Preliminarie Dialectica
000000 0000000000

Séminaire Cosynus, LIX

Typing Differentiable Programming

Marie Kerjean and Pierre-Marie Pédrot
Inria Rennes, Equipe gallinette

25 février 2020

AAD
00000000000

Differentiable programming

Definition: programming with differential transformations.
7 a theoretical underpinning [of neural networks], even if only

conceptual, would greatly accelerate progress 7.

Y. LeCun, abstract of a talk given at the IAS February 22nd 2019.

Preliminaric Dialectica AaD
000000 0000000000 00000000000

Differentiable programming

Definition: programming with differential transformations.
7 While a theoretical underpinning [of neural networks], even if only
conceptual, would greatly accelerate progress , one must be conscious
of the limited practical implications of general theories. ”.

Y. LeCun, abstract of a talk given at the IAS February 22nd 2019.

[Abadi Plotkin POPL20]
[Brunel Mazza Pagani POPL20]
[Elliot ICFP18]

[Wang and al. ICFP 19]

Differentiable programming

Definition: programming with differential transformations.
7 While a theoretical underpinning [of neural networks], even if only
conceptual, would greatly accelerate progress . one must be conscious
of the limited practical implications of general theories. ”.

Y. LeCun, abstract of a talk given at the IAS February 22nd 2019.

”Au coeur de tout langage de programmation il devrait y avoir un
langage fonctionnel pur, de préférence typé , de préférence
garantissant la terminaison”

Xavier Leroy, Conclusion du cours 2018/2019 au Collége de France

Preliminaric Dialectica AAD

000000 0000000000 00000000000

Differentiable programming

Definition: programming with differential transformations.
7 While a theoretical underpinning [of neural networks], even if only
conceptual, would greatly accelerate progress . one must be conscious
of the limited practical implications of general theories. ”.

Y. LeCun, abstract of a talk given at the IAS February 22nd 2019.

”Au coeur de tout langage de programmation il devrait y avoir un
langage fonctionnel pur, de préférence typé, de préférence
garantissant la terminaison”

Xavier Leroy, Conclusion du cours 2018/2019 au Collége de France

Preliminaries
000000

Dialectica

0000000000

AAD
"De préférence typé”

Aap
00000000000

Our work centers on finding a good type system for differentiable
programming, typing a higher order differential transformation.

Lecun VS Logicians

Godel Dialectica Transformation is Differentiable Programming.

Lecun VS Linear Logicians

Differential Linear Logic types a language expressing both forward
and backward differentiation.

Curry-Howard-Lambek

Programs Logic Categories
Term — Proof — Morphisms
AzA B B f:AS B
Type Formulas Objects

Ezecution Cut - elimination Equality

In a future far far away : type theory allows to reason on basic
computer algebra algorithms

Syntactical models (Pédrot)

Programs Logic Dialectica
Term — Proof — Other Proofs
Az tP W ﬁ
Type Formulas

Other Formulas
FExecution Cut - elimination

Equivalence

In a future far far away : type theory allows to reason on basic
computer algebra algorithms

Smooth models (K.)

Programs Logic Analysis
Term — Proof s Smooth maps
Az P I3 fiA—>B
Type Formulas Spaces

Ezecution Cut - elimination Equality

In a future far far away : type theory allows to reason on basic
computer algebra algorithms

Preliminaries Dialectica
®00000 0000000000

Preliminaries

» Automatic Differentiation.

» Linear Logic.

» Differential \-calculus.

AAD
00000000000

Preliminaries
0O@0000

Automatic Differentiation

How does one compute the differentiation of an algebraic expression,
computed as a sequence of elementary operations ?

T =3 x) = 2x01)
xe = cos(xg) ah = —x{sin(xo)

2=y~ x 2 =y + 2xqa}

E.g. : 2 =y+ cos(z)?

The computation of the final results requires the computation of the
derivative of all partial computation. But in which order ?

Forward Mode differentiation: (zq,z}) — (z2,25) — (z,72/).
Reverse Mode differentiation: z1 — o — 2z — 2’ — o}, —

Preliminaries
00@000

AD from a higher-order functional point of view

Dyu(fog)(v) = Dyeuy f(Duf(v))
Dy(fog) = Dy f o Du(f)

» Forward Mode differentiation:

9(u) = Dug = f(9(w)) = Dy(u)f — Dy(u)f o Du(f).
> Reverse Mode differentiation:

g(u) = f(g(w)) = Dycuyf = Dug — Dyeuyf © Du(f)

The choice of an algorithm is due to complexity considerations:
» Forward mode for f: R — R™.
» Reverse mode for f: R” — R

Preliminaries
000e00

Dialectica

0000000000

Ag
Linear logic

Usual Implication
A call-by-name translation

A=B=1A4 B
C®(A, B) ~ L(1A, B)

A proof is linear when it uses only once its hypothesis A

Preliminaries
000e00

Dialectica

0000000000

Ag
Linear logic

Usual implication

A call-by-name translation

Linear Implication
A = B =

1A —o B
C>*(A,B) ~ L(!A,B)

A proof is linear when it uses only once its hypothesis A.

Preliminaries
000e00

Dialectica

0000000000

A
Linear logic

Usual implication
A call-by-name translation

Linear implication
A=B=!A —B

C>=(A, B)

9

L(A, B)

Exponential

Smooth Semantics
A proof is linear when it uses only once its hypothesis A.

Preliminaries Dialectica AAD
000000

Differential A-calculus [Ehrhard Regnier. 2004}

Inspired by denotational models of Linear Logic in vector spaces of
sequences, it introduces a differentiation of A-terms.

D(\z.t) is the linearization of Ax.t, it substitute x linearly, and then
it remains a term t' where x is free.

Syntax:

A ST UV 2=0]s|s+T
A* s tu, v n=x | Ax.s | sT | Ds-t

Operational Semantics:

(Az.s)T —p s[T/x]

D(\z.s) -t —p, \x.22 -t

z) T

where % -t is the linear substitution of x by ¢ in s.

Preliminaries
O0000e

The linear substitution ...

.. which is not exactly a substitution

ay Tifx=y a0

or {Ootherwise 37:5.T_0

0 Os 0 0Os ou
= (w.s) T = - T = .T .T
8m()\ys) T /\ya -T 8x<8+U) 3 + 3

Differentiating composition:

If x is linear in wu, it is not linear in su

Preliminaries
O0000e

The linear substitution ...

.. which is not exactly a substitution

oy . ,Tifz=y a0
%'T_{Ootherwise %'T_O

0 s 0 s ou
=) T = My == . el T =22 =T
—Ow.s) T =Moo T (s +U) - T= 22 T+

Differentiating composition:

But x can be free in v. In that case, we do what we would have done
in differential geometry :

Preliminaries
O0000e

The linear substitution ...
.. which is not exactly a substitution

8y Tife=y a0
or =1 0 otherwise o =0
0 85 0 Os

Differentiating composition:

0 0Os ou
%(su)-vz(a—x-T)u—i—(Ds (%v

Remember : We reverse the notations.

229, — g (S2(w)

Ju)

Preliminaries Diale
O0000e g

The linear substitution ...

.. which is not exactly a substitution

8y Tifx=y a0
or =1 0 otherwise ox r=0
0 s 0 ds ou
—(Ay.s)- T = T — - T'=—-T -T
o) T =gy r T O T =g T
Differentiating composition:
Linear application
0 0s ~= ou
%(su) v (% -Tu+ (Ds- (% ‘) u)

Linear subsitution

Dialectica : Godel doing Deep Learning

«O>» «Fr «E>»

4

i
v

Dialectica
O@00000000

A Dialectica Transformation

Godel Dialectica transformation [1958] : a translation from
intuitionistic arithmetic to primitive recursive arithmetic.

A~ Fu: W(A), Vo : C(A), AP[u, z]

DePaiva [1991]: the linearized Dialectica translation operates on
Linear Logic (types) and A-calculus (terms).

Preliminaric Dialectica AAD
000000 O@00000000 00000000000

A Dialectica Transformation

Godel Dialectica transformation [1958] : a translation from
intuitionistic arithmetic to primitive recursive arithmetic.

A~ Fu: W(A), Vo : C(A), AP[u, z]

DePaiva [1991]: the linearized Dialectica translation operates on
Linear Logic (types) and A-calculus (terms).

[Pedrot, CLS-LICS2014]

A linearized Dialectica translation preserving S-equivalence, via the
introduction of an ”abstract multiset constructor” on types on the
target.

Preliminaries Dialectica AAD
000000 O@00000000 00000000000

A Dialectica Transformation

Godel Dialectica transformation [1958] : a translation from
intuitionistic arithmetic to primitive recursive arithmetic.

A~ Fu: W(A), Vo : C(A), AP[u, z]

DePaiva [1991]: the linearized Dialectica translation operates on
Linear Logic (types) and A-calculus (terms).

[Pedrot, CLS-LICS2014]

A linearized Dialectica translation preserving S-equivalence, via the
introduction of an ”abstract multiset constructor” on types on the
target.

~~ Dialectica as a program translation ... whose abstract multiset is
not smooth enough

Dialectica
00@0000000

Pédrot Dialectica Transformation

At the source : A-calculus typed with minimal logic.
At the target : A-calculus with pairs and an 9 operation.

cw) = o

Cla = «

W(A=B) := (&(A) = W(B)) x (W(A) = C(B) = MC(4))
C(A=B) := W(A) xC(B)

Ty = Ar. {7} x® = =z

Ty = g ifx#y Ax.t)* = (Az.t* dam.ty 7)
(Az.t)y, = Am (Ax.ty) m1m2 (t u)® = (t*.1) u®

(tw)y = Am. (ty, (u®, 1)) ® ((t*.2) u® T >>=1u,)

Preliminaries
000000

Dialectica

00@0000000

Aap
00000000000

Pédrot Dialectica Transformation

At the source : A-calculus typed with minimal logic.
At the target : A-calculus with pairs and an 9t operation.

Soundness [Ped14]
If ' Ft: A in the source then we have in the target
> W(T) k¢t : W(A)

> W) k¢, : C(A) = MC(X) provided z : X €T.

Dialectica
000@000000

Tracking differentiation in Dialectica

Fle:imA FFQOtA

'-o:MmA Fle@)mg:DﬁA
Ft¢t: A FkEm:9MA 'cf:A=MB
PH{t}:MA F'Em>=f:9MB
T = Ar.{r} x°® = =z
Ty = Mg ifzx#y Az.t)* = (Az.t*, Azm.ty m)
Az.t)y = Ir.(Az.ty) w172 (t w)® = (t*.1) u®

(tu)y :=Am. (ty (u®,m)) ® ((¢°.2) u® T >=uy)

Preliminaric Dialectica AAD
000000 000@000000 00000000000

Tracking differentiation in Dialectica

Thm :MA Thmy:9MA

T'Fo:MA 'Emy®mg: MA
'Ft: A 'Fm:9MMA 'Ff:A=9MB
FE{t}:MA F'Fm>=f:9MB

Differential A-calculus

T = Ar.{n} x*® =
Ty = Mg ifz#y Az.t)* = (Az.t* dam.ty ™)
Az.t)y = AIm.(Az.ty) w172 (t uw)® = (t*.1)u®

(t w)y == Am. (ty (u®,m)) ® ((t*.2) u® 7™ >=1u,y)

Dialectica
000@000000

Tracking differentiation in Dialectica

I'tmi:MA Tkmy:IMA

'o:MA T'tEmi®me:IMA
'Ft: A 'kEm:MA 'kf:A=MB
FE{t}:MmA F'Em>=f:9MB

Differential A-calculus

T = AT, % s z* = T
Ty = AT ‘d)—; O Az.t)* = (Ax.t*, Aaw.ty ™)
Az.t)y = AIr.(Az.ty) 7172 (t u)® = (t*.1) u®

(tu)y = Am. (ty (u®,m)) ® ((t°.2) u® T >=1uy)

Preliminaries Dialectica AAD
000000 000e000000 00000000000

Tracking differentiation in Dialectica

Thm :MA Thmy:MA

F-2:MA F'Fmi@®mg:MA
'kt A FkEm:9MA 'f:A=MB
FE{t}:MA F'Fm>=f:MB

Differential A-calculus

T = Ar. 82 . z® =z
xy = 7. g—t moifx#y Az.t)* = (Az.t*,) Axm.ty m)
Az.t)y = Ir.(Az.ty) 7172 (t u)® = (Az. (tz)®) u®

(tu)y = Am. (ty (u®,m)) ® ((t°.2) u® T >=1uy)
Backpropagation

u]
8]
I
i
it

Preliminaries Dialectica AaD
000000 0000@00000 00000000000

Differential A-calculus in a hurry

D(\z.s) -t =5, A\x.98

() T

Oy Tifz=y Kl Os ou

o =1 0 otherwise ag;(SU)'T_(F T)U + (Ds - (87 U

1o} Os o Os ou
—y.s) T=My.—-T —(Ds-u)-T=D(—"-T)- Ds-(— T
() T=dy oo T L (Dseu) T=D(o T) u+Ds- (507
00 1o} 0s ou

— 1= — T'=— T+ — T

oz 8x(S+U) oz +3m

Preliminaric Dialectica AAD
000000 0000080000 00000000000

Dialectica is Differentiation

The linearized Dialectica Translation weakens to a transformation
from A-calculus to Differential A-calculus.

Differential calculus is typed with minimal logic and does not
distinguish a specific types on which the formal sum * applies :

[mMA] =A
[0] :=0 [t ® u] := [t] + [u] [{t}] := [t]-

Proposition

Consider two A-terms ¢t and u. Then [t,]u = % -y and

((Az.t)*.2))u = Dt - u.

Preliminaries Dialectica AaD
000000 000000e000 00000000000

Dialectica enriched with real functions

We now enrich both our source and target A-calculi with a type of
reals R. We assume furthermore that the source contains functions
symbols ¢, 1, ... : R — R with derivative ¢, 4/,

W(R) :=R CR):=1
0% = (g, dam {() = ¢ (@)}) @=AIr.2
The soundness theorem is then adapted trivially.

Soundness Theorem
The following equation holds in the target.

(pro...opn)®2a () ={()— (pro...00n) ()}

Dialectica
0000000 e00

Dialectica is Backpropagation

When one distinguishes a specific types for the codomain of functions, on
which the sums operate, we observe a cut-elimination mimicking the
dynamic of backward differentiation.

A B:=a|A=B|AxB|A"|Tr(A)
tu:=x| Qu |zt (tu)|t|ludv]|0.

Types at the source : Minimal Logic and a type of Traces).
'Ht: A Ikt:Tr(A) DEw:Tr(A)

T {t}: Tr(A) THt®u: Tr(A)

T'kt:Tr(A) I'kf:A= Tr(B)

LH0:Tr(A) I'Ft>=u:Tr(B)

Dialectica
0000000 e00

Dialectica is Backpropagation

When one distinguishes a specific types for the codomain of functions, on
which the sums operate, we observe a cut-elimination mimicking the
dynamic of backward differentiation.

AB:=a|A=B|AxB| A" |Tr(A)
tu:=z| (Qu| Azt (tu)|t|udv]|0.

Two mutually inductively defined translations :

Ze = Am. {7} x® =
Ty = g ifz#y Az.t)* = Azt \am. ity
Az.t)y = Am. (Az.ty) 7.1 7.2 (t w)® = (t*1)u

(t u)y = Am. (ty (u®,m)) ® ((£°.2) u® 7 >=1wuy)

)

Dialectica
0000000 e00

Dialectica is Backpropagation

When one distinguishes a specific types for the codomain of functions, on
which the sums operate, we observe a cut-elimination mimicking the
dynamic of backward differentiation.

AB:=a|A=B|AxB| A" |Tr(A)
tu:=z| (Qu| Azt (tu)|t|udv]|0.

Two mutually inductively defined translations :

Ze = Am. {7} x® =
Ty = g ifz#y Az.t)* = (Az.t*, D(A\x.t))
Az.t)y = Am. (Az.ty) 7.1 7.2 (t w)® = (t*1)u

(t u)y :=Am. (ty (u®,m)) ® ((Dt) u® 7 >>=uy)

Preliminaries Dialectica AaD
000000 0000000 e00 00000000000

Dialectica is Backpropagation

When one distinguishes a specific types for the codomain of functions, on
which the sums operate, we observe a cut-elimination mimicking the
dynamic of backward differentiation.

AB:=a|A=B|AxB|A"|Tr(A)
tu:=z| (Qu| Azt (tu)|t|udv]|0.

Two typed differential transformations
When I' ¢ : 1A — B and writing Dt = (¢*.2) we have:

Tk Dt: A= (B = Tr(A1))

Tkt,: Ax Bt = Te(Yh)

Dialectica
0000000080

Dialectica is Backpropagation

We reuse the arguments of Brunel, Mazza and Pagani:
Backpropagation is encoded through the contravariance of the
differential arguments, which is typed by a linear dual .

Consider f:R"™ — R™.

B : R" x Rz — R"” x R™
) { (0,2) > (f(a), Duf - 2)

50 {R” x R™" —€ R™ x R™*
. (avx) = (f(a)v (U v (Daf ’ :E))

» As in differential A-calculus, the use of two separate differential
transformation allows to go higher-order.

Dialectica
0000000080

Dialectica is Backpropagation

We reuse the arguments of Brunel, Mazza and Pagani:
Backpropagation is encoded through the contravariance of the
differential arguments, which is typed by a linear dual .

Consider f: R"™ — R™.

B : R" x R"z — R™ x R™
) { (a.2) > (£(a), Duf -2)

Consider f: E — F.

ExF — FxFE
5(f)'{ (a,0) = (f(a),(vE€ Fr (v-(Dof - x)))

» As in differential A-calculus, the use of two separate differential
transformation allows to go higher-order.

Dialectica
000000000 e

Lessons from Dialectica

» As in differential A-calculus, the use of two distinct
transformations allows to handle the differentiation of
higher-order functions.

> As in [BMP20], encoding partial substitutions by Linear duals
allow the encoding of backpropagation.

» This gives us a differential translation which can be enriched over
dependant or positive types.

» Hint: call-by-name agrees with backpropagation.

~» towards a finer, internal handling of automatic differentiation as a
reduction strategy.

Preliminaries
000000

Dialectica

0000000000

Aa

00000000000

Automatic Differentiation
as a choice of reduction strategy

Refining A-calculus with operations from distribution theory.

Preliminaries
000000

Dialectica

0000000000

Just a glimpse at Differential Linear Logic

A,B:=A® B|1|AS B|L|A® B|0|A x B|T|IA]!A
Exponential rules of DiLLL

FI,7A4,7A il A FT,A
FT.7A T4 Fr,7a 4
FT,!A, FANA E o FT,A
FT,A A Fl1A FT,14
LA

oA L

Aa

0@000000000

~ A particular point of view on differentiation induced by duality
@ Normal functors, power series and A-calculus. Girard, APAL(1988)
@ Differential interaction nets, Ehrhard and Regnier, TCS (2006)

[m]

=

Preliminaries Dialectica AAD
000000 0000000000 00e00000000

Exponentials are distributions

[7A4] :=C=([A].R) [14] = c>=([A4],R)’

functions distributions

A typical distribution is the dirac operator:

(B c*(E,R)
z = (¢ = ¢(x))

Exponential rules of DiLLL
FT,f:74,9:7A c FT w FT,0: A d
FT,fg:7A FTI,cstg:7A FIT,0:7A
FT,o: A, FAlA o FT o: A _
FT,A 1A ¢ Fd:la FT, Do()(0): 14 ¢
FMo: A »
FT 0, 1A

AaD
00000000000

A few operations typed by DILL

The composition of linear functions:

'-f:A—-B AFg:B—C
INAbFgof:A—C

cut

The composition of non-linear functions:
'f:'1A—B b
AF (z+ 0g()) : 1A —|B AbFg:!1B—C
IAFgof=(xmdpq9):!A—C

cut

The Differentiation of non-linear functions:
FAv: A _
THf:lA—B FT,Do()(v): 14 ¢
T.AF Do(f)(v): B cut

Let’s translate this into a term language typed by DILL.

AaD
00000000000

A few operations typed by DILL

The chain rule is encoded in the interaction of diracs 6, with
differential arguments D,t.

The composition of non-linear functions:
I'Hf:'1A—-B b
AF (z+ 0g(p)) : 1A —|B AbFg:!1B—C
IAFgof=(xmdpq9):!A—C

cut

The Differentiation of non-linear functions:
FAv: A _
THf:lA—B FT,Do()(v): 14 ¢
T.AF Do(f)(v): B cut

Let’s translate this into a term language typed by DILL.

AAD
00000000000
A few operations typed by DILL
The chain rule is encoded in the interaction of diracs 6, with
differential arguments D,t.
The Chain rule:
TFf:1A—-B >
AF (2 0y) A — B Abg:!B—C FA v A
T,AF god; 1A =C U T Do) () : 1A dt
cu

A, A" F Do(go f)(v) s c

Let’s translate this into a term language typed by DILL.

Preliminaric Dialectica AAD
000000 0000000000 0000e000000

A minimal language allowing to express automatic

differentiation
Two class of terms:

wvi=a|tt |uxv | 0|u®v| 1|6, | D.(t) |4
tysi=ut |t-s|wy: N | ot |dot]|Tu

A function Az.t can be match to two kind of arguments: diracs J,, or
differential operators D,,t.

(Az.t)d, — t{u/x]
(Az.t)Dyu — - -

The differentiation \z.t of must be inductively defined on ¢:
(Az.(t)u)Dys = T(H(Ax.t) Dy s)u x Lt (A1) Dyys)))
Differentiating an application (£)u is symmetric in t and u.
Az 18¢)Dys = Az (D, ((Az.t) Dy s))) (Ax.t)(u)))

The abstraction Axz.18; will be composed with another abstraction and

differentiation must take that into account.

AaD
00000@00000

Forward / Backward Differentiation as CBV/CBN

Then the differentiation of (Ay.s) o (Az.t) at a point u = §,, according
to a vector r computes as follows:

(Ax.(M\y.8)d:)) Dyr — T(i(()\x (Ay.8))Dyr)oe x L((Ay.s)(Az.0t) Dyr)))
((T[Z)) * i(()\y S)(()\x.(st)DuT)))as z is free in s

(()\:c 5t)D T)) by involutivity of the shifts

Az (D:((Az.t) Dyr))) (Az-t)(u)))

Az (D ((Ax.t)Dyr)))) ((tw/x]))as u = du

Dy ((Ax.t)Dyr) if (tw/x] = 8y)

=" (My.s)
— (Ay-s)(
= ((Ay.s)
=7 (\y.s)
The value of t[w/xz] is computed first-hand. Whether we proceed with
the computation of the derivative of the first function ((Az.t)D,r) or
to the derivative of the second ((Ay.s)D,((Az.t)D,r)) depends of the
evaluation strategy.

Preliminaric Dialectica AAD
000000 0000000000 00000080000

Higher-order addition and Higher-order multiplication

Additions are done on the domain, through convolution (ie higher
order addition).

x = fr> oz Py = fz+y))

O * 0y = Oy

Multiplications are done one the codomain, through contractions (ie
higher order multiplication).

frg=2= f(z) g(x)
(Ay.t) - (Az.8) = Ax.(t[z/y]) - (s[z/z])

Preliminaries
000000

Dialectica

0000000000

A

0000000e000

Distinguishing Linear and Non-Linear Maps

Nt Mt (1P) |

A)
FN,Az.t: (IP)" % M |
FNzt:Pte: M

FN,det: (1P)" %M

Preliminaries Dialectica Aap
000000 0000000000 00000000800

Interpreting Dialectica in DILL

Dt A] = N[A4] [z] =
[Aat] = A [t] [(t,w)] = ([t], [u])
[0] := 10 {3 := 1(dsy,))
[u®] = T(Hu] * o) [m>= f] = (da.[f]z)[m]

A translation on top of Dialectica

IfT'F¢: A in the target of Dialectica, then :IL(T") - [¢] : L(A) and if
t = u in the target of Dialectica then [¢t] = [u] in our calculus.

A semantical point of view : if x : C®(E,F) ~ L(IE,F) then
(ds.) >= f = x(f)(de).

AaD
00000000080

Conclusion

What we have:
» Dialectica is a reverse-mode differential transformation.

» Differential Linear Logic gives a type-system for a higher-order
functional language, in which forward and reverse mode
differentiation identity to reduction strategies.

What we would like to have:
» Higher-Order models.

» A merge between the two : an endo-transformation handling a
rich type theory as well as forward or reverse differential
transformation.

> A lighter use of shifts.

AaD
0000000000 e

More on Dialectica

Monadic laws
{t}>=f=ft t>=x.{z})=t
(t>=f)>=g=t>=0\z. f 2>=y)
Monoidal laws
t®u=u®t TR I=t®I=T
teu)@®v=t® (udV)
Distributivity laws
I>=f=0 t>= . 0=0
teu)y>=f=@t>=f)® @Wu>=/f)
t>=Xr.(fz®gx)=({E>=f)® (t>=g)

	Preliminaries
	Dialectica
	AD

