Motivation	Problematic and description of the method	Euler's method and error bounds	Systems with bounded uncertainty	Van der Pol example	Conclusic

Generation of bounded invariants via stroboscopic set-valued maps

Jawher Jerray¹

Supervised by: Laurent Fribourg² and Étienne André³

¹Université Sorbonne Paris Nord, LIPN, CNRS, UMR 7030, F-93430, Villetaneuse, France and ²Université Paris-Saclay, LSV, CNRS, ENS Paris-Saclay and ³Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France

Friday 11th December, 2020

Motivation	Problematic and description of the method	Euler's method and error bounds	Systems with bounded uncertainty	Van der Pol example	Conclusic

Outline

1 Motivation

- 2 Problematic and description of the method
- 3 Euler's method and error bounds
- 4 Systems with bounded uncertainty
- 5 Van der Pol example
- 6 Conclusion and Perspectives

Motivation	Problematic and description of the method	Euler's method and error bounds	Systems with bounded uncertainty	Van der Pol example	Conclusi
000					

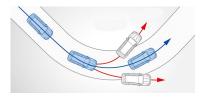
Motivation

- Dynamical systems:
 - in which a function describes the time dependence of a point in a geometrical space.
 - we only know certain observed or calculated states of its past or present state.
 - dynamical systems have a direct impact on human development.
- \Rightarrow The importance of studying:
 - synchronization
 - behavior
 - stability

Motivation	Problematic and description of the method	Euler's method and error bounds	Systems with bounded uncertainty	Van der Pol example	Conclusi
000					

Motivation

- Dynamical systems:
 - in which a function describes the time dependence of a point in a geometrical space.
 - we only know certain observed or calculated states of its past or present state.
 - dynamical systems have a direct impact on human development.
- \Rightarrow The importance of studying:
 - synchronization
 - behavior
 - stability



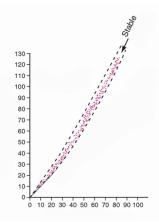
Electronic Stability Control (ESC)

Solar System

Motivation	Problematic and description of the method	Euler's method and error bounds	Systems with bounded uncertainty	Van der Pol example	Conclusic
000					

Stability

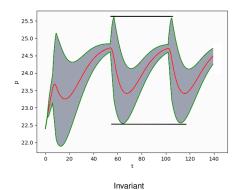
- A dynamical system is stable, if small perturbations to the solution lead to a new solution that stays close to the original solution forever.
- A stable system produces a bounded output for a given bounded input.



Motivation	Problematic and description of the method	Euler's method and error bounds	Systems with bounded uncertainty	Van der Pol example	Conclusic
000					

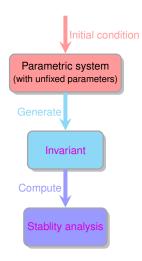
An invariant

- The bounded output of some periodic stable system can be considered as an invariant from certain *t*.
- An invariant is an unchanged object after operations applied to it.



Motivation	Problematic and description of the method	Euler's method and error bounds	Systems with bounded uncertainty	Van der Pol example	Conclusic
	••				

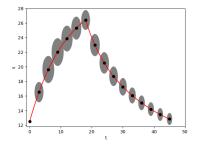
Problematic



Motivation	Problematic and description of the method	Euler's method and error bounds	Systems with bounded uncertainty	Van der Pol example	Conclusio
	00				

Description of the method

Given a differential system $\Sigma : dx/dt = f(x)$ of dimension *n*, an initial point $x_0 \in \mathbb{R}^n$, a real $\varepsilon > 0$, and a ball $B_0 = B(x_0, \varepsilon)^1$

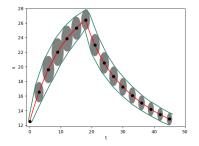


The center of each ball at time *t* is the Euler approximate solution $\tilde{x}(t)$ of the system starting at x_0 , and the radius is a function $\delta_{\varepsilon}(t)$ bounding the distance between $\tilde{x}(t)$ and an exact solution x(t) starting at B_0 .

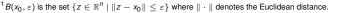
Motivation	Problematic and description of the method	Euler's method and error bounds	Systems with bounded uncertainty	Van der Pol example	Conclusio
	00				

Description of the method

Given a differential system $\Sigma : dx/dt = f(x)$ of dimension *n*, an initial point $x_0 \in \mathbb{R}^n$, a real $\varepsilon > 0$, and a ball $B_0 = B(x_0, \varepsilon)^1$



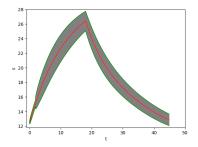
The tube can be described as $\bigcup_{t>0} B(t)$ where $B(t) \equiv B(\tilde{x}(t), \delta_{\varepsilon}(t))$.



Motivation	Problematic and description of the method	Euler's method and error bounds	Systems with bounded uncertainty	Van der Pol example	Conclusic
	00				

Description of the method

Given a differential system $\Sigma : dx/dt = f(x)$ of dimension *n*, an initial point $x_0 \in \mathbb{R}^n$, a real $\varepsilon > 0$, and a ball $B_0 = B(x_0, \varepsilon)^1$



■ To find a *bounded* invariant, we look for a positive real *T* such that $B((i + 1)T) \subseteq B(iT)$ for some $i \in \mathbb{N}$. In case of success, the ball B(iT) is guaranteed to contain the "stroboscopic" sequence $\{B(jT)\}_{j=i,i+1,...}$ of sets B(t) at time t = iT, (i + 1)T, ... and thus constitutes the sought bounded invariant set.

¹ $B(x_0, \varepsilon)$ is the set $\{z \in \mathbb{R}^n \mid ||z - x_0|| \le \varepsilon\}$ where $||\cdot||$ denotes the Euclidean distance.

000 00 0000 000 0	Motivation	Problematic and description of the method	Euler's method and error bounds	Systems with bounded uncertainty	Van der Pol example	Conclusic
	000	00	0000	000	0000	

Euler's method and error bounds

Let us consider the differential system:

$$\frac{dx(t)}{dt} = f(x(t)),$$

with states $x(t) \in \mathbb{R}^n$ and x_0 a given initial condition.

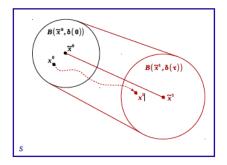
■ $\tilde{x}(t; y_0)$ denotes Euler's approximate value of x(t) (defined by $\tilde{x}(t; y_0) = y_0 + t \times f(y_0)$ for $t \in [0, \tau]$, where τ is the integration time-step).

Motivation	Problematic and description of the method	Euler's method and error bounds	Systems with bounded uncertainty	Van der Pol example	Conclusio
		0000			

Proposition

[LCDVCF17] Consider the solution $x(t; y_0)$ of $\frac{dx}{dt} = f(x)$ with initial condition y_0 and the approximate Euler solution $\tilde{x}(t; x_0)$ with initial condition x_0 . For all $y_0 \in B(x_0, \varepsilon)$, we have:

 $\|x(t; y_0) - \tilde{x}(t; x_0)\| \leq \delta_{\varepsilon}(t).$



[LCDVCF17] A. Le Coënt et al., "Control synthesis of nonlinear sampled switched systems using Euler's method," in SNR, (Apr. 22, 2017), ser. EPTCS, vol. 247, Uppsala, Sweden, 2017, pp. 18–33. DOI:

Jawher Jerray (LIPN)

Generation of bounded invariants via stroboscopic set-valued maps

Motivation	Problematic and description of the method	Euler's method and error bounds	Systems with bounded uncertainty	Van der Pol example	Conclusic
		0000			

Definition

 $\delta_{\varepsilon}(t)$ is defined as follows for $t \in [0, \tau]$: if $\lambda < 0$:

$$\delta_{\varepsilon}(t) = \left(\varepsilon^{2} e^{\lambda t} + \frac{C^{2}}{\lambda^{2}} \left(t^{2} + \frac{2t}{\lambda} + \frac{2}{\lambda^{2}} \left(1 - e^{\lambda t}\right)\right)\right)^{\frac{1}{2}}$$

if $\lambda = 0$:

$$\delta_{\varepsilon}(t) = \left(\varepsilon^2 e^t + C^2(-t^2 - 2t + 2(e^t - 1))\right)^{\frac{1}{2}}$$

if $\lambda > 0$:

$$\delta_{\varepsilon}(t) = \left(\varepsilon^2 e^{3\lambda t} + \frac{C^2}{3\lambda^2} \left(-t^2 - \frac{2t}{3\lambda} + \frac{2}{9\lambda^2} \left(e^{3\lambda t} - 1\right)\right)\right)^{\frac{1}{2}}$$

where *C* and λ are real constants specific to function *f*, defined as follows:

 $C = \sup_{y \in S} L \|f(y)\|,$

Motivation	Problematic and description of the method	Euler's method and error bounds	Systems with bounded uncertainty	Van der Pol example	Conclusic
		0000			

Definition

L denotes the Lipschitz constant for *f*, and λ is the "one-sided Lipschitz constant" (or "logarithmic Lipschitz constant" [AS14]) associated to *f*, i. e., the minimal constant such that, for all $y_1, y_2 \in S$:

$$\langle f(y_1) - f(y_2), y_1 - y_2 \rangle \le \lambda \|y_1 - y_2\|^2,$$
 (H0)

where $\langle \cdot, \cdot \rangle$ denotes the scalar product of two vectors of \mathcal{S} .

The constant λ can be computed using a nonlinear optimization solver (e.g., CPLEX [Cpl09]) or using the Jacobian matrix of *f*.

[[]AS14] Z. Aminzare and E. D. Sontag, "Contraction methods for nonlinear systems: A brief introduction and some open problems," in 53rd IEEE Conference on Decision and Control, CDC 2014, Los Angeles, CA, USA, December 15-17, 2014, 2014, pp. 3835–3847.

[[]Cpl09] I. I. Cplex, "V12. 1: User's manual for cplex," International Business Machines Corporation, vol. 46, no. 53, p. 157, 2009.

Motivation	Problematic and description of the method	Euler's method and error bounds	Systems with bounded uncertainty	Van der Pol example	Conclusic
			000		

Systems with bounded uncertainty

A differential system with bounded uncertainty is of the form

$$\frac{dx(t)}{dt} = f(x(t), w(t)),$$

with $t \in \mathbb{R}^n_{\geq 0}$, states $x(t) \in \mathbb{R}^n$, and uncertainty $w(t) \in \mathcal{W} \subset \mathbb{R}^n$ (\mathcal{W} is compact, i.e., closed and bounded).

We suppose (see [LCADSC+17]) that there exist constants $\lambda \in \mathbb{R}$ and $\gamma \in \mathbb{R}_{\geq 0}$ such that, for all $y_1, y_2 \in S$ and $w_1, w_2 \in \mathcal{W}$:

$$\langle f(y_1, w_1) - f(y_2, w_2), y_1 - y_2 \rangle \le \lambda \|y_1 - y_2\|^2 + \gamma \|y_1 - y_2\| \|w_1 - w_2\|$$
 (H1).

Instead of computing λ and γ globally for S, it is advantageous to compute them *locally* depending on the subregion of S occupied by the system state during a considered interval of time.

[[]LCADSC+17] A. Le Coënt et al., "Distributed control synthesis using Euler's method," in Proc. of International Workshop on Reachability Problems (RP'17), ser. Lecture Notes in Computer Science, vol. 247, Springer, 2017, pp. 118–131.

Motivation	Problematic and description of the method	Euler's method and error bounds	Systems with bounded uncertainty	Van der Pol example	Conclusi
			000		

Proposition

 $\delta_{\varepsilon}(t)$ is defined as follows for $t \in [0, \tau]$:

$$if \ \lambda < 0: \quad \delta_{\varepsilon,\mathcal{W}}(t) = \left(\frac{C^2}{-\lambda^4} \left(-\lambda^2 t^2 - 2\lambda t + 2e^{\lambda t} - 2\right) + \frac{1}{\lambda^2} \left(\frac{C\gamma|\mathcal{W}|}{-\lambda} \left(-\lambda t + e^{\lambda t} - 1\right) + \lambda \left(\frac{\gamma^2(|\mathcal{W}|/2)^2}{-\lambda} (e^{\lambda t} - 1) + \lambda \varepsilon^2 e^{\lambda t}\right)\right)\right)^{1/2}$$
(1)

$$if \lambda > 0: \quad \delta_{\varepsilon,\mathcal{W}}(t) = \frac{1}{(3\lambda)^{3/2}} \left(\frac{C^2}{\lambda} \left(-9\lambda^2 t^2 - 6\lambda t + 2e^{3\lambda t} - 2 \right) + 3\lambda \left(\frac{C\gamma|\mathcal{W}|}{\lambda} \left(-3\lambda t + e^{3\lambda t} - 1 \right) + 3\lambda \left(\frac{\gamma^2(|\mathcal{W}|/2)^2}{\lambda} (e^{3\lambda t} - 1) + 3\lambda\varepsilon^2 e^{3\lambda t} \right) \right) \right)^{1/2}$$

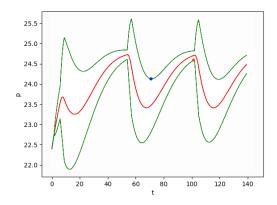
$$(2)$$

$$if \lambda = 0: \quad \delta_{\varepsilon,\mathcal{W}}(t) = \left(C^2 \left(-t^2 - 2t + 2e^t - 2\right) + \left(C\gamma |\mathcal{W}| \left(-t + e^t - 1\right)\right) + \left(\gamma^2 (|\mathcal{W}|/2)^2 (e^t - 1) + \varepsilon^2 e^t\right)\right)^{1/2}$$
(3)

Motivation	Problematic and description of the method	Euler's method and error bounds	Systems with bounded uncertainty	Van der Pol example	Conclusio
			000		

Proposition

Suppose that, for some index $1 \le j \le n$, we have $m_+^j < M_-^j$ where m_+^j (resp. M_-^j) denotes the minimum (resp. maximum) of $\tilde{x}^j(t) + \delta_{\varepsilon,\mathcal{W}}(t)$ (resp. $\tilde{x}^j(t) - \delta_{\varepsilon,\mathcal{W}}(t)$) for $t \in [iT, (i+1)T]$. Then B[iT, (i+1)T] contains no fixed point of Σ' .



Motivation	Problematic and description of the method	Euler's method and error bounds	Systems with bounded uncertainty	Van der Pol example	Conclusio
				0000	

Van der Pol System

Consider the Van der Pol (VdP) system Σ_{ρ} of dimension n = 2 with parameter $\rho \in \mathbb{R}$, and initial condition in $B_0 = B(x_0, \varepsilon)$ for some $x_0 \in \mathbb{R}^2$ and $\varepsilon > 0$ (see [BQ20]):

$$\begin{cases} \frac{du_{1}}{dt} = u_{2} \\ \frac{du_{2}}{dt} = \rho u_{2} - \rho u_{1}^{2} u_{2} - u_{1} \end{cases}$$
(4)

[BQ20] J. B. van den Berg and E. Queirolo, "A general framework for validated continuation of periodic orbits in systems of polynomial ODEs," Journal of Computational Dynamics, vol. 0, no. 2158-2491-2019-0-10, 2020, ISSN: 2158-2491. DOI: 10.3934/jcd.2021004.

Jawher Jerray (LIPN)

Motivation Pro	roblematic and description of the method	Euler's method and error bounds	Systems with bounded uncertainty	Van der Pol example	Conclusic
000 00	0	0000	000	0000	

Van der Pol System with uncertainty

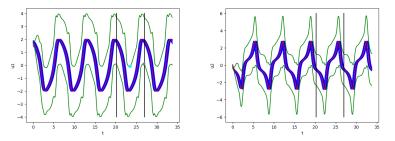
Consider now the system Σ' with uncertainty $w(\cdot) \in W_0 = [-0.5, 0.5]$ and initial condition x_0 :

$$\begin{cases} \frac{du_1}{dt} = u_2 \\ \frac{du_2}{dt} = (p_0 + w)u_2 - (p_0 + w)u_1^2u_2 - u_1 \end{cases}$$
(5)

with $p_0 = 1.1$. It is easy to see that each solution of Σ_p with $p \in [p_0 - 0.5, p_0 + 0.5] = [0.6, 1.6]$ is a particular solution of system Σ' .

Motivation	Problematic and description of the method	Euler's method and error bounds	Systems with bounded uncertainty	Van der Pol example	Conclusio
				0000	

Van der Pol System with uncertainty



VdP system with parameter $p_0 = 1.1$, uncertainty $|W_0| = 0.5$, initial radius $\varepsilon_0 = 0.2$, initial point $x_0 = (1.7018, -0.1284)$, period $T_0 = 6.746$, time-step $\tau = 10^{-3}$.

- We have: $B((i_0 + 1)T_0) \subset B(i_0T_0)$ for $i_0 = 3$.
- The minimum m_{+}^{1} of the upper green curve $\tilde{u}_{1}(t) + \delta_{\mathcal{W}}(t)$ is less than the maximum M_{-}^{1} of the lower green curve $\tilde{u}_{1}(t) \delta_{\mathcal{W}}(t)$.
- Whatever the value of p∈ [p₀ − |W₀|, p₀ + |W₀|] = [0.6, 1.6], the solution of Σ_p never converges to a point of ℝⁿ.
- Since the size of the system is n = 2, it follows by Poincaré-Bendixson's theorem that the solution of Σ_p converges always towards a limit circle

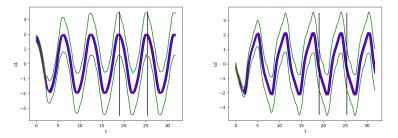
Motivation	Problematic and description of the method	Euler's method and error bounds	Systems with bounded uncertainty	Van der Pol example	Conclusic
				0000	

Consider now the system Σ' with uncertainty $w(\cdot) \in W_1 = [-0.2, 0.2]$ and initial condition x_0 :

$$\begin{cases} \frac{du_1}{dt} = u_2\\ \frac{du_2}{dt} = (p_1 + w)u_2 - (p_1 + w)u_1^2u_2 - u_1 \end{cases}$$
(5)

with $p_1 = 0.4$. It is easy to see that each solution of Σ_p with $p \in [p_1 - 0.2, p_1 + 0.2] = [0.2, 0.6]$ is a particular solution of system Σ' .

Motivation	Problematic and description of the method	Euler's method and error bounds	Systems with bounded uncertainty	Van der Pol example	Conclusic
				0000	



VdP system with parameter $p_1 = 0.4$, uncertainty $|W_1| = 0.2$, initial radius $\varepsilon_1 = 0.2$, initial point $x_0 = (1.7018, -0.1284)$, period $T_1 = 6.347$, time-step $\tau = 10^{-3}$.

- We have: $B((i_1 + 1)T_1) \subset B(i_1T_1)$ for $i_1 = 3$.
- We have $m_+^1 < M_-^1$, this shows that whatever the value of $p \in [p_1 |W_1|, p_1 + |W_1|] = [0.2, 0.6]$, the solution of Σ_p never converges to a point of \mathbb{R}^n .
- It follows by Poincaré-Bendixson's theorem that the solution of Σ_p converges always towards a limit circle for any $p \in [0.2, 0.6]$ and initial condition in $B(x_0, \varepsilon_1)$.

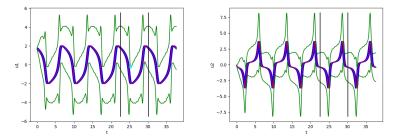
Motivation	Problematic and description of the method	Euler's method and error bounds	Systems with bounded uncertainty	Van der Pol example	Conclusic
				0000	

Consider now the system Σ' with uncertainty $w(\cdot) \in W_2 = [-0.3, 0.3]$ and initial condition x_0 :

$$\begin{cases} \frac{du_1}{dt} = u_2 \\ \frac{du_2}{dt} = (p_2 + w)u_2 - (p_2 + w)u_1^2u_2 - u_1 \end{cases}$$
(5)

with $p_2 = 1.9$. It is easy to see that each solution of Σ_p with $p \in [p_2 - 0.3, p_2 + 0.3] = [1.6, 2.2]$ is a particular solution of system Σ' .

Motivation	Problematic and description of the method	Euler's method and error bounds	Systems with bounded uncertainty	Van der Pol example	Conclusic
				0000	



VdP system with parameter $p_2 = 1.9$, uncertainty $|W_2| = 0.3$, initial radius $\varepsilon_2 = 0.1$, initial point $x_0 = (1.7018, -0.1284)$, period $T_2 = 7.531$, time-step $\tau = 10^{-3}$.

- We have: $B((i_2 + 1)T_2) \subset B(i_2T_2)$ for $i_2 = 3$.
- We have $m_+^1 < M_-^1$, then whatever the value of $p \in [p_2 |W_2|, p_2 + |W_2|] = [1.6, 2.2]$, the solution of Σ_p never converges to a point of \mathbb{R}^n .
- It follows by Poincaré-Bendixson's theorem that the solution of Σ_p converges always towards a limit circle for any $p \in [1.6, 2.2]$ and initial condition in $B(x_0, \varepsilon_2)$.

Motivation Problematic a	and description of the method	Euler's method and error bounds	Systems with bounded uncertainty	Van der Pol example	Conclusic
000 00		0000	000	0000	•

Conclusion and Perspectives

Conclusion

- We presented a simple method to generate a bounded invariant for a differential system.
- The method shows that the solutions never converge to an equilibrium point for a parameterized differential system.
- The method uses a very general criterion of inclusion of one set in another.

Perspectives

- Adapt the method to solve the convergence to a limit cycle for complex systems.
- Extend our method in order to account for such an analysis.

Motivation	Problematic and description of the method	Euler's method and error bounds	Systems with bounded uncertainty	Van der Pol example	Conclusio

Z. Aminzare and E. D. Sontag, "Contraction methods for nonlinear systems: A brief introduction and some open problems," in 53rd IEEE Conference on Decision and Control, CDC 2014, Los Angeles, CA, USA, December 15-17, 2014, 2014, pp. 3835–3847.

J. B. van den Berg and E. Queirolo, "A general framework for validated continuation of periodic orbits in systems of polynomial ODEs," Journal of Computational Dynamics, vol. 0, no. 2158-2491-2019-0-10, 2020, ISSN: 2158-2491. DOI: 10.3934/jcd.2021004.

I. I. Cplex, "V12. 1: User's manual for cplex," International Business Machines Corporation, vol. 46, no. 53, p. 157, 2009.

A. Le Coënt, J. Alexandre Dit Sandretto, A. Chapoutot, L. Fribourg, F. De Vuyst, and L. Chamoin, "Distributed control synthesis using Euler's method," in Proc. of International Workshop on Reachability Problems (RP'17), ser. Lecture Notes in Computer Science, vol. 247, Springer, 2017, pp. 118–131.

A. Le Coënt, F. De Vuyst, L. Chamoin, and L. Fribourg, "Control synthesis of nonlinear sampled switched systems using Euler's method," in SNR, (Apr. 22, 2017), ser. EPTCS, vol. 247, Uppsala, Sweden, 2017, pp. 18–33. DOI: 10.4204/EPTCS.247.2.

