsilon > 0, \exists \eta > 0, |G(u, v_1) - G(u, v_2)| < \eta \Rightarrow d_V(v_1, v_2) < \epsilon
\]

Is proof mining (based on) reverse differentiation applied to proofs?

What else can we explain by differentiation?
Thank you for Listening !