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Thank you to the organizers !
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Objective and Methodology

Objective : Make DiLL a comfortable place to think
A reminder or a quick review of Linear Logic,

An introduction of DiLL’ rules,

A detailed explanation of its cut-elimination procedure,

An introduction to Differential A-calculus,

Al

A few examples of its essential models,

Methodology: All of that done with a denotational flavor
» I am much more a semantician than a syntactician.

» The semantics will however stay very much informal and in the
background
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Linear Logic

A decomposition of the implication

A=B~!A—-B

@ Linear Logic, Jean-Yves Girard 1987
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Linear Logic

A decomposition of the implication

A= B~!A—-B

» Usual non-linear implication
» Linear implication

» Exponential: Usually, the duplicable copies of A.

B Linear Logic, Jean-Ywves Girard 1987
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Linear Logic

A decomposition of the implication
» Usual non-linear implication

» Linear implication

A linear proof is in particular non-linear.

A proof of A+ B is linear. A proof of !A + B is non-linear.

AFT
IAFT

dereliction

Slogan: ! in the hypotheses, speaking of resources.
» A linear proof will make use only once of its hypothesis A

» A non-linear proof will make use only once of its hypothesis A

@ Linear Logic, Jean-Yves Girard 1987
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Classical Linear Logic

I’ll be considering only classical linear logic, where sequents are monolateral by
default but can be made bilateral for better intuitions

I'FA  FTLH,A

Formulas for (Differential) Linear Logic
AB:=al|la"|0|1|T|L|A®B|A®B|A®B|A&B|!A|?A

where @ (resp &) denotes the multiplicative (resp. additive) conjunction and 7%
(resp @) denotes the multiplicative (resp. additive) disjunction.

An involutive linear negation
(A& B)* = At B+ (A Bt = At & Bt

(ABB)Y = Ate@Bt (A9B)*t = Atx B

1A+ = 24+ 24+ =14

[
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Proofs of Linear Logic

Multiplicative Additive Linear Logic

o axiom FT,A FAL A ¢
F4,4 FT,A i
LT FT, A, B FT, A A, B
F1 (1) 1 — %
T, L FT,A% B FT,A, A® B
T T, A FT,B FLA F0LB
FLT FI,A& B FT,AeB ¢ Fr,AeB ¢

F}_A A1®®AIJ|_BIYS)7?B”

Linear and non-linear implication
A-oB:=A*3B At=A-o1l

A=B:=!A—B
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Denotational Intuitions for Linear Logic (DILL)

F,AWHFH [[A]]

» Some additive structure
» For example: multi-sets with unions,

» Or general vector spaces: spaces of sequences, topological vector spaces...

AF B, F A+ B~ [ : [A] — [B]
Where £ stands for a linear map
AF B~ [:[A] = [B]
where f stands for a non-linear, maybe continuous, maybe differentiable map
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Denotational Intuitions for ”Why Not” 77”7

In classical Linear Logic
[?4] ~ [At = 1]

Let’s assume, as in most models of Differential Linear Logic:

[L] =R
[A = B] =C>*([4],[B])
Then
[?A] C {fIf € C=([A"],R)}
IAF L ~ feC™([A],R)
F2AL b fo2At
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Linear Logic, structural rules

In a bilateral presentation

kT AMART LAFB TFA
IAFT IAFT T,JAF B ITF 14

In a monolateral presentation:

FT FLPAA FTA - 7T, A
FT,74 FT,74 FT,74 F 70,14
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Denotational Intuitions for monolateral exponential

rules

‘Weakening and contraction

FT
FT,(cst;:a' —1):74

w

The constant function is non-linear

Dereliction and promotion

FT,bu: A
FT,((r: AY) = 2(v) : 24

d

linear ~» non-linear

FT,f: 74, f: 74
FT,f g: 74

[

The multiplication of scalar func-
tions

Flo: A b
FT, 6, 1A
Diracs
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Denotational Intuitions for bilateral exponential rules

Weakening and contraction

F~vy:T w
(cstyra—y): (IAFT)

The constant function is non-linear

Dereliction and promotion

(:(AFT)
rearm ¢

linear ~» non-linear

h:(AAET)
(x = h(z,z)): (lAFT)

C

Identifying arguments

F1(TF A)

57 : (T F1A)

Diracs
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Denotational Intuitions about ”Bang” !
In classical Linear Logic
[A] ~ [(A= 1)7]

Let’s assume, as in most models of Differential Linear Logic:

[L]=R  [A= B]=c>([A],[B])

[AL] = [A] = Z(A,R) Linear Negation is interpreted by Dual

Then the ! is interpreted as a space of distributions with compact support:
4] € = ([A],R)

> Distributions are linear scalar maps acting on (some subspace of) smooth
functions.

> oeg.: 0y fr fx)

Convolution, the monoidal operation on distributions:
pxip == bz Py = [z +y))) 0u % 8y = iy
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Differential Linear Logic
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Dereliction and co-dereliction:

linear proo LemTTTTTES ~. non-linear proo
-

DILL

/- A+ B J FAv: A _
(. IAF B FA, (/= Do(/)(0)) : 14 @
linear — non-linear. non-linear < linear
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Dereliction and co-dereliction:

linear proo .- Tl non-linear proo
- -

~

DILL

/- A+ B d FAv:A _
(1AF B FA, (= Do(f)(v) 14 9
linear — non-linear. non-linear < linear

Cut-elimination:
Flv:A  _ (:AFB
FT, Do) 1A 9 7.1AF B
FT,A

d, dereliction

cut

Fl,bu: A AN
~ cut

FT,A, Dy(€)(v) = £(v)
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Exponential Rules of DiLL

To the previous structural rules, DILL adds the following co-structural rules

Monolateral co-structural rules
o FT,!A FAIA FT,A

-, W
Fl4 FT.A A c FT,14

Bilateral co-strucural rules derivable from the above:

!AFBW 1A-B z IAFB —
FB 1A-IB AFB
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Denotational intuitions for co-structural rules of DiLLLL

Co-weakening

Computing the value at 0 of a smooth map f

— ff1AEB _

Co-contraction

Summing in the domain of smooth maps

FT,¢:1A A IA 1A FB

Cc

FT,A 0+0: 14 (,y) > f(x +y): AIAFIB ©
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Denotational intuitions for co-structural rules of DiLLLL

Co-dereliction
Differentiating

Flz: A - FAwv: A
FT, Do()(0) 1A ¢ F A, (/= Do(/)(v) : 1A

d

Given a vector v, f — Do(f)(v) is also a distribution
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Cut-Elimination

18/49



Contraction and co-weakening

TS 2(AY), gAY -
FT, g 7(AY) R
FT,7(0).9(0): R cut
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Contraction and co-weakening

TS 2(AY), gAY -
FT, g 7(AY) R
FT,7(0).9(0): R cut

VNN
;@

FT,f:2(AL), g 2(AY) Fop:1A cut - -

FT,f(0) R, g: ?2(AY) Fop1a ©

(FT,7(0) R, g(0) : R) = (- T, 7(0).9(0) : R)

Tensor for scalar is multiplication, % = ® = - in R

(f-9)(0)=f(0)g(0)  h(04,04) =h(0axa)
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Weakening and co-contraction

FT,0:1A FTV, 1A EA
T, T, o) 1A ¢ FA s A=R
FAD T, gxip(esty) - R

cut
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Weakening and co-contraction

FT,0:1A FTV, 1A EA
FIT,IY, gxp 0 1A ¢ FAcsti : A=R .
F AT, T, ¢rp(esty) : R o
'l
FA w
FT,¢:1A FAesty : A=R
cut

FT,A ¢(esty) : R w
FT,A, p(esty) i Ryesty : A= R FITV 1A
FAT T ¢(esty) : R, p(esty) : R

cut

(¢ * w)(cstl) = (cstl)gb(cstl)
(@y) = 1= (x> 1)(y—1)
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Weakening and co-weakening

T w H @
FT, csty : A=R Fd: 1A e

FI,1:R
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Weakening and co-weakening

FT w F @
FT,cst1 : A= R Fdg:lA ~ kT

FI,1:R
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(Co)-weakening and (co-)-dereliction

FT FAov: A _
w d

FIlest; : A=R FA, Dy(-)(v): 1A T
FT, A, Do(esti)(v) : R b
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(Co)-weakening and (co-)-dereliction

ET FAv:A -
w d

FIlest; : A=R FA, Dy(-)(v): 1A T 0
FT, A, Do(esti)(v) : R b

Dy(esty)(v) = 0: Differentiating a constant function leads to 0
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(Co)-weakening and (co-)-dereliction

ET FAv:A -
w d

FIlest; : A=R FA, Dy(-)(v): 1A T 0
FT, A, Do(esti)(v) : R b

Dy(esty)(v) = 0: Differentiating a constant function leads to 0

- _ I—F,E:A—ORd
Foo 1A Y FT,l:A=R =
FT,00): R cu
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(Co)-weakening and (co-)-dereliction

ET FAv:A -
w d

FIlest; : A=R FA, Dy(-)(v): 1A T 0
FT, A, Do(esti)(v) : R b

Dy(esty)(v) = 0: Differentiating a constant function leads to 0

- _ I—F,E:A—oRd
Foo 1A Y FT,l:A=R Lo
FT,00): R cu

£(0) =0 if £ is linear
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Proofs of DILL

Formulas:

AB:=al|la"|0|1|T|L|AQB|AB®B|A®B|AxB|!A|?A

Proofs

» Sums of proofs generated by multiplicative additive rules for ®, %, ®, &
as well as structural and co-structural rules.

» Every proof admits a zero-proof !
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Contraction and co-dereliction

I—F,f:A:>R,g:A:>RC FAv: A i
FID,f-g:A=R FA,Do()(v): 1A 7
FT,A, Do(f-9)(v) : R cu
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Contraction and co-dereliction

I—F,f:A:>R,g:A:>RC FAv: A _
FT,7 g: A= R F A, Do()(v): 1A dtw
FT,A, Do(f-9)(v) : R o

FAov: A _
FT,f: A= R g: A= R I—A,Dg(,)(fu):!Adt L
FT,A, Do(f): (v):R,g: A= R TS A

FAT, Do(f): (v):R,g(0):R

g

cut
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Contraction and co-dereliction

I—F,f:A:>R,g:A:>RC FAv: A i
FT,f-g:A=R FA, Dy(-)(v): 1A tw
FT,A, Do(f-g)(v) : R o

FAov: A

FT,f:A=Rg:A=>R  FA Do()(0):14 ¢ L
FT,ADo(f): () Rg: A>R Y R
FAT.Do(/): () R,g(0) ‘R cut

FAv: A _
FT,f:A=>Rg:A=>R FA Dy()(0):14 9 s
FT,A,g: A= R, Do(g): (v) : R R

FAT£(0) R, Do(9) : (v) : R
Do(f4) = Do(£)3(0) + f(0)Do(g)
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Dereliction and co-contraction

FT,o:1A FTV,¢: 1A - FA/:A—-R
T 0r0: A ¢ TAlA=R ¢ -

FT.T, A, (6% 0)(0) cut
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Dereliction and co-contraction

FT,¢:1A FTV 1A FA/:A—oR
FTT .00 1A ¢ FA(ASR dtw
FTLTLA, (6 ) (D) o
FA/(:A—-B

FT,0:!A FA(:A=B
FT,A¢¢):R®¥ B w
FT,A00) :R% B,cstiA=R FI7,¢: 1A
FTV T A ¢(f) : R% B,(csty) : R

cut

cut
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Dereliction and co-contraction

FT,¢:1A FTV 1A FA/:A—oR
FTT .00 1A ¢ FA(ASR dtw
FTLTLA, (6 ) (D) o
FA/(:A—-B

FT,0:!A FA(:A=B
FT,A¢¢):R®¥ B w
FT,A00) :R% B,cstiA=R FI7,¢: 1A
FTV T A ¢(f) : R% B,(csty) : R

cut

cut

FA(:A—B
FIV,¢: 1A FA/:A=B ;
+ FT,AU(0) RA B o

FTA00) :RBB,cshAS R FT,0:14
FT,T7, A, 0(0) : R3 B, dlcsty) : R

Uz +y) =)+ y)

cut
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Cut-elimination in a nutshell

Cut-elimination in DiLL is symmetric

» Cut-elimination of co-structural rules between them are alike
cut-eliminations of structural rules.

» Cut-elimination between structural and co-structural rules are alike.

d;w=0and w;d=0

:w = id and d;d = id
Gw=w®wand W;,c=WQ®Ww
cgd=wed+dowanddic=wd+dw

(I, w,c,w, <) is a commutative bialgebra

VVVVV

This can be made more synthetic in Categorical Models of DILL.

See Jean-Simon Pacaud Lemay’s talk on Tuesday !
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Finitary differential Linear Logic

The first version by Erhrard and Regnier in 2006:

FT FT,f:74,9:7A FIT,0: A
—_— W c -5 d
FIest;: 74 FT,fg:7A FI,0:7A

FT - FT,¢:1A FAY: 1A . FT,z: A q
FT,0: !4 FT,A ¢ x¢:1A FT,Do()(x): 1A
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The Prom Queen

Exponential rules of Linear Logic (Resources)

FT w I—I‘,f:?A,g:?AC FT,0: A d
FI,cesty 1 7A FI,fg:7A FI,0:7A

Exponential rules added by Differential Linear Logic (Distributions)

FT o FT,o: 1A FAYIA FIlz: A _
FT,0, 14 FT,A 0 014 FrDo()(0) 1A @

The promotion rule p:!A —1!1A  §, +— s, :
> Makes (!,d, p) a co-monad : p;d = id.
» What about the cut-elimination between p and d ?
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Unchained Melody

Differentiation is non-functorial, hence the chain rule

Dy(g o f) = Dyw)(g) e Do(f)

See Michele Pagani’s talk on Thursday for more version of the chain rule !
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Cut-elimination between promotion and co-dereliction

1AFB P I'HA g
IAFIB 14

AL B cut
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Cut-elimination between promotion and co-dereliction

fi(@w:!AF f(2): B FFv:A g
5;' e 6f(x)'A H!B I+ Dg(,)(”b‘) 1A

T'F Do(6,)(v) : 1B cut

Do(65)(v) = (g Do(go f)(v))
= (9 Dy(0)(9)(Do(f)(v))

How to interpret Doy (Do(f)(v)) ?
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Back to distributions

Example of distributions:
> Forx: A, 6, =(f— f(x)):1A
> For v: A, Do(-)(v) = (f = Do(f)(v)) : 1A

Convolutions of distributions
> pxtpi=fr oz Yy flz+y))
> E.g. 0y %0y = 0pqy
> E.g. Do()(v) *ds = Da()(v)
> E.g Do(-)(v) * Do(-)(v) = D§()(v)

The we can compute the chain rule with the basic DILL operations:

D 0)(9)(Do(f)(v) = 050y * D) (Do(f)(v))
= (f;w;p) *d; (d; f)
d;p = (W;p) ® (d; d); €

31/49



Cut-elimination between promotion and co-dereliction

fo(e!AF f(z)): B b I'Fov:A 3
dp i dp) AR !B I'EDo(o)(v): 1A
T'F Do(d;)(0) : 1B cut
'Fou: A — _
(@:WAF f(2)): B TFDoOW A9 Fad ¥ (w:lAF f(2))
Troow:B  _ " 7(0): B
TF Do()(Do()(0) 1B 9 ~or0) 1B

I'EDo(65)(v) = 65(0) * D) (Do(f)(v)) : !B

The chain-rule with contexts:

idia ® da;Ca;pa =ca®@dazidia @ Ca;pa @dia;Cia
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Sum-up on the Syntax

> A symmetrization of LL exponential rules,

» Which magically gives us everything we need to compute basic
differentials at higher-order,

» That challenges the resources interpretation,

» First and maybe better expressed in proof-nets, and categories.

Thomas Ehrhard, Laurent Regnier. Differential interaction nets. Theoretical
Computer Science, Elsevier. 2006

Michele Pagani, The Cut-Elimination Theorem for Differential Nets with
Bozes, (TLCA 2009)

Paolo Tranquilli, Confluence of Pure Differential Nets with Promotion, CSL
2009:

) & W W

Thomas Ehrhard. A semantical introduction to differential linear logic. 2011.
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Denotational Semantics

It’s a maths world.
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Reverse Denotational Semantics

Programs Logic Semantics

fun (x:A)-> (t:B) Proofof A-B f:A— B.
Types Formulas Objects
Execution Cut-elimination Equality

Resource and probabilistic Differential Linear
A-calculus [Ehr04] Logic [Ehrhard06]
/_\‘ Vectorial Models

[ Linear Logic [Gir87]

Min. Logic

N

Normal functors
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The Relational Model

This historical model of Linear Logic and Differential Linear Logic expresses
perfectly the notion of resources and linear argument at stakes.

> Formulas are interpreted by sets {a1,...,an},

> Proofs are interpreted relations [A+ B] = R C A x B,
> 1A :=9M;(A) is the set of finite multi-sets of A,

» ds = {({a},a)|la € A} and da = {(a,{a},)la € A},

> ca = {(m1Umg, (my,ma)lmi, my € Ms(A)} and
€a = {((m1,mz),m1 Ums)|my,ma € My(A)}

> wa={(0,%)} and Wy = {(x,0)}

> ps={(mU---Umy,[m,...,my]) | n € Nym; € 1A}
See Guy Mccusker’s talk on Tuesday!
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Kothe spaces: it’s all about the sum

» Kothe spaces := sequences spaces studied in functional analysis for their
good duality properties, a.k.a perfect sequences spaces.

» The primary source of inspiration to build DiALL

For ECRY: B+ :={a e RN | V)€ E, Y [Aan| < oo}

Definition

> A perfect sequence space is the data (X, Ex) of a subset
X c Nand Ex C KX such that Ex+ = Ex.

» The space F — F of linear continuous maps from Ex to Fy
correspond to the subset KX*Y of all M such that the sum:

Z M; jz;y;
,J

is absolutely converging for all z € F and 3/ € F'-.

There are topological notions at stakes in Kdthe spaces.
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Differentiable maps in Kothe spaces
Exponents. If p is a finite multiset of X and x € F, we write:

ot = Hxﬁ(”).

Power series We define the set of scalar entire maps F = K as the vector

space of matrices M € KM(X) such that for all z € E, the following sum
converges absolutely:

flz) = Z M, a".
HEM(X)
Distributions
IE:=(E=K)*.
Power series are differentiable:
dp(z): (M E=K)— Y M),
aceX
@ T. Ehrhard. On Kothe sequence spaces and linear logic. MSCS, 2002.

@ T. Ehrhard. Finiteness spaces. MSCS. 2005.
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Differentiable maps in Kothe spaces
Exponents. If p is a finite multiset of X and x € F, we write:

H = Ha:ﬁfb(").

n

Power series We define the set of scalar entire maps F = K as the vector
space of matrices M € KM(X) such that for all € E, the following sum
converges absolutely:

flz) = Z M, z".
REM(X)
Distributions
E = (F = K)*.

Power series are differentiable:

dx (m, ) = 0[] dx == (z,m) := O[]
[ma| + [ma]

Cx (ma (mlva)) = 5m,m1|_lm2 Cx ((mlam2)7m) = ( |m1|

) 6m,m1um2

@ T. Ehrhard. On Kéthe sequence spaces and linear logic. MSCS, 2002.

@ T. Ehrhard. Finiteness spaces. MSCS. 2005.
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Convenient vector spaces

Convenient vector spaces has been studied by functional analysts to provide a
infinite dimensional point of view on analysis.
They form a smooth model of Intuitionistic DiLL.

» Vector spaces E endowed with a bornology % making them
Mackey-Complete.
VB € #,Ep = {\x|x € B} is complete for ||z|| = inf{)\|{ € B}

» Proofs are interpreted by linear bounded maps.

» Functions f : E — F are smooth when they are smooth when
precomposed by all smooth curves

Ve e C®([R,E), foceC®(R,F)
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Convenient vector spaces

Exponentials: discretization instead of approximation
IE = (0z|x € E)

Interpreting (Intutionistic) DiLL

- Oty — O
dg:6, €E— 2 d:ves lim 29
t—0 t

CT:0, ®0Y EERIE = 04y C: 0y > 0y @0y

p: 0p — 6595
\ P.W. Michor, A. Kriegl, The Convenient Setting of Global Analysis, 1997

B R. Blute, T. Ehrhard, C. Tasson. A Convenient Differential Category. Cahier de
Topologie et Géométrie Différentielle Catégoriques,2011.

@ M.K., C. Tasson. Mackey-Complete Spaces as a Quantitative model of DiLL, MSCS,
2018

@ Y. Dabrowski, M. K., Models of Linear Logic based on the Schwartz e-product, TAC,
2020
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The Differential Lambda-Calculus
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Differential A-calculus

A more general version of resources calculus, without the multisets in the
syntax but using partial derivatives intuitions.

D(Xz.t) is the linearization of Ax.t, it substitute x linearly, and then it
remains a term t' where T is free.

Syntax:
A ST UV 2=0]s|s+T
A s tu,vn=x | Aw.s | sT | Ds-t
Operational Semantics:

(Az.s)T —p s[T/x]
D(A\x.s) -t =g, /\‘L;))*: 1

where % -t is the linear substitution of z by ¢ in s.
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Partial Derivatives

0Os
D(Az.s) -t =3, /\x.a—x -t

Consider f : R™ — R, and (e;); the canonical basis in R™:

aof

s ) =D_flv-e)

» In Differential Lambda-Calculus we will have to operate the linear
substitution (e.g. the partial derivative) before operating the non-linear
subsitution (e.g. fixing the point in which we want to differentiate the
function).

@ Thomas Ehrhard, Laurent Regnier. The differential lambda-calculus. TCS. 2004.
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Back to the resources

Linearity is about resources: A proof/program is linear iff it uses only
once its hypotheses/argument.

Linear Non-linear
AFAVB AFAANA
AfAx.fxzx Az Af. fzx

Differentiation is about making a A-term linear :

~» about making a A-term have a linear usage of its arguments.

AxAf.fxax ~ 7
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Back to the resources

Linearity is about resources: A proof/program is linear iff it uses only
once its hypotheses/argument.
Linear Non-linear
AFAVB AFAAMNA
AMAx.fzx Az Af fzx

Differentiation is about making a A-term linear :

~~ about making a A-term have a linear usage of its arguments.

DXz Af.fex) - v:=dx A for+7
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Back to the resources

Linearity is about resources: A proof/program is linear iff it uses only
once its hypotheses/argument.
Linear Non-linear
AFAVB AFAAMNA
AMAx.fzx Az Af fzx

Differentiation is about making a A-term linear :

~~ about making a A-term have a linear usage of its arguments.

D(XzAf.fzz) - v = e Afoox + Az \f.Dxv
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The linear substitution ...

.. which is not exactly a substitution

dy , _ ,tifx=y 9 — ﬁ . @
%'t’{ 0 otherwise 8m(tu)'87(0$ s)u+ (Dt (&E =)
9 Os 0 Js

%()\ys) tf)\ya— t %(Ds-u) th(%- )-u+Ds-(
90 Jds ou

%-t—() a—(eru)-t—% t 5 t

» 95 ¢ represents s where z is linearly (i.e. one time) substituted by ¢.

ox

» Contrarily to maths, the linear variable has to be substituted first.
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Symmetries in DiLLL
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DiLL est dans Laplace

Do you remember the Laplace transformation?

L f=ao— /OO f(t)e tdt
0
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DiLL est dans Laplace

Do you remember the Laplace transformation?

00
L f=u |—>/ f(t)e tdt
0
That’s not very higher-order

' —7E

o (5B ol(y s B) o <))

The Laplace Transformation is the reason behind the symmetry of DILL:
Z(Ww,c,d) =w,c,d

L

Andp..?7

@ M. K. and J.-S. Pacaud Lemay, Laplace Distributors and Laplace Transformations
for Differential Categories, FSCD 202/
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The missing rule of Differential Linear Logic

Digging p: A — !l A: Co-digging p: !!A - 14: g: 1A= 1A

> p;d=id. > d;p=id Dglg) = id.

> pic=cpRp > Gp=p®pC  glr+y) =g(x)*g(y)
> dp=w®dpedc » p;d=cp®d;w®d It works!

The co-digging is an exponential function acting on distributions:
_ 1 .»
— nl
The monadic rules:

—_ . . 1 n
dp=id  Y0.p(0p,w) =0 Vo.¥f, )~ DGV f(v) = f(v)

n

The co-digging characterizes Taylor approximation through its monadic
rules.

ﬁ M. K. and J.-S. Pacaud Lemay, Taylor as a monad in models of DiLL, LICS 2023
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Thank you for listening ! Questions ?
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