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Differentiable programming

Definition: programming with differential transformations.
7 a theoretical underpinning [of neural networks], even if only

conceptual, would greatly accelerate progress 7.

Y. LeCun, abstract of a talk given at the IAS February 22nd 2019.
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Differentiable programming

Definition: programming with differential transformations.
7 While a theoretical underpinning [of neural networks], even if only
conceptual, would greatly accelerate progress . one must be conscious
of the limited practical implications of general theories. ”.

Y. LeCun, abstract of a talk given at the IAS February 22nd 2019.

”Au coeur de tout langage de programmation il devrait y avoir un
langage fonctionnel pur, de préférence typé , de préférence
garantissant la terminaison”

Xavier Leroy, Conclusion du cours 2018/2019 au Collége de France
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Our work centers on finding a good type system for differentiable
programming, typing a higher order differential transformation.

Lecun VS Logicians

Godel Dialectica Transformation is Differentiable Programming.

Lecun VS Linear Logicians

Differential Linear Logic types a language expressing both forward
and backward differentiation.




Curry-Howard-Lambek

Programs Logic Categories
Term — Proof — Morphisms
AzA B B f:AS B
Type Formulas Objects

Ezecution Cut - elimination Equality

In a future far far away : type theory allows to reason on basic
computer algebra algorithms



Syntactical models (Pédrot)

Programs Logic Dialectica
Term — Proof — Other Proofs
Az tP W ﬁ
Type Formulas

Other Formulas
FExecution Cut - elimination

Equivalence

In a future far far away : type theory allows to reason on basic
computer algebra algorithms



Smooth models (K.)

Programs Logic Analysis
Term — Proof s Smooth maps
Az P I3 fiA—>B
Type Formulas Spaces

Ezecution Cut - elimination Equality

In a future far far away : type theory allows to reason on basic
computer algebra algorithms
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Preliminaries

» Automatic Differentiation.

» Linear Logic.

» Differential \-calculus.
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Automatic Differentiation

How does one compute the differentiation of an algebraic expression,
computed as a sequence of elementary operations ?

T =3 x) = 2x01)
xe = cos(xg) ah = —x{sin(xo)

2=y~ x 2 =y + 2xqa}

E.g. : 2 =y+ cos(z)?

The computation of the final results requires the computation of the
derivative of all partial computation. But in which order ?

Forward Mode differentiation: (zq,z}) — (z2,25) — (z,72/).
Reverse Mode differentiation: z1 — o — 2z — 2’ — o}, —
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AD from a higher-order functional point of view

Dyu(fog)(v) = Dyeuy f(Duf(v))
Dy(fog) = Dy f o Du(f)

» Forward Mode differentiation:

9(u) = Dug = f(9(w)) = Dy(u)f — Dy(u)f o Du(f).
> Reverse Mode differentiation:

g(u) = f(g(w)) = Dycuyf = Dug — Dyeuyf © Du(f)

The choice of an algorithm is due to complexity considerations:
» Forward mode for f: R — R™.
» Reverse mode for f: R” — R
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Linear logic

Usual Implication
A call-by-name translation

A=B=1A4 B
C®(A, B) ~ L(1A, B)

A proof is linear when it uses only once its hypothesis A
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Linear logic

Usual implication

A call-by-name translation

Linear Implication
A = B =

1A —o B
C>*(A,B) ~ L(!A,B)

A proof is linear when it uses only once its hypothesis A.
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Linear logic

Usual implication
A call-by-name translation

Linear implication
A=B=!A —B

C>=(A, B)

9

L(A, B)

Exponential

Smooth Semantics
A proof is linear when it uses only once its hypothesis A.
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Differential A-calculus [Ehrhard Regnier. 2004}

Inspired by denotational models of Linear Logic in vector spaces of
sequences, it introduces a differentiation of A-terms.

D(\z.t) is the linearization of Ax.t, it substitute x linearly, and then
it remains a term t' where x is free.

Syntax:

A ST UV 2=0]s|s+T
A* s tu, v n=x | Ax.s | sT | Ds-t

Operational Semantics:

(Az.s)T —p s[T/x]

D(\z.s) -t —p, \x.22 -t

z) T

where % -t is the linear substitution of x by ¢ in s.
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The linear substitution ...

.. which is not exactly a substitution

ay Tifx=y a0

or {Ootherwise 37:5.T_0

0 Os 0 0Os ou
= (w.s) T = - T = .T .T
8m()\ys) T /\ya -T 8x<8+U) 3 + 3

Differentiating composition:

If x is linear in wu, it is not linear in su
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The linear substitution ...

.. which is not exactly a substitution

oy . ,Tifz=y a0
%'T_{Ootherwise %'T_O

0 s 0 s ou
=) T = My == . el T =22 =T
—Ow.s) T =Moo T (s +U) - T= 22 T+

Differentiating composition:

But x can be free in v. In that case, we do what we would have done
in differential geometry :
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The linear substitution ...
.. which is not exactly a substitution

8y Tife=y a0
or =1 0 otherwise o =0
0 85 0 Os

Differentiating composition:

0 0Os ou
%(su)-vz(a—x-T)u—i—(Ds (%v

Remember : We reverse the notations.

229, — g (S2(w)

Ju)
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The linear substitution ...

.. which is not exactly a substitution

8y Tifx=y a0
or =1 0 otherwise ox r=0
0 s 0 ds ou
—(Ay.s)- T = T — - T'=—-T -T
o ) T =gy r T O T =g T
Differentiating composition:
Linear application
0 0s ~= ou
%(su) v (% -Tu+ (Ds- (% ‘) u)

Linear subsitution



Dialectica : Godel doing Deep Learning

«O>» «Fr «E>»

4

i
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A Dialectica Transformation

Godel Dialectica transformation [1958] : a translation from
intuitionistic arithmetic to primitive recursive arithmetic.

A~ Fu: W(A), Vo : C(A), AP[u, z]

DePaiva [1991]: the linearized Dialectica translation operates on
Linear Logic (types) and A-calculus (terms).
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A Dialectica Transformation

Godel Dialectica transformation [1958] : a translation from
intuitionistic arithmetic to primitive recursive arithmetic.

A~ Fu: W(A), Vo : C(A), AP[u, z]

DePaiva [1991]: the linearized Dialectica translation operates on
Linear Logic (types) and A-calculus (terms).

[Pedrot, CLS-LICS2014]

A linearized Dialectica translation preserving S-equivalence, via the
introduction of an ”abstract multiset constructor” on types on the
target.
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A Dialectica Transformation

Godel Dialectica transformation [1958] : a translation from
intuitionistic arithmetic to primitive recursive arithmetic.

A~ Fu: W(A), Vo : C(A), AP[u, z]

DePaiva [1991]: the linearized Dialectica translation operates on
Linear Logic (types) and A-calculus (terms).

[Pedrot, CLS-LICS2014]

A linearized Dialectica translation preserving S-equivalence, via the
introduction of an ”abstract multiset constructor” on types on the
target.

~~ Dialectica as a program translation ... whose abstract multiset is
not smooth enough
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Pédrot Dialectica Transformation

At the source : A-calculus typed with minimal logic.
At the target : A-calculus with pairs and an 9 operation.

cw) = o

Cla = «

W(A=B) := (&(A) = W(B)) x (W(A) = C(B) = MC(4))
C(A=B) := W(A) xC(B)

Ty = Ar. {7} x® = =z

Ty = g ifx#y Ax.t)* = (Az.t* dam.ty 7)
(Az.t)y, = Am (Ax.ty) m1m2 (t u)® = (t*.1) u®

(tw)y = Am. (ty, (u®, 1)) ® ((t*.2) u® T >>=1u,)
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Pédrot Dialectica Transformation

At the source : A-calculus typed with minimal logic.
At the target : A-calculus with pairs and an 9t operation.

Soundness [Ped14]
If ' Ft: A in the source then we have in the target
> W(T) k¢t : W(A)

> W) k¢, : C(A) = MC(X) provided z : X €T.
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Tracking differentiation in Dialectica

Fle:imA FFQOtA

'-o:MmA Fle@)mg:DﬁA
Ft¢t: A FkEm:9MA 'cf:A=MB
PH{t}:MA F'Em>=f:9MB
T = Ar.{r} x°® = =z
Ty = Mg ifzx#y Az.t)* = (Az.t*, Azm.ty m)
Az.t)y = Ir.(Az.ty) w172 (t w)® = (t*.1) u®

(tu)y :=Am. (ty (u®,m)) ® ((¢°.2) u® T >=uy)
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Tracking differentiation in Dialectica

Thm :MA  Thmy:9MA

T'Fo:MA 'Emy®mg: MA
'Ft: A 'Fm:9MMA 'Ff:A=9MB
FE{t}:MA F'Fm>=f:9MB

Differential A-calculus

T = Ar.{n} x*® =
Ty = Mg ifz#y Az.t)* = (Az.t* dam.ty ™)
Az.t)y = AIm.(Az.ty) w172 (t uw)® = (t*.1)u®

(t w)y == Am. (ty (u®,m)) ® ((t*.2) u® 7™ >=1u,y)
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Tracking differentiation in Dialectica

I'tmi:MA Tkmy:IMA

'o:MA T'tEmi®me:IMA
'Ft: A 'kEm:MA 'kf:A=MB
FE{t}:MmA F'Em>=f:9MB

Differential A-calculus

T = AT, % s z* = T
Ty = AT ‘d)—; O Az.t)* = (Ax.t*, Aaw.ty ™)
Az.t)y = AIr.(Az.ty) 7172 (t u)® = (t*.1) u®

(tu)y = Am. (ty (u®,m)) ® ((t°.2) u® T >=1uy)
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Tracking differentiation in Dialectica

Thm :MA  Thmy:MA

F-2:MA F'Fmi@®mg:MA
'kt A FkEm:9MA 'f:A=MB
FE{t}:MA F'Fm>=f:MB

Differential A-calculus

T = Ar. 82 . z® =z
xy = 7. g—t moifx#y Az.t)* = (Az.t*,) Axm.ty m)
Az.t)y = Ir.(Az.ty) 7172 (t u)® = (Az. (tz)®) u®

(tu)y = Am. (ty (u®,m)) ® ((t°.2) u® T >=1uy)
Backpropagation

u]
8]
I
i
it
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Differential A-calculus in a hurry

D(\z.s) -t =5, A\x.98

() T

Oy Tifz=y Kl Os ou

o =1 0 otherwise ag;(SU)'T_(F T)U + (Ds - (87 U

1o} Os o Os ou
—y.s) T=My.—-T —(Ds-u)-T=D(—"-T)- Ds-(— T
() T=dy oo T L (Dseu) T=D(o T) u+Ds- (507
00 1o} 0s ou

— 1= — T'=— T+ — T

oz 8x(S+U) oz +3m
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Dialectica is Differentiation

The linearized Dialectica Translation weakens to a transformation
from A-calculus to Differential A-calculus.

Differential calculus is typed with minimal logic and does not
distinguish a specific types on which the formal sum * applies :

[mMA] =A
[0] :=0 [t ® u] := [t] + [u] [{t}] := [t]-

Proposition

Consider two A-terms ¢t and u. Then [t,]u = % -y and

((Az.t)*.2))u = Dt - u.
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Dialectica enriched with real functions

We now enrich both our source and target A-calculi with a type of
reals R. We assume furthermore that the source contains functions
symbols ¢, 1, ... : R — R with derivative ¢, 4/, .. ..

W(R) :=R CR):=1
0% = (g, dam {() = ¢ (@)})  @=AIr.2
The soundness theorem is then adapted trivially.

Soundness Theorem
The following equation holds in the target.

(pro...opn)®2a () ={()— (pro...00n) ()}
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Dialectica is Backpropagation

When one distinguishes a specific types for the codomain of functions, on
which the sums operate, we observe a cut-elimination mimicking the
dynamic of backward differentiation.

A B:=a|A=B|AxB|A"|Tr(A)
tu:=x| Qu |zt (tu)|t|ludv]|0.

Types at the source : Minimal Logic and a type of Traces).
'Ht: A Ikt:Tr(A) DEw:Tr(A)

T {t}: Tr(A) THt®u: Tr(A)

T'kt:Tr(A) I'kf:A= Tr(B)

LH0:Tr(A) I'Ft>=u:Tr(B)
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Dialectica is Backpropagation

When one distinguishes a specific types for the codomain of functions, on
which the sums operate, we observe a cut-elimination mimicking the
dynamic of backward differentiation.

AB:=a|A=B|AxB| A" |Tr(A)
tu:=z| (Qu| Azt (tu)|t|udv]|0.

Two mutually inductively defined translations :

Ze = Am. {7} x® =
Ty = g ifz#y Az.t)* = Azt \am. ity
Az.t)y = Am. (Az.ty) 7.1 7.2 (t w)® = (t*1)u

(t u)y = Am. (ty (u®,m)) ® ((£°.2) u® 7 >=1wuy)

)
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Dialectica is Backpropagation

When one distinguishes a specific types for the codomain of functions, on
which the sums operate, we observe a cut-elimination mimicking the
dynamic of backward differentiation.

AB:=a|A=B|AxB| A" |Tr(A)
tu:=z| (Qu| Azt (tu)|t|udv]|0.

Two mutually inductively defined translations :

Ze = Am. {7} x® =
Ty = g ifz#y Az.t)* = (Az.t*, D(A\x.t))
Az.t)y = Am. (Az.ty) 7.1 7.2 (t w)® = (t*1)u

(t u)y :=Am. (ty (u®,m)) ® ((Dt) u® 7 >>=uy)
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Dialectica is Backpropagation

When one distinguishes a specific types for the codomain of functions, on
which the sums operate, we observe a cut-elimination mimicking the
dynamic of backward differentiation.

AB:=a|A=B|AxB|A"|Tr(A)
tu:=z| (Qu| Azt (tu)|t|udv]|0.

Two typed differential transformations
When I' ¢ : 1A — B and writing Dt = (¢*.2) we have:

Tk Dt: A= (B = Tr(A1))

Tkt,: Ax Bt = Te(Yh)
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Dialectica is Backpropagation

We reuse the arguments of Brunel, Mazza and Pagani:
Backpropagation is encoded through the contravariance of the
differential arguments, which is typed by a linear dual .

Consider f:R"™ — R™.

B : R" x Rz — R"” x R™
) { (0,2) > (f(a), Duf - 2)

50 {R” x R™" —€ R™ x R™*
. (avx) = (f(a)v (U v (Daf ’ :E))

» As in differential A-calculus, the use of two separate differential
transformation allows to go higher-order.
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Dialectica is Backpropagation

We reuse the arguments of Brunel, Mazza and Pagani:
Backpropagation is encoded through the contravariance of the
differential arguments, which is typed by a linear dual .

Consider f: R"™ — R™.

B : R" x R"z — R™ x R™
) { (a.2) > (£(a), Duf -2)

Consider f: E — F.

ExF — FxFE
5(f)'{ (a,0) = (f(a),(vE€ Fr (v-(Dof - x)))

» As in differential A-calculus, the use of two separate differential
transformation allows to go higher-order.
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Lessons from Dialectica

» As in differential A-calculus, the use of two distinct
transformations allows to handle the differentiation of
higher-order functions.

> As in [BMP20], encoding partial substitutions by Linear duals
allow the encoding of backpropagation.

» This gives us a differential translation which can be enriched over
dependant or positive types.

» Hint: call-by-name agrees with backpropagation.

~» towards a finer, internal handling of automatic differentiation as a
reduction strategy.
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Automatic Differentiation
as a choice of reduction strategy

Refining A-calculus with operations from distribution theory.
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Just a glimpse at Differential Linear Logic

A,B:=A® B|1|AS B|L|A® B|0|A x B|T|IA]!A
Exponential rules of DiLLL

FI,7A4,7A il A FT,A
FT.7A T4 Fr,7a 4
FT,!A, FANA E o FT,A
FT,A A Fl1A FT,14
LA

oA L

Aa

0@000000000

~ A particular point of view on differentiation induced by duality
@ Normal functors, power series and A-calculus. Girard, APAL(1988)
@ Differential interaction nets, Ehrhard and Regnier, TCS (2006)

[m]

=
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Exponentials are distributions

[7A4] :=C=([A].R) [14] = c>=([A4],R)’

functions distributions

A typical distribution is the dirac operator:

(B c*(E,R)
z = (¢ = ¢(x))

Exponential rules of DiLLL
FT,f:74,9:7A c FT w FT,0: A d
FT,fg:7A FTI,cstg:7A FIT,0:7A
FT,o: A, FAlA o FT o: A _
FT,A 1A ¢ Fd:la FT, Do()(0): 14 ¢
FMo: A »
FT 0, 1A
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A few operations typed by DILL

The composition of linear functions:

'-f:A—-B AFg:B—C
INAbFgof:A—C

cut

The composition of non-linear functions:
'f:'1A—B b
AF (z+ 0g()) : 1A —|B AbFg:!1B—C
IAFgof=(xmdpq9):!A—C

cut

The Differentiation of non-linear functions:
FAv: A _
THf:lA—B FT,Do()(v): 14 ¢
T.AF Do(f)(v): B cut

Let’s translate this into a term language typed by DILL.
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A few operations typed by DILL

The chain rule is encoded in the interaction of diracs 6, with
differential arguments D,t.

The composition of non-linear functions:
I'Hf:'1A—-B b
AF (z+ 0g(p)) : 1A —|B AbFg:!1B—C
IAFgof=(xmdpq9):!A—C

cut

The Differentiation of non-linear functions:
FAv: A _
THf:lA—B FT,Do()(v): 14 ¢
T.AF Do(f)(v): B cut

Let’s translate this into a term language typed by DILL.
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A few operations typed by DILL
The chain rule is encoded in the interaction of diracs 6, with
differential arguments D,t.
The Chain rule:
TFf:1A—-B >
AF (2 0y) A — B Abg:!B—C FA v A
T,AF god; 1A =C U T Do) () : 1A dt
cu

A, A" F Do(go f)(v) s c

Let’s translate this into a term language typed by DILL.
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A minimal language allowing to express automatic

differentiation
Two class of terms:

wvi=a|tt |uxv | 0|u®v| 1|6, | D.(t) |4
tysi=ut |t-s|wy: N | ot |dot]|Tu

A function Az.t can be match to two kind of arguments: diracs J,, or
differential operators D,,t.

(Az.t)d, — t{u/x]
(Az.t)Dyu — - -

The differentiation \z.t of must be inductively defined on ¢:
(Az.(t)u)Dys = T(H(Ax.t) Dy s)u x Lt (A1) Dyys)))
Differentiating an application (£)u is symmetric in t and u.
Az 18¢)Dys = Az (D, ((Az.t) Dy s))) (Ax.t)(u)))

The abstraction Axz.18; will be composed with another abstraction and

differentiation must take that into account.
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Forward / Backward Differentiation as CBV/CBN

Then the differentiation of (Ay.s) o (Az.t) at a point u = §,, according
to a vector r computes as follows:

(Ax.(M\y.8)d:)) Dyr — T(i(()\x (Ay.8))Dyr)oe x L((Ay.s)(Az.0t) Dyr)))
( (T[Z)) * i(()\y S)(()\x.(st)DuT)))as z is free in s

(()\:c 5t)D T)) by involutivity of the shifts

Az (D:((Az.t) Dyr))) (Az-t)(u)))

Az (D ((Ax.t)Dyr)))) ((tw/x]))as u = du

Dy ((Ax.t)Dyr) if (tw/x] = 8y)

=" (My.s)
— (Ay-s)(
= ((Ay.s)
=7 (\y.s)
The value of t[w/xz] is computed first-hand. Whether we proceed with
the computation of the derivative of the first function ((Az.t)D,r) or
to the derivative of the second ((Ay.s)D,((Az.t)D,r)) depends of the
evaluation strategy.
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Higher-order addition and Higher-order multiplication

Additions are done on the domain, through convolution (ie higher
order addition).

x = fr> oz Py = fz+y))

O * 0y = Oy

Multiplications are done one the codomain, through contractions (ie
higher order multiplication).

frg=2= f(z) g(x)
(Ay.t) - (Az.8) = Ax.(t[z/y]) - (s[z/z])
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Distinguishing Linear and Non-Linear Maps

Nt Mt (1P) |

A)
FN,Az.t: (IP)" % M |
FNzt:Pte: M

FN,det: (1P)" %M
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Interpreting Dialectica in DILL

Dt A] = N[A4] [z] =
[Aat] = A [t] [(t,w)] = ([t], [u])
[0] := 10 {3 := 1(dsy,))
[u® ] = T(Hu] * o) [m>= f] = (da.[f]z)[m]

A translation on top of Dialectica

IfT'F¢: A in the target of Dialectica, then :IL(T") - [¢] : L(A) and if
t = u in the target of Dialectica then [¢t] = [u] in our calculus.

A semantical point of view : if x : C®(E,F) ~ L(IE,F) then
(ds.) >= f = x(f)(de).
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Conclusion

What we have:
» Dialectica is a reverse-mode differential transformation.

» Differential Linear Logic gives a type-system for a higher-order
functional language, in which forward and reverse mode
differentiation identity to reduction strategies.

What we would like to have:
» Higher-Order models.

» A merge between the two : an endo-transformation handling a
rich type theory as well as forward or reverse differential
transformation.

> A lighter use of shifts.
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More on Dialectica

Monadic laws
{t}>=f=ft t>=x.{z})=t
(t>=f)>=g=t>=0\z. f 2>=y)
Monoidal laws
t®u=u®t TR I=t®I=T
teu)@®v=t® (udV)
Distributivity laws
I>=f=0 t>= . 0=0
teu)y>=f=@t>=f)® @Wu>=/f)
t>=Xr.(fz®gx)=({E>=f)® (t>=g)
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