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Differentiating Programs - Differentiating
Functions

» Differentiation in Theoretical Computer Science : Automatic
Differentiation, Incremental Computing, Differential Linear
Logic... [Discrete]

» Differentiation in Mathematics : Differential Geometry,
Numerical Analysis, Functional analysis ... [continuous]

Is differentiation in Logic the same as Differentiation in Functional
Analysis 7

» [K18] : Models of Differential Linear Logic with Distributions
and Differential Equations, without Higher-Order. C*°(R", R)
» Today : going to Higher Order. C*(E,R) ?

From models for physics to models for computing.
=
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Curry-Howard-Lambek

The syntax mirrors the semantics.

Programs Logic Semantics

fun (x:A)-> (£:B) Proofof AFB f:A— B.
Types Formulas Objects
Execution Cut-elimination Equality

Coherence spaces [Girard87]
Linear maps f : A— B
Non-linear maps f : |A — B
Linear Logic [Gir87]
Linear proofs f : AF- B [!A—oB:A:B]
Non-linear proofs f : lAF B
Vectorial Models [Ehrhard02/05]
Power series f =) f,
Differentiation Dy : f — f
[ Differential Linear Logic [Ehrhard&Regnier06] J
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A proof is linear when it uses only once its hypothesis A.



Linear logic

A linear implication

A=B=1A B
C®(A, B) ~ L(1A, B)

A focus on linearity
» Higher-Order is about Seely’s isomoprhism.

C*(Ax B,C)~C>(A,C*(B,C))
L(I(Ax B),C)~ L(1A, L(!B, C))
(A x B)~ IA®!B

» Classicality is about a linear involutive negation :
A=A — L A= L(AR)
At ~ A A~ A




Just a glimpse at Differential Linear Logic

Differential Linear Logic

E;AI—Bd f: 1A B -
(1A B Do(f): AE B
A linear proof is in particular From a non-linear proof we can
non-linear. extract a linear proof
f eC®(R,R)
d(f)(0

ﬁ Normal functors, power series and \-calculus. Girard, APAL(1988)



Getting a smooth model of classical Differential Linear
Logic ?

Smoothness
Spaces : E is a locally convex and Haussdorf topological vector

space.
Functions: f € C>°(R",R) is infinitely and everywhere differentiable.

These two requirements work as opposite forces.
v Handling smooth functions : some completeness.

v Interpreting the involutive linear negation (E+)t ~ E: Reflexive
spaces.
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8 Convenient differential category Blute, Ehrhard Tasson Cah. Geom. Diff.
(2010)

@ Mackey-complete spaces and Power series, K. and Tasson, MSCS 2016.



Getting a smooth model of classical Differential Linear
Logic ?

Smoothness
Spaces : E is a locally convex and Haussdorf topological vector

space.
Functions: f € C*(R",R) is infinitely and everywhere differentiable.

These two requirements work as opposite forces.
x Handling smooth functions : some completeness.

v Interpreting the involutive linear negation (E+)t ~ E: Reflexive
spaces.

@ Weak topologies for Linear Logic, K. LMCS 2015.



Getting a smooth model of classical Differential Linear
Logic 7

Smoothness

Spaces : E is a locally convex and Haussdorf topological vector
space.

Functions: f € C>°(R",R) is infinitely and everywhere differentiable.

These two requirements work as opposite forces.
v Handling smooth functions : some completeness.
v Interpreting the involutive linear negation (E+)* ~ E: Reflexive
spaces.

@ A model of LL with Schwartz’ epsilon product, Dabrowski and K., 2018.

@ A logical account for PDEs, K., LICS18 [A polarized solution, no
higher-order]

@ Higher-Order Distributions, Lemay and K., Fossacs19
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Exponential : from ressources to distributions

» Linear Logic has long been interpreted in terms of discrete
models and resource consumption.
quantitative semantics: A =5 A"
» In a classical and Smooth model of Differential Linear Logic, the
exponential is a space of Distributions.
IA— |l =A= L
L('E,R) ~C>®(E,R)
(1E)" ~ C=(E,R)
|E ~ C>*(E,R)
» The space of distributions with compact support
E'(R™) := C>*(R",R)’, whose elements are for example :

or g € C(R"R) — /fg.

Ox - & — g(x)




Exponential : from ressources to distributions

» Linear Logic has long been interpreted in terms of discrete
models and resource consumption.

quantitative semantics: A =5 A%

» In a classical and Smooth model of Differential Linear Logic, the
exponential is a space of Distributions.
IA—o 1l =A= 1
L('E,R) ~C>=(E,R)
(1E)" ~ C=(E,R)
|E ~ C>*(E,R)

» LL and Distribution Theory enjoy the same computing principle
same computing principles : Seely’s isomorphisms are Kernel
theorems.

IA® 1B ~ (Ax B) C®(E,RY&C>®(F,R) ~C=(E x F,R) .



Which category of tvs should interpret formulas ?

Reflexive spaces enjoy poor stability properties.
> It is typically not preserved by ®.
» Nor by £(_, ).

Reflexivity takes many forms :
> It depends of the topology Ej, E[, E,,, E| on the dual.

» The dual is not reflexive : one cannot close by bidual as with
biorthogonals.

Monoidal closedness does not extends easily to the
topological case :

» Many possible topologies on ®: ®g, @, @..

> Li(E®pF,G)~Ls(E,Ls(F,G))
< " Grothendieck probléme des topologies”.



Topological models of DiLL

[Ehr02] [Ehr05] [DE0S]

countable bases C>®(R",R) is not finite dimensional

Nuclear
Fréchet
Nuclear
Reflexive

Nuclear
Quasicomplete
Quasibarreled

of vector spaces

.
Reflexive anc complete :

_ e.g. C*(R",R)
=D
\w

Nuclear Reflexive
Quasicomplete Bornological

Reflexive Quasicomplete Complete Metrizable
Bornological

Quasi Sequentially complete
Quasibarreled Bornological

Coherent Banach spaces [GirardS
a norm is too restrictive



Polarized model of Smooth differential Linear

Logic [K.18]
Typical Nuclear Fréchet spaces are spaces of [smooth, holomorphic,
rapidly decreasing ...] functions.

Nuclear spaces
® ~

E == ™

L)

/

IR" = c>(R",R) () C>(R", R)

What about C*(IR",R) or !IR" ?



Constructing some notion of smoothness which leaves stable
the class of reflexive topological vector space.

We tackle this issue through the space of distribution

Consider E a topological vector space.
» Define an order on linear injections f : R” < E by
F<g=ad:R"—R" f=gou
» Define the action of a distribution on E with respect to these
linear injections:

E(E):= lim EHR")

f:RP—E
directed under the inclusion maps defined as
Ste i EgR") = EL(R™), ¢ = (h—= d(ho tnm))

This is similar to work on C*-algebras [KainKrieglMichor87], which
we need to refine to obtain reflexivitv.




A good inductive limit

Because the distributions spaces with which we build the inductive
limit are extremenly regular, we have

> E'(E) is always reflexive.
~ weakly quasi-complete : E = E” algebraically.
~ barrelled E ~ E” topologically.

» E'(E) is the dual of a projective limit of spaces of functions :

E(E) = lm &(R")

f:R"—E

¢ € E'(E) acts on f = (ff)rroE.
where fr € C(R",R).

The Kernel Theorem lifts to Higher-Order :

A

E(E)RE(F)~E(EDF)




Reflexivity is enough for the structural morphisms

Because we worked with reflexive spaces at the beginning, we can
built natural transformations :

(E) - E"~E
0" o
o ¢ = (L_€E = ol(tof)rme € E(E)))
E—R ?Rr

E—E~(EE)
de 0 { x = ((F)rmnrr) — Dofe(F71(x))
where f is injective such that x € Im(f) .

And interpretations for (co)-weakening and (co)-contraction follow
from the Kernel Theorem.
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We have obtain polarized model of Differential Linear Logic :

.. without promotion



We don’t have a Cartesian Closed Category

This definition gives us functoriality only on isomorphisms :
REFL;, — REFL;,

E— &'(E)
(:E—Fws10e&(F)

where

¥4 = fiRMSE )-
(10)(#)(8) ¢((g§:§) )

No category with smooth functions as maps.

We have however a good candidate to make a co-monad of our
functor.

J!E — IE
U { o ((gg)g c E(IE) ~ IimCS"(R’")\ — o, (g )



Conclusion
What we have : A Higher-Order exponential extending the
notion of distributions, which interpret classical Differential Linear
Logic without promotion.
/ L - / n
E'(E): f;HLITrEng(R )
Perspectives :
» Linearity / Non-linearity , Solution /Parameter, Positive /
Negative :
~» give a categorical structure to the several interactions at
stakes.
» Lifting this exponential to a co-monad:
~> finer handling of indexations.
» Constructing exponentials via methods from Numerical Analysis :
~ IE =< 0,,x € E>[BET12]
~~ Cut-elimination through Numerical Schemes.



Computing in Higher-Dimension - Computing
Solutions

» If we wanted only smoothness and no reflexivty, we could have
used :

lE =< d,x€ E >
By Frolicher and Kriegl, as used by Blute, Ehrhard and Tasson.
That's a discretisation scheme.

» In [K18] we showed that cut-elimination is the resolution of
certain class of differential equations for which we have an
explicit one-step resolution .

~ generalize to partial differential equations with no explicit
solution.

Let's embed numerical schemes into cut-elimination.



