Call-by-Value, Again!

A. Kerinec, G. Manzonetto and S. Ronchi Della Rocca

LIPN, Université Sorbonne Paris-Nord, France LIPN, Université Sorbonne Paris-Nord, France Dipartimento di Informatica, Università di Torino, Italy

Programming Language Theory

λ -calculus

```
terms: \Lambda: M, N ::= x \mid \lambda x.M \mid (MN)
\beta-reduction: (\lambda x.M)N \mapsto_{\beta} M\{N/x\}
```

Approximation Theory

Böhm Trees

Approximants

$$A, A_i ::= \bot \mid \lambda \vec{x}.y A_1 \cdots A_n$$

Approximants of a λ-term M
 A(M) = {A | M→* N, A ⊑ | N}

$$\mathcal{BT}(Yx) \text{ with } Yx =_{\beta} x(\lambda z. Yxz)$$

$$x \qquad \qquad \lambda z.$$

$$x \qquad \qquad \lambda z.$$

$$\lambda z.$$

$$\lambda z.$$

$$\lambda z.$$

Denotational Models

- Filter Models
- ≃ Intersection type systems

$$\alpha,\beta ::= a \mid \alpha \land \beta \mid \alpha \to \beta$$

• Interpretation of a λ -term M

$$[\![M]\!] = \{\alpha \mid \exists \Gamma, \Gamma \vdash M : \alpha\}$$

Approximation Theorem

Operational Properties of Programs

A term M is:

- Normalizing: if $M \to_{\beta}^* V$ for some V in NF.
- Head normalizing: if $M \to_{\beta}^* \lambda x_1 \dots x_n . x M_1 \dots M_I$.
- Looping: if M is not head-normalizing.

Exemple :
$$\omega_3 = \lambda x.xxx$$

 $\Omega_3 = \omega_3 \omega_3 \rightarrow_{\beta} \Omega_3 \omega_3 \rightarrow_{\beta} \Omega_3 \omega_3 \omega_3 \dots$

Solvability:

M is solvable if $\exists x_1, \dots x_n, \exists M_1, \dots, M_k$ such that

$$(\lambda x_1 \dots x_n.M) M_1 \dots M_k \rightarrow_{\beta}^* I$$

(I = the identity, a completely defined result)

Characterizations of Solvability

M is solvable exactly when...

Characterizations

Logical: In a suitable intersection type assignment system

$$\exists \Gamma, \alpha . \Gamma \vdash M : \alpha$$
, with α "proper"

Semantical:

$$\mathcal{BT}(M) \neq \perp$$

Operational :

M is head normalizing

 Λ_{CBV} : Call-by-Value λ -calculus

Call-by-Value λ -calculus

Λ_{CBV} : Call-by-Value λ -calculus

```
\lambda-terms : values : Val : V, U ::= x \mid \lambda x.M
terms : \Lambda : M, N ::= (MN) \mid V
```

$\Lambda_{\rm CRV}$: Call-by-Value λ -calculus

```
values: Val: V, U := x \mid \lambda x.M
\lambda-terms :
            terms: \Lambda: M, N ::= (MN) \mid V
```

 β_{v} -reduction:

$$(\lambda x.M)V \mapsto_{\beta_v} M\{V/x\}$$

Λ_{CBV} : Call-by-Value λ -calculus

```
\lambda-terms : values : Val : V, U ::= x \mid \lambda x.M
terms : \Lambda : M, N ::= (MN) \mid V
```

 β_{v} -reduction:

$$(\lambda x.M)V \mapsto_{\beta_v} M\{V/x\}$$

And σ -rules:

$$(\lambda x.M)NN' \mapsto_{\sigma_1} (\lambda x.MN')N \quad with \ x \notin \text{fv}(N')$$

 $V((\lambda x.M)N) \mapsto_{\sigma_3} (\lambda x.VM)N \quad with \ x \notin \text{fv}(V)$

Approximation Theory

CbV Approximants

 \perp represents an undefined value.

$$\frac{V \in \operatorname{Val}}{\bot \sqsubseteq_\bot V}$$

CbV Approximants

⊥ represents an undefined value.

$$\frac{V \in \operatorname{Val}}{\bot \sqsubseteq_\bot V}$$

Approximants

$$(A) \quad A \quad ::= \quad H \mid R$$

$$\quad H \quad ::= \quad \perp \mid x \mid \lambda x.A \mid xHA_1\cdots A_n$$

$$\quad R \quad ::= \quad (\lambda x.A)(yHA_1\cdots A_n)$$

Approximants of a Term

$$\mathcal{A}(M) = \{ A \in \mathcal{A} \text{ s.t. } \exists N \in \Lambda . M \to_{v}^{*} N \text{ and } A \sqsubseteq_{\perp} N \}$$

$$\mathcal{BT}(M) = | | \mathcal{A}(M)$$

Approximants of a Term

$$\mathcal{A}(M) = \{ A \in \mathcal{A} \text{ s.t. } \exists N \in \Lambda . M \to_{\nu}^{*} N \text{ and } A \sqsubseteq_{\perp} N \}$$

$$\mathcal{BT}(M) = \bigsqcup \mathcal{A}(M)$$

Approximation Theorem:

Let $M \in \Lambda$, $\alpha \in Types$ and Γ be an environment:

$$\Gamma \vdash M : \alpha \iff \exists A \in \mathcal{A}(M) . \Gamma \vdash A : \alpha$$

Relational Model

Observational Equivalence:

$$M =_{op} N \quad \iff \quad \forall \, C : \exists \, V \, . \, \big[\, \, C[M] \, \to^* \, V \, \Leftrightarrow \, \exists \, U, \, C[N] \, \to^* \, U \, \big]$$

Definition:

A model, with an interpretation $[\cdot]$ is:

- adequate if $[[M]] = [[N]] \Rightarrow M =_{op} N$
- fully abstract if $[[M]] = [[N]] \iff M =_{op} N$

Type Assignment System

Countable set $A = \{a, b, c, ...\}$ of atomic types.

(Types)
$$\alpha, \beta$$
 ::= $a \mid [] \mid \sigma \rightarrow \alpha$
(Multi - Types) σ, τ, ρ ::= $[\alpha_1, \dots, \alpha_n]$ with $\alpha_i \neq []$

Inference rules:

$$\frac{x : [\alpha] \vdash x : \alpha}{x : [\alpha] \vdash x : \alpha} \frac{\Gamma, x : \sigma \vdash M : \alpha}{\Gamma \vdash \lambda x . M : \sigma \to \alpha} \frac{\Gamma_0 \vdash M : \sigma \to \alpha \quad \Gamma_1 \vdash N : \sigma}{\Gamma_0 + \Gamma_1 \vdash MN : \alpha}$$

$$\frac{V \in \text{Val}}{\vdash V : []} \frac{\Gamma_1 \vdash M : \alpha_1 \quad \cdots \quad \Gamma_n \vdash M : \alpha_n \quad n > 0}{\sum_{i=1}^n \Gamma_i \vdash M : [\alpha_1, \dots, \alpha_n]}$$

In the abstraction rule: $x \notin dom(\Gamma)$.

Type Assignment System

Countable set $A = \{a, b, c, ...\}$ of atomic types.

(Types)
$$\alpha, \beta$$
 ::= $a \mid [] \mid \sigma \rightarrow \alpha$
(Multi - Types) σ, τ, ρ ::= $[\alpha_1, \dots, \alpha_n]$ with $\alpha_i \neq []$

Inference rules:

$$\frac{x : [\alpha] \vdash x : \alpha}{x : [\alpha] \vdash x : \alpha} \frac{\Gamma, x : \sigma \vdash M : \alpha}{\Gamma \vdash \lambda x. M : \sigma \to \alpha} \frac{\Gamma_0 \vdash M : \sigma \to \alpha \quad \Gamma_1 \vdash N : \sigma}{\Gamma_0 + \Gamma_1 \vdash MN : \alpha}$$

$$\frac{V \in \text{Val}}{\vdash V : []} \frac{\Gamma_1 \vdash M : \alpha_1 \quad \cdots \quad \Gamma_n \vdash M : \alpha_n \quad n > 0}{\sum_{i=1}^n \Gamma_i \vdash M : [\alpha_1, \dots, \alpha_n]}$$

In the abstraction rule: $x \notin dom(\Gamma)$.

Type Assignment System

Countable set $A = \{a, b, c, ...\}$ of atomic types.

(Types)
$$\alpha, \beta$$
 ::= $a \mid [] \mid \sigma \rightarrow \alpha$
(Multi - Types) σ, τ, ρ ::= $[\alpha_1, \dots, \alpha_n]$ with $\alpha_i \neq []$

Inference rules:

$$\frac{x : [\alpha] \vdash x : \alpha}{x : [\alpha] \vdash x : \alpha} \frac{\Gamma, x : \sigma \vdash M : \alpha}{\Gamma \vdash \lambda x. M : \sigma \to \alpha} \frac{\Gamma_0 \vdash M : \sigma \to \alpha \quad \Gamma_1 \vdash N : \sigma}{\Gamma_0 + \Gamma_1 \vdash MN : \alpha}$$

$$\frac{V \in \text{Val}}{\vdash V : []} \frac{\Gamma_1 \vdash M : \alpha_1 \quad \cdots \quad \Gamma_n \vdash M : \alpha_n \quad n > 0}{\sum_{i=1}^n \Gamma_i \vdash M : [\alpha_1, \dots, \alpha_n]}$$

In the abstraction rule: $x \notin dom(\Gamma)$.

Characterizations of Valuability and Potential Valuability

Definition: M is

- valuable if $\exists V$ such that $M \to_{V}^{*} V$
- potentially valuable if $\exists x_1, \dots x_n, \exists M_1, \dots M_l$ such that $(\lambda x_1 \dots x_n. M) M_1 \dots M_l$ is valuable

Theorem:

Let $M \in \Lambda$, then:

- M is valuable $\iff \exists \Gamma, \Gamma \vdash M : [] \iff \bot \in \mathcal{A}(M)$.
- M is potentially valuable $\iff \exists \Gamma, \alpha . \Gamma \vdash M : \alpha \iff A(M) \neq \emptyset$.

More Precise Approximants

Refined Approximants

Subsets $S, U \subseteq A$:

(S)
$$S ::= H' \mid R'$$

 $H' ::= x \mid \lambda x.S \mid xHA_1 \cdots A_n$
 $R' ::= (\lambda x.S)(yHA_1 \cdots A_n)$

$$(\mathcal{U}) \quad U \quad ::= \quad \bot \mid \lambda x. U$$
$$\mid \quad (\lambda x. U)(yHA_1 \cdots A_n)$$

Characterizations of Solvability

Trivial type: $\sigma_1 \to \sigma_2 \to \cdots \to \sigma_n \to []$ with $n \ge 0$. A type not trivial is proper.

Theorem: Characterizations of Solvability

For $M \in \Lambda$, the following are equivalent:

- M is solvable
- $\exists \alpha$ proper, $\exists \Gamma$ such that $\Gamma \vdash M : \alpha$
- $\exists A \text{ such that } A \in \mathcal{A}(M) \cap \mathcal{S}$

Characterizations of Solvability

Trivial type: $\sigma_1 \to \sigma_2 \to \cdots \to \sigma_n \to []$ with $n \ge 0$. A type not trivial is proper.

Theorem: Characterizations of Solvability

For $M \in \Lambda$, the following are equivalent:

- M is solvable
- $\exists \alpha$ proper, $\exists \Gamma$ such that $\Gamma \vdash M : \alpha$
- $\exists A \text{ such that } A \in \mathcal{A}(M) \cap \mathcal{S}$

Corollary : M is unsolvable iff $A(M) \subseteq U$.

Semi-Sensible Model

The type assignment system induces a relational model $\mathcal{M}.$

Corollary:

The model $\mathcal M$ is not sensible, but semi-sensible.

Decidability of the Inhabitation Problem

The inhabitation problem for system ${\mathcal M}$

For every environment Γ and type α is there a λ -term M satisfying $\Gamma \vdash M : \alpha$?

Inhabitation algorithm

Figure: Inhabitation algorithm for system \mathcal{M} . In the last rule $x \notin free\text{-}var(yA_0\cdots A_n)$.

Algorithm Properties

The inhabitation algorithm terminates.

Theorem: Soundness and Completeness

- If $A \in IT(\Gamma; \alpha)$ then, $\forall M \in \Lambda$ such that $A \sqsubseteq_{\perp} M$, we have $\Gamma \vdash M : \alpha$.
- If $\Gamma \vdash M : \alpha$ then $\exists A \in \mathsf{IT}(\Gamma; \alpha)$ such that $A \in \mathcal{A}(M)$.

Conclusion

Future work:

- extend results to other models of the class
- study of categorical construction

Thank you for listening!