Parametric schedulability analysis of a launcher flight control system under reactivity constraints

Étienne André² Emmanuel Coquard³ Laurent Fribourg⁴ **Jawher Jerray**¹
David Lesens³

¹ Université Paris 13, LIPN, CNRS, UMR 7030, Villetaneuse, France

²Université de Lorraine, Nancy, France

³ArianeGroup SAS

⁴LSV, ENS de Cachan & CNRS, France

MeFoSyLoMa Seminar

Context: Verifying real-time systems

Real-time systems :

Motivation and definitions

•00000

- Strong constraints on time. (e.g., a response passed a deadline is invalid even if its content appears to be correct.)
- Real-time systems are everywhere
- Critical real-time systems :
 - Failures (in correctness or timing) may result in dramatic consequences

2/23

Motivation and definitions Problem and objectives Modeling The results Conclusion and perspectives Références

Context: Verifying real-time systems

- Real-time systems :
 - Strong constraints on time. (e.g., a response passed a deadline is invalid even if its content appears to be correct.)
 - Real-time systems are everywhere
- Critical real-time systems :
 - Failures (in correctness or timing) may result in dramatic consequences

Deepwater Horizon

Amagasaki Railway Accident

Flight 214 crash of Asiana Airlines

•00000

Real-time system

Motivation and definitions

000000

A real-time system is made of a set of tasks to execute on a processor $% \left(x\right) =x^{2}$

Real-time system

Motivation and definitions

000000

A real-time system is made of a set of tasks to execute on a processor

A task is characterized by :

- B: its best-case execution time
- W: its worst-case execution time
- D: its relative deadline

3/23

Real-time system

Motivation and definitions

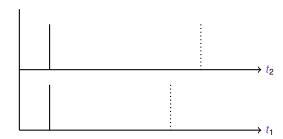
000000

A real-time system is made of a set of tasks to execute on a processor

A task is characterized by :

- B: its best-case execution time
- W: its worst-case execution time
- D: its relative deadline

Tasks have instances that are activated (usually periodically)

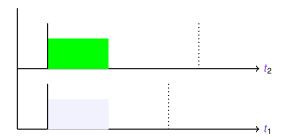

3/23

Example: shortest job first (SJF)

Task	В	W	D
<i>t</i> ₁	3	3	4
t_2	2	2	5

Motivation and definitions

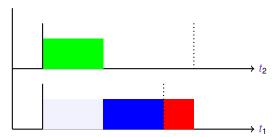
○○●○○○



Motivation and definitions

Example: shortest job first (SJF)

Task	В	W	D
<i>t</i> ₁	3	3	4
t ₂	2	2	5

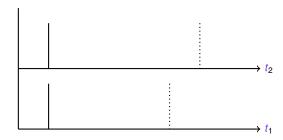


Example: shortest job first (SJF)

Task	В	W	D
<i>t</i> ₁	3	3	4
t_2	2	2	5

Motivation and definitions

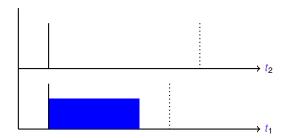
000000


Task t₁ misses its deadline

4/23

Example: preemptive fixed priority scheduler (FPS)

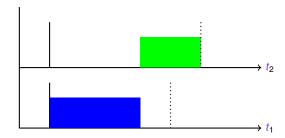
Task	В	W	D	priority
t_1	3	3	4	high
<i>t</i> ₂	2	2	5	low



Motivation and definitions

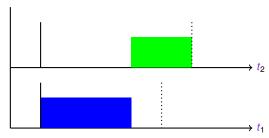
Motivation and definitions Problem and objectives Modeling The results Références

Example: preemptive fixed priority scheduler (FPS)


Task	В	W	D	priority
<i>t</i> ₁	3	3	4	high
<i>t</i> ₂	2	2	5	low

Example: preemptive fixed priority scheduler (FPS)

Task	В	W	D	priority
t ₁	3	3	4	high
<i>t</i> ₂	2	2	5	low



Motivation and definitions

Motivation and definitions Problem and objectives Modeling The results Références

Example: preemptive fixed priority scheduler (FPS)

Task	В	W	D	priority
t ₁	3	3	4	high
<i>t</i> ₂	2	2	5	low

The system is schedulable

Scheduling

Motivation and definitions

000000

Scheduling

- Decide which task the processor runs at each moment.
- **Timing constraint**: priority, deadline, reactivity, preemption, . . .
- Two main contexts :
 - Centralized system [LL73]
 - Distributed system [TS06]

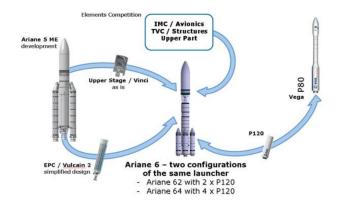
^{. [}LL73] C. L. LIU et J. W. LAYLAND, "Scheduling Algorithms for Multiprogramming in a Hard-Real-Time Environment", Journal of the ACM, t. 20, nº 1, p. 46-61, 1973, ISSN: 0004-5411, DOI: 10.1145/321738.321743.

. [TS06] A. S. TANENBAUM et M. v. STEEN, Distributed Systems: Principles and Paradigms (2Nd Edition). Upper Saddle River, NJ. USA: Prentice-Hall, Inc., 2006, ISBN: 0132392275.

Schedulability analysis

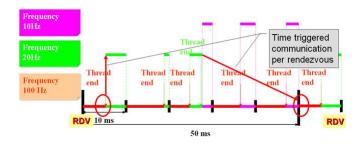
Definition

A system is schedulable if all tasks meet their deadline for all possible behaviors (according to the periods, interarrival rates, dependencies between tasks. . .).



Motivation and definitions Problem and objectives Modeling The results Conclusion and perspectives Références Licensin

Ariane 6 industrial scenario


Objective

Find flight control scheduling for the launcher, i.e. find the values of the task parameters (e. g., WCET) which meet the scheduling requirements (e. g., deadline).

Input:

- Values of tasks priorities, task periods, set of reactivities (a reactivity is the maximum time from a data input and its output).
- Uncertainties on WCET, ...
- Requirements (deadlines, ...)

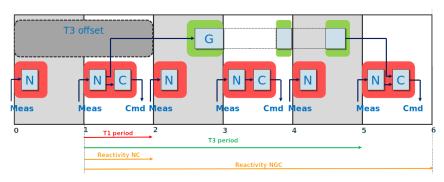
Output:

■ Set of values for the uncertain parameters in order to meet the requirements of the scheduling.

9/23

Data

Threads			
Thread			
ThreadT1			
ThreadT2			
ThreadT3			


Processings				
Processing	Period	WCET		
Control	10ms	3ms		
Navigation	5ms	1ms		
Guidance	60ms	15ms		
Monitoring	20ms	5ms		

Reactivities				
Reactivity	Value			
$Meas \to Navigation \to Guidance \to Control \to Cmd$	150ms			
$Meas \to Navigation \to Control \to Cmd$	15ms			
$Meas \to Navigation \to Monitoring \to Safeguard$	55ms			

ons Problem and objectives Modeling The results Conclusion and perspectives Références Licensing
OOO●OOOO OOO OOO O

Reactivity

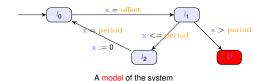
Reactivities

Objectives

The objectives of our work

Determine the values of offsets and deadlines for threads such that :

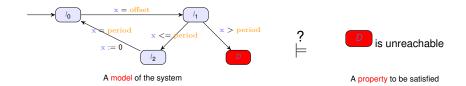
- the system is schedulable
- all reactivities are satisfied.


Our solution

Motivation and definitions

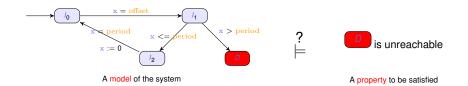
- Method : Parametric timed model checking
- Formalism: parametric timed automata
- Toolkit : IMITATOR
- Translate each element of the system (threads, tasks, scheduling policy, reactivities) to a network of PTA. This elements are synchronized with each other.
- Unknown constants of the PTA correspond to the unknown constants of the problem (offset, deadline).
- The synthesis of constants in the PTA corresponds to the values for which the system is schedulable.

Parametric timed model checking


A property to be satisfied

Motivation and definitions Problem and objectives Modeling The results Conclusion and perspectives Références Licensing

OOOOOO O O O O O O


Parametric timed model checking

Question: for what values of the parameters does the model of the system satisfy the property?

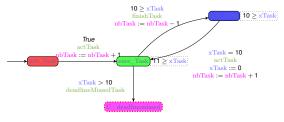
Parametric timed model checking

Question : for what values of the parameters does the model of the system satisfy the property?

Yes if...

Motivation and definitions

```
offset < period 
∧period < 17.54
```



Why parametric timed automata?

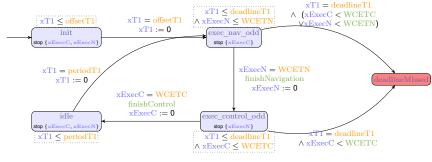
Motivation and definitions

Parametric timed automata [AHV93]

- Formal semantics: automated formal analyzes possible.
- Allow very high expressivity: encoding inter-task dependencies, different scheduling policies [FLMS12], sporadic or periodic tasks, etc.
- Can be extended with stopwatches, to model preemption.
- Existence of the model checker IMITATOR.

Example of PTA

^{. [}AHV93] R. ALUR, T. A. HENZINGER et M. Y. VARDI, "Parametric real-time reasoning", in STOC, San Diego, California, United States: ACM, 1993, p. 592-601, ISBN: 0-89791-591-7.



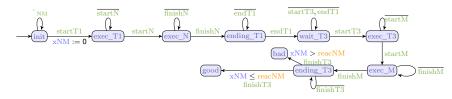
. [FLMS12] L. FRIBOURG et al., "Robustness Analysis for Scheduling Problems using the Inverse Method", in

Motivation and definitions Problem and objectives Modeling The results Conclusion and perspectives Références Licensing

Modeling offsets and deadlines

Example of Offset and Deadline Modeling for Thread T1:

Fragment of automaton threadT1


Motivation and definitions Problem and objectives Modeling The results Conclusion and perspectives Références Licensir

OOOOOO O O O O O

Modeling reactivities

A reactivity is required between a data read from the avionics bus (a measurement) and a data written to the avionics bus (a command)

Example of reactivity modeling Navigation \rightarrow Monitoring :

 $\textbf{Reactivity Navigation} \rightarrow \textbf{Monitoring}$

Experimental environment

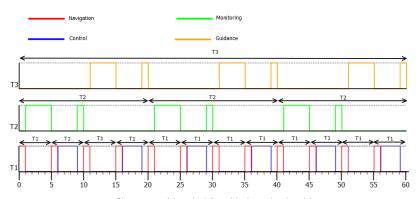
- Translate the network of PTA to the IMITATOR input language [AFKS12].
- IMITATOR is a tool for modeling and verifying real-time systems with unknown constants modeled with parametric timed automata[AHV93]. This parametric model checker takes as input networks of PTA extended with useful features such as synchronization actions and discrete variables.

^{, [}AHV93] R. ALUR, T. A. HENZINGER et M. Y. VARDI, "Parametric real-time reasoning", in STOC, San Diego, California, United States: ACM, 1993, p. 592-601, ISBN: 0-89791-591-7.

^{. [}AFKS12] É. ANDRÉ et al., "IMITATOR 2.5 : A Tool for Analyzing Robustness in Scheduling Problems", t. 7436, Paris, France, 2012, DOI: 10.1007/978-3-642-32759-9\ 6.

The results

The type of scheduling used in these results is: Fixed-priority scheduling (FPS) with preemption


First result: we checked the instantiated model by setting the offsets to 0 and the deadlines to the period of each Thread. In that case, all three reactivity automata are included in the model.

The results of IMITATOR and their execution times			
	Result E.T(seconds		
Result 1	True	109	

otivation and definitions Problem and objectives Modeling The results Conclusion and perspectives Références Licensing

The results

Results

The	The results of IMITATOR and their				
	execution times				
	Result	E.T(seconds			
Result 2	11 >= offsetT2	2303			
	$\land \text{ offsetT3} >= 0$				
	\land offsetT2 >= offsetT3				
	\wedge 1 >= offsetT3				
	$\wedge \text{ offsetT1} = 0$				
	OR				
	\land offsetT3 > offsetT2				
	\wedge 1 >= offsetT2				
	$\land \text{ offsetT2} >= 0$				
	\wedge 11 >= offsetT3				
	$\wedge \text{ offsetT1} = 0$				
	OR				
	$\land \text{ offsetT2} >= 0$				
	$\land \text{ offsetT1} > 0$				
	\wedge 11 >= offsetT2				
	\wedge 4 >= offsetT1				
	\wedge offset T3 $-$ 0				

Second result : we have parameterized the offsets of the threads and we have instantiated the deadlines to the value of the periods.

The results

Third result : we have initialized the offsets of the threads to 0 and we have parameterized the deadlines.

The results of IMITATOR and their execution times		
	Result	E.T(seconds
Result 3	deadlineT2 >= 11	637
	$\land \& deadlineT1 >= 4$	
	\wedge &5 >= deadlineT1	
	\land &20 >= deadlineT2	
	$\wedge \& deadlineT3 = 60$	

conclusion and perspectives

Conclusion

- Formally check that the FPS type scheduling can be a solution for our problem.
- Check that reactivities are met for which we proposed a compositional solution.
- Determine the offsets and deadlines of threads.

Perspectives

- Automate the assignment of processings in threads.
- Take into account the switch between two threads due to the copy of data between the contexts of each thread which is in our example 500 μs .
- Minimize the execution time of the algorithm.

Motivation and definitions

É. ANDRÉ, L. FRIBOURG, U. KÜHNE et R. SOULAT, "IMITATOR 2.5: A Tool for Analyzing Robustness in Scheduling Problems", t. 7436, Paris, France, 2012. DOI: 10.1007/978-3-642-32759-9_6.

R. ALUR, T. A. HENZINGER et M. Y. VARDI, "Parametric real-time reasoning", in STOC, San Diego, California, United States: ACM, 1993, p. 592-601, ISBN: 0-89791-591-7.

L. FRIBOURG, D. LESENS, P. MORO et R. SOULAT, "Robustness Analysis for Scheduling Problems using the Inverse Method", in TIME, Leicester, UK: IEEE Computer Society Press, 2012, p. 73-80. DOI: 10.1109/TIME.2012.10.

C. L. LIU et J. W. LAYLAND, "Scheduling Algorithms for Multiprogramming in a Hard-Real-Time Environment", Journal of the ACM, t. 20, no 1, p. 46-61, 1973, ISSN: 0004-5411. DOI: 10.1145/321738.321743.

A. S. TANENBAUM et M. v. STEEN, **Distributed Systems: Principles and Paradigms (2Nd Edition)**. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 2006, ISBN: 0132392275.

Source of the graphics used I

Motivation and definitions

Title: Deepwater Horizon offshore drilling unit on fire

Author : Unknown

Source: https://commons.wikimedia.org/wiki/File:Deepwater_Horizon_offshore_drilling_unit_on_fire_2010.jpg

License : Public domain

Title: The Amagasaki rail crash

Author : To Sawa

Source: https://commons.wikimedia.org/wiki/File:Fukuchiyama_joko20051.jpg

License : CC BY-SA 3.0

Title : Asiana Airlines Plane Crash Author : Alexander Novarro

Source: https://commons.wikimedia.org/wiki/File:Asiana_Airlines_Plane_Crash.png

License : CC BY-SA 3.0

