Motivation	Synchronization using a reachability method	Symbolic reachability using Euler's method	Brusselator example	Biped example	Conclusion and F

Guaranteed phase synchronization of hybrid oscillators using symbolic Euler's method

Jawher Jerray ¹ Laurent Fribourg² Étienne André³

¹Université Sorbonne Paris Nord, LIPN, CNRS, UMR 7030, F-93430, Villetaneuse, France and ²Université Paris-Saclay, LSV, CNRS, ENS Paris-Saclay and ³Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France

Tuesday 23rd June, 2020

Motivation	Synchronization using a reachability method	Symbolic reachability using Euler's method	Brusselator example	Biped example	Conclusion and F

Outline

1 Motivation

- 2 Synchronization using a reachability method
- 3 Symbolic reachability using Euler's method
- 4 Brusselator example
- 5 Biped example
- 6 Conclusion and Perspectives

Motivation	Synchronization using a reachability method	Symbolic reachability using Euler's method	Brusselator example	Biped example	Conclusion and I
•00					

Motivation

- Dynamical systems:
 - in which a function describes the time dependence of a point in a geometrical space.
 - we only know certain observed or calculated states of its past or present state (causality).
 - dynamical systems are everywhere.
 - dynamical systems have a direct impact on human development.
- \Rightarrow The importance of studying:
 - stability compared to the initial conditions
 - behavior
 - synchronization

Motivation	Synchronization using a reachability method	Symbolic reachability using Euler's method	Brusselator example	Biped example	Conclusion and F
000	000	000	000000	00000	0

Motivation

- Dynamical systems:
 - in which a function describes the time dependence of a point in a geometrical space.
 - we only know certain observed or calculated states of its past or present state (causality).
 - dynamical systems are everywhere.
 - dynamical systems have a direct impact on human development.
- \Rightarrow The importance of studying:
 - stability compared to the initial conditions
 - behavior
 - synchronization

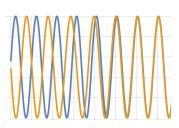
A flock of birds

Schooling fish

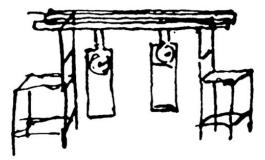
Motivation	Synchronization using a reachability method	Symbolic reachability using Euler's method	Brusselator example	Biped example	Conclusion and F
000					

Synchronization

- Coordination of multiple events.
- Done within an acceptably brief period of time.
- The example of two suspended mechanical clocks done by Huygens.



Two oscillators in phase after a lapse of time

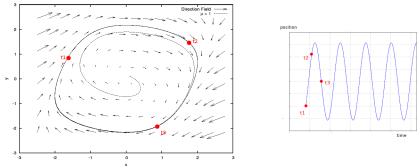


Original drawing of Christian Huygens in which he observed synchronization

Motivation	Synchronization using a reachability method	Symbolic reachability using Euler's method	Brusselator example	Biped example	Conclusion and F
000	000	000	000000	00000	0

how to highlight the synchronization of dynamical system formally?

- Challenge of describing such systems because their equations are non-linear.
- To study non-linear systems, we often visualize them in a space of configurations (position and speed).



000 00000 00000 00000 0	Motivation	Synchronization using a reachability method	Symbolic reachability using Euler's method	Brusselator example	Biped example	Conclusion and
	000	•00	000	000000	00000	0

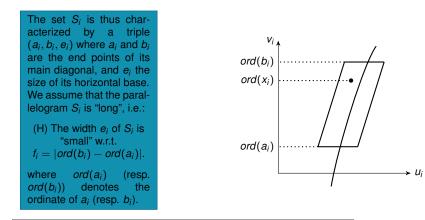
Synchronization using a reachability method

We consider a system composed of 2 subsystems governed by a system of differential equations (ODEs) of the form $\dot{x}(t) = f(x(t))$. The system of ODEs is thus of the form:

$$\begin{cases} \dot{x_1}(t) = f_1(x_1(t), x_2(t)) \\ \dot{x_2}(t) = f_2(x_1(t), x_2(t)) \end{cases}$$
(1)

with $x(t) = (x_1(t), x_2(t)) \in \mathbb{R}^m \times \mathbb{R}^m$, where *m* is the dimension of the state space of each subsystem.



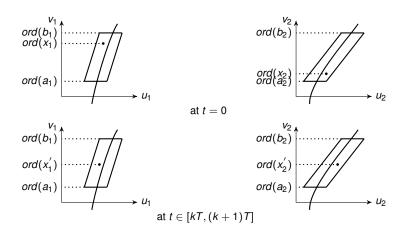


Given a point of $x_i(s)$ of $S_i \equiv (a_i, b_i, e_i)$ at time s (i = 1, 2), we can thus define its *phase* $\phi[x_i(s)]$ (in a "linearized" and "normalized" manner w.r.t. S_i) by:

 $\phi[x_i(s)] = (ord(x_i(s)) - ord(a_i))/(ord(b_i) - ord(a_i))$

Motivation Synchronization usin	ng a reachability method	Symbolic reachability using Euler's method	Brusselator example	Biped example	Conclusion and F
000 000		000	000000	00000	0

Synchronization using a reachability method



Scheme of S_1 (left) and S_2 (right) at t = 0 (top) and for some $t \in [kT, (k + 1)T)$ (bottom)

Motivation	Synchronization using a reachability method	Symbolic reachability using Euler's method	Brusselator example	Biped example	Conclusion and I
		000			

Symbolic reachability using Euler's method

As a symbolic method, we use here the *symbolic Euler's method* [LCDVCF17,Fri17] and we consider a subset under the form of "(double) ball" of the form $B = B_1 \times B_2$, where $B_i \subset \mathbb{R}^m$ (i = 1, 2) is a ball of the form $\mathcal{B}(c_i, r)$ with $c_i \in \mathbb{R}^m$ (*centre*) and r a positive real (*radius*). In order to compute (an overapproximation of) the set of solutions starting at B^0 . We define for $t \ge 0$:

 $B^{euler}(t) = \mathcal{B}(c_1(t), r(t)) \times \mathcal{B}(c_2(t), r(t)),$

where $(c_1(t), c_2(t)) \in \mathbb{R}^m \times \mathbb{R}^m$ is the approximated value of solution x(t) of $\dot{x} = f(x)$ with initial condition $x(0) = (c_1^0, c_2^0)$ given by *Euler's explicit method*, and $r(t) \approx r^0 e^{\lambda t}$ is the *expanded* radius using the *one-sided Lipschitz constant* λ .

[Fri17] L. Fribourg, "Euler's method applied to the control of switched systems," in FORMATS, (Sep. 5, 2017–Sep. 7, 2017), ser. LNCS, vol. 10419, Berlin, Germany: Springer, Sep. 2017, pp. 3–21. DOI: 10.1007/978-3-319-65765-3_1. [Online]. Available: https://doi.org/10.1007/978-3-319-65765-3_1.

Jawher Jerray (LIPN)

[[]LCDVCF17] A. Le Coënt et al., "Control synthesis of nonlinear sampled switched systems using Euler's method," in SNR, (Apr. 22, 2017), ser. EPTCS, vol. 247, Uppsala, Sweden, 2017, pp. 18–33. DOI: 10.4204/EPTCS.247.2.

Motivation S	synchronization using a reachability method	Symbolic reachability using Euler's method	Brusselator example	Biped example	Conclusion and F
000 0	000	000	000000	00000	0

One-Sided Lipschitz (OSL) constant

Definition

The one-sided Lipschitz (OSL) constant for **f** on D, denoted by λ , is defined by

$$\lambda := \sup_{y_1 \neq y_2 \in D} \frac{\langle \mathbf{f}(y_1) - \mathbf{f}(y_2), y_1 - y_2 \rangle}{\|y_1 - y_2\|^2},$$

where $\langle \cdot, \cdot \rangle$ denotes the scalar product of two vectors of $\mathbb{R}^n \times \mathbb{R}^n$, and $\| \cdot \|$ the Euclidean norm.

Value of λ

- when $\lambda \leq 0$ locally, indicates contractive zone
- \blacksquare when $\lambda \geq$ 0 locally, indicates expansive zone

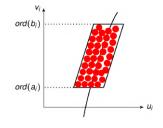
Motivation Synchronization	ising a reachability method	Symbolic reachability using Euler's method	Brusselator example	Biped example	Conclusion and F
000 000		000	000000	00000	0

Symbolic reachability using Euler's method

Given S_i (i = 1, 2) defined as a parallelogram (a_i, b_i, e_i), in order to show the phenomenon of phase synchronization, we first *cover* S_i with a *finite* set $\{B_{j,i}\}_{j \in J_i}$ of balls $B_{j,i} \subset \mathbb{R}^m$ (i.e., for i = 1, 2, $S_i \subset \bigcup_{j \in J_i} B_{j,i}$).

Proposition

Given a covering $\{B_j\}_{j \in J_i}$ of S_i (i = 1, 2), if, for all $(j_1, j_2) \in J_1 \times J_2$, PROC1 $(B_{j_1} \times B_{j_2})$ succeeds, then, for all initial condition $(x_1^0, x_2^0) \in S$, there exists $t \in [kT, (k + 1)T)$ such that $(x_1(t), x_2(t)) \in S$. Besides: $|phase(x_1(t)) - phase(x_2(t))| \le \epsilon + \min(e_1/f_1, e_2/f_2)$, where e_i is the width of S_i , and $f_i = |ord(b_i) - ord(a_i)|$ its height (i = 1, 2).



When $\epsilon \ll \min(e_1/f_1, e_2/f_2)$, the final difference of phase between $x_1(t)$ and $x_2(t)$ is practically upper bounded by $\min(e_1/f_1, e_2/f_2)$., then: For any initial point $(x_1^0, x_2^0) \in S$, there exists $t \in [kT, (k+1)T)$ such that $x_1(t)$ and $x_2(t)$ are *almost in phase*.

Motivation	Synchronization using a reachability method 000	Symbolic reachability using Euler's method 000	Brusselator example •00000	Biped example	Conclusion and F O
Bruss	selator				

Brusselator is a theoretical model for a type of autocatalytic reaction. It is a reaction-diffusion system. We consider the 1D Brusselator partial differential equation (PDE), as given in [CP93]. We suppose a state of the form x(y, t) = (u(y, t), v(y, t)) where $y \in \Omega = [0, \ell]$ is the spatial location. The PDE is of the form:

$$\begin{cases} \frac{\partial u}{\partial t} = A + u^2 v - (B+1)u + \sigma \nabla^2 u\\ \frac{\partial v}{\partial t} = Bu - u^2 v + \sigma \nabla^2 v \end{cases}$$
(2)

with boundary condition: $u(0, t) = u(\ell, t) = 1$, $v(0, t) = v(\ell, t) = 3$, and initial condition: $x_0(y) = (u(y, 0), v(y, 0))$ with $u(y, 0) = 1 + sin(2\pi y)$, v(y, 0) = 3.

[CP93] P. Chartier and B. Philippe, "A parallel shooting technique for solving dissipative ODE's," Computing, vol. 51, no. 3, pp. 209–236, 1993, ISSN: 1436-5057. DOI: 10.1007/BF02238534.

Jawher Jerray (LIPN)

Guaranteed phase synchronization of hybrid oscillators using symbolic Euler's method

Motivation	Synchronization using a reachability method 000	Symbolic reachability using Euler's method 000	Brusselator example	Biped example	Conclusion and F O
Bruss	selator				

We transform the PDE into a system of ODEs by spatial discretization using a grid of N + 1 points with N = 4.

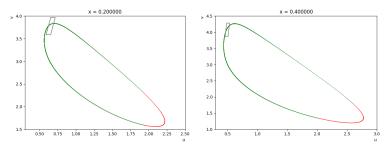
The system of ordinary differential equations for this example is described by

$$\begin{cases} \dot{u}_{1} = A + u_{1}^{2}v_{1} - (B+1)u_{1} + \sigma(u_{0} - 2u_{1} + u_{2}) \\ \dot{v}_{1} = Bu_{1} - u_{1}^{2}v_{1} + \sigma(v_{0} - 2v_{1} + v_{2}) \\ \dot{u}_{2} = A + u_{2}^{2}v_{2} - (B+1)u_{2} + \sigma(u_{1} - 2u_{2} + u_{3}) \\ \dot{v}_{2} = Bu_{2} - u_{2}^{2}v_{2} + \sigma(v_{1} - 2v_{2} + v_{3}) \\ \dot{u}_{3} = A + u_{3}^{2}v_{3} - (B+1)u_{3} + \sigma(u_{2} - 2u_{3} + u_{4}) \\ \dot{v}_{3} = Bu_{3} - u_{3}^{2}v_{3} + \sigma(v_{2} - 2v_{3} + v_{4}) \\ \dot{u}_{4} = A + u_{4}^{2}v_{4} - (B+1)u_{4} + \sigma(u_{3} - 2u_{4} + u_{5}) \\ \dot{v}_{4} = Bu_{4} - u_{4}^{2}v_{4} + \sigma(v_{3} - 2v_{4} + v_{5}) \end{cases}$$
(3)

with $u_0 = u_5 = 1$ and $v_0 = v_5 = 3$.

Motivation	Synchronization using a reachability method	Symbolic reachability using Euler's method	Brusselator example	Biped example	Conclusion and F
			000000		

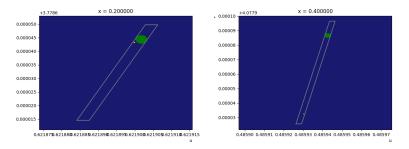
By using symmetry, we can reduce the problem to plans x = 0.2 and x = 0.4.



Brusselator: A cyclic trajectory for plan x = 0.2 (left) and x = 0.4 (right); the green zone indicates the contractive area ($\lambda < 0$) and the red zone the expansive one ($\lambda > 0$)

- The time-step used in Euler's method is $\tau = 2 \cdot 10^{-4}$.
- The period of the system is $T = 34564\tau$.
- The expansion factor of the ball radius after one period is E = 2.12.
- The number of periods considered for synchronization is k = 5 (so the expansion factor after k periods = $2.12^5 \approx 43$).

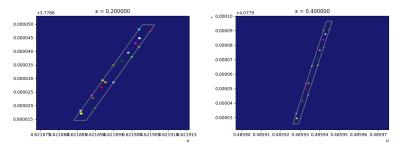
Motivation	Synchronization using a reachability method	Symbolic reachability using Euler's method	Brusselator example	Biped example	Conclusion and F
			000000		



Brusselator: Synchronization of the two components of a ball, located initially near opposite vertices of the parallelograms (yellow), after k = 5 periods (green).

- The radius of the initial ball covering S is = $3.5 \cdot 10^{-8}$.
- After k = 5 periods, the radius of the ball image is $1.5 \cdot 10^{-6}$.
- The phase of the initial ball center is 0.82 in plan x = 0.2, and 0.09 in plan x = 0.4, so the difference of phase Δ (*phase*(*centers*)), at t = 0, is 0.73.
- The phase of the image ball center is 0.87461 in plan x = 0.2, and 0.87463 in plan x = 0.4, so the difference of phase Δ (*phase*(*centers*)), after k = 5 periods, is now $2 \cdot 10^{-5} \approx 0$.

Motivation	Synchronization using a reachability method	Symbolic reachability using Euler's method	Brusselator example	Biped example	Conclusion and F
			000000		



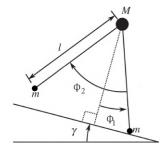
Brusselator: Synchronization of 10 (pairs of) balls, located initially on the parallelogram perimeters, after k = 5 periods (without radius expansion for clarity).

Motivation	Synchronization using a reachability method	Symbolic reachability using Euler's method	Brusselator example	Biped example	Conclusion and F
			000000		

	The list of phases of 10 ball centers for the Brusselator example.									
Point	phase initial	phase initial	phase image	phase image	$\Delta(phase)$	$\Delta(phase)$				
	point in u ₁	point in u2	point in u ₁	point in u ₂	for initial point	for image point				
1	0.13	0.05	0.63224	0.63221	0.08	2 · 10-5				
2	0.40	0.10	0.72512	0.72511	0.30	8 · 10 ⁻ 6				
3	0.26	0.39	0.83112	0.83113	0.13	6 · 10 ⁻ 6				
4	0.95	0.28	0.0383	0.0382	0.67	9·10 ⁻⁵				
5	0.42	0.57	0.0366	0.0365	0.15	9 · 10-5				
6	0.10	0.56	0.88834	0.88836	0.46	1 · 10-5				
7	0.58	0.74	0.2103	0.2102	0.16	7 · 10-5				
8	0.66	0.92	0.3929	0.3928	0.25	5·10 ⁻⁵				
9	0.93	0.74	0.3318	0.3317	0.19	6 · 10 ⁻⁵				
10	0.77	0.91	0.3890	0.3889	0.14	$5 \cdot 10^{-}5$				

Motivation	Synchronization using a reachability method	Symbolic reachability using Euler's method	Brusselator example	Biped example	Conclusion and F
				00000	

We extend the method of verification of phase synchronization to *hybrid systems*. We describe here the results of such an extension to the *passive biped model* [McG90], seen as a hybrid oscillator. The passive biped model exhibits indeed a stable limit-cycle oscillation for appropriate parameter values that corresponds to periodic movements of the legs [SKN17].



Biped walker

[McG90] T. McGeer, "Passive dynamic walking," The International Journal of Robotics Research, vol. 9, no. 2, pp. 62–82, 1990. DOI: 10.1177/027836499000900206. [Online]. Available: https://doi.org/10.1177/027836499000900206. [SKN17] S. Shirasaka, W. Kurebayashi, and H. Nakao, "Phase reduction theory for hybrid nonlinear oscillators, Physical Review E, vol. 95, 1 Jan. 2017. DOI: 10.1103/PhysRevE.95.012212.

Guaranteed phase synchronization of hybrid oscillators using symbolic Euler's method

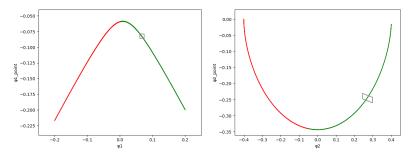
Motivation	Synchronization using a reachability method 000	Symbolic reachability using Euler's method 000	Brusselator example	Biped example	Conclusion and F O
Bipec	ł				

The model has a continuous state variable $\mathbf{x}(t) = (\phi_1(t), \phi_1(t), \phi_2(t), \phi_2(t))^{\top}$. The dynamics is described by $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$ with:

$$f(\mathbf{x}) = \begin{pmatrix} \phi_1 \\ \sin(\phi_1 - \gamma) \\ \phi_2 \\ \sin(\phi_1 - \gamma) + \phi_1^2 \sin \phi_2 - \cos(\phi_1 - \gamma) \sin \phi_2 \end{pmatrix}$$
(4)
$$Reset(\mathbf{x}) = \begin{pmatrix} -\phi_1 \\ \phi_1 \sin(2\phi_1) \\ -2\phi_1 \\ \phi_1 \cos 2\phi_1(1 - \cos 2\phi_1) \end{pmatrix}$$
(5)
$$Guard(\mathbf{x}) \equiv (2\phi_1 - \phi_2 = 0 \land \phi_2 < -\delta).$$
(6)

with $\delta = 0.1$ and $\gamma = 0.009$.

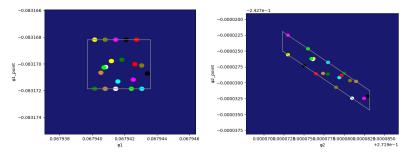
Motivation	Synchronization using a reachability method	Symbolic reachability using Euler's method	Brusselator example	Biped example	Conclusion and F
				00000	



Biped: A cyclic trajectory for plan ϕ_1 (left) and ϕ_2 (right); the green zone indicates the contractive area ($\lambda < 0$) and the red zone the expansive one ($\lambda > 0$)

- The time-step used in Euler's method is $\tau = 2 \cdot 10^{-5}$.
- The period of the system is $T = 776440\tau$.
- The radius expansion factor after one period is E = 2.63.
- The number of periods considered for synchronization is k = 30.

Motivation	Synchronization using a reachability method	Symbolic reachability using Euler's method	Brusselator example	Biped example	Conclusion and F
				00000	
					(



Biped: Synchronization of 10 (pairs of) balls, located initially on the parallelogram perimeters, after k = 30 periods (without radius expansion for clarity).

Motivation	Synchronization using a reachability method	Symbolic reachability using Euler's method	Brusselator example	Biped example	Conclusion and F
				00000	

	The list of phases of 10 ball centers in the biped example.									
Point	phase initial	phase initial	phase image	phase image	$\Delta(phase)$ for	$\Delta(phase)$ for				
	point in ϕ_1	point in ϕ_2	point in ϕ_1	point in ϕ_2	initial point	image point				
1	0.88	0.29	0.45	0.48	0.59	0.03				
2	0.38	0.75	0.05	0.02	0.37	0.03				
3	0.55	0.94	0.27	0.07	0.39	0.21				
4	0.14	0.48	0.52	0.35	0.34	0.17				
5	0.88	0.94	0.62	0.64	0.05	0.03				
6	0.55	0.20	0.71	0.65	0.35	0.06				
7	0.72	0.39	0.14	0.23	0.33	0.09				
8	0.30	0.71	0.74	0.67	0.40	0.07				
9	0.22	0.61	0.25	0.32	0.40	0.08				
10	0.72	0.16	0.78	0.53	0.56	0.25				

Motivation Synchronization using a reachability method	Symbolic reachability using Euler's method	Brusselator example	Biped example	Conclusion and F
000 000	000	000000	00000	•

Conclusion and Perspectives

Conclusion

- We presented a symbolic reachability method to prove phase synchronization of oscillators.
- The method shows that a *finite* number of points, displaced from their original position on a synchronization orbit, return after some time into a close neighborhood of the orbit.

Perspectives

- Adapt the classical "adjoint" method (or *phase reduction*) rather than the method used here. In order to solve systems with higher state space dimension.
- Replace the symbolic Euler's method used here by any other symbolic reachability procedure to cover larger sets *S*.

Motivation Synchronization using a reachability method	Symbolic reachability using Euler's method	Brusselator example	Biped example	Conclusion and I
000 000	000	000000	00000	0

P. Chartier and B. Philippe, "A parallel shooting technique for solving dissipative ODE's," Computing, vol. 51, no. 3, pp. 209–236, 1993, ISSN: 1436-5057. DOI: 10.1007/BF02238534.

L. Fribourg, "Euler's method applied to the control of switched systems," in **FORMATS**, (Sep. 5, 2017–Sep. 7, 2017), ser. LNCS, vol. 10419, Berlin, Germany: Springer, Sep. 2017, pp. 3–21. DOI: 10.1007/978-3-319-65765-3_1. [Online]. Available: https://doi.org/10.1007/978-3-319-65765-3_1.

A. Le Coënt, F. De Vuyst, L. Chamoin, and L. Fribourg, "Control synthesis of nonlinear sampled switched systems using Euler's method," in SNR, (Apr. 22, 2017), ser. EPTCS, vol. 247, Uppsala, Sweden, 2017, pp. 18–33. DOI: 10.4204/EPTCS.247.2.

T. McGeer, "Passive dynamic walking," The International Journal of Robotics Research, vol. 9, no. 2, pp. 62–82, 1990. DOI: 10.1177/027836499000900206. [Online]. Available: https://doi.org/10.1177/027836499000900206.

S. Shirasaka, W. Kurebayashi, and H. Nakao, "Phase reduction theory for hybrid nonlinear oscillators," Physical Review E, vol. 95, 1 Jan. 2017. DOI: 10.1103/PhysRevE.95.012212.

Jawher Jerray (LIPN)

Guaranteed phase synchronization of hybrid oscillators using symbolic Euler's method

Motivation Synchronization using a reachability meth	od Symbolic reachability using Euler's method	Brusselator example	Biped example	Conclusion and F
000 000	000	000000	00000	0

Source of the graphics used I

Title: The flock of starlings acting as a swarm Author: John Holmes Source: https://commons.wikimedia.org/wiki/File:The_flock_of_starlings_acting_as_a_swarm._- _geograph.org.uk_-_f License: CC BYSA 2.0

Title: Prey fish schooling Author: freeimageslive.co.uk Source: https://commons.wikimedia.org/wiki/File:Schooling_fish.jpg License: CC BY-SA 3.0

Title: Solar System 2.0 - the helical model Author: DjSadhu Source: https://www.youtube.com/watch?v=wvgaxQGPg7I License: CC BV-SA 3.0

