Motivation	Method	ORBITADOR	Biped example	Conclusion and Perspectives	References
00	0000	0	00	0	

ORBITADOR: A tool to analyze the stability of periodical dynamical systems

Jawher Jerray 1

¹ Université Sorbonne Paris Nord, LIPN, CNRS, UMR 7030, F-93430, Villetaneuse, France

Friday 9th July, 2021

ARCH 2021

Motivation	Method	ORBITADOR	Biped example	Conclusion and Perspectives	References
••					
Motivati	on				

- Dynamical systems:
 - in which a function describes the time dependence of a point in a geometrical space.
 - we only know certain observed or calculated states of its past or present state.
- \Rightarrow The importance of studying:
 - synchronization
 - behavior
 - stability

Motivation	Method	ORBITADOR	Biped example	Conclusion and Perspectives	References
00					
Stability					

- A dynamical system is stable, if small perturbations to the solution lead to a new solution that stays close to the original solution forever.
- A stable system produces a bounded output for a given bounded input.

Stability

Motivation 00	Method •ooo	ORBITADOR O	Biped example	Conclusion and Perspectives	References
Euler's i	method an	d error boun	nds		

Let us consider the differential system:

$$\frac{dx(t)}{dt} = f(x(t)),$$

with states $x(t) \in \mathbb{R}^n$ and x_0 a given initial condition.

■ $\tilde{x}(t; y_0)$ denotes Euler's approximate value of x(t) (defined by $\tilde{x}(t; y_0) = y_0 + t \times f(y_0)$ for $t \in [0, \tau]$, where τ is the integration time-step).

Motivation	Method	ORBITADOR	Biped example	Conclusion and Perspectives	References
	0000				

Euler's method and error bounds

Proposition

[LCDVCF17] Consider the solution $x(t; x_0)$ of $\frac{dx}{dt} = f(x)$ with initial condition x_0 and the approximate Euler solution $\tilde{x}(t; x_0)$ with initial condition x_0 . For all $x_0 \in B(x_0, \varepsilon)$, we have:

$$\|x(t; x_0) - \tilde{x}(t; x_0)\| \leq \delta_{\varepsilon}(t).$$

Motivation	Method	ORBITADOR	Biped example	Conclusion and Perspectives	References
	0000				

Systems with bounded uncertainty

A differential system with bounded uncertainty is of the form

$$\frac{dx(t)}{dt} = f(x(t), w(t)),$$

with $t \in \mathbb{R}^n_{\geq 0}$, states $x(t) \in \mathbb{R}^n$, and uncertainty $w(t) \in \mathcal{W} \subset \mathbb{R}^n$ (\mathcal{W} is compact, i.e., closed and bounded).

We suppose (see [LCADSC+17]) that there exist constants $\lambda \in \mathbb{R}$ and $\gamma \in \mathbb{R}_{\geq 0}$ such that, for all $y_1, y_2 \in S$ and $w_1, w_2 \in \mathcal{W}$:

$$\langle f(y_1, w_1) - f(y_2, w_2), y_1 - y_2 \rangle \le \lambda \|y_1 - y_2\|^2 + \gamma \|y_1 - y_2\| \|w_1 - w_2\|$$
 (H1).

Instead of computing λ and γ globally for S, it is advantageous to compute them *locally* depending on the subregion of S occupied by the system state during a considered interval of time.

[[]LCADSC+17] A. Le Coënt et al., "Distributed control synthesis using Euler's method," in Proc. of International Workshop on Reachability Problems (RP'17), ser. Lecture Notes in Computer Science, vol. 247, Springer, 2017, pp. 118–131.

Motivation	Method	ORBITADOR	Biped example	Conclusion and Perspectives	References
	0000				

Correctness

Proposition

Suppose that there exist T > 0 (with $T = k\tau$ for some k) and $i \in \mathbb{N}$ such that: $B_{\mathcal{W}}((i+1)T) \subseteq B_{\mathcal{W}}(iT)$. Then $I_{\mathcal{W}} \equiv \bigcup_{t \in [IT, (i+1)T]} B_{\mathcal{W}}(t)$ is a compact invariant set containing all the solutions of $\Sigma_{\mathcal{W}}$ with initial condition in B_0 .

⇒ Then there exists a closed orbit (limit cycle or fixed-point) for the unperturbed system Σ which is contained in I_{VV} (see [JF21]).

[JF21] J. Jerray and L. Fribourg, "Determination of limit cycles using stroboscopic set-valued maps," in 7th IFAC Conference on Analysis and Design of Hybrid Systems (ADHS'21), July 7-9, 2021, Brussels, Belgium, 2021.

Motivation 00	Method 0000	ORBITADOR •	Biped example	Conclusion and Perspectives	References
ORBITA	ADOR				

ORBITADOR's structure

Motivation	Method 0000	ORBITADOR O	Biped example ●O	Conclusion and Perspectives	References
Biped S	system				

We consider a simple model of biped walker [McG90], seen as a hybrid oscillator.

Biped walker

[McG90] T. McGeer, "Passive dynamic walking," The International Journal of Robotics Research, vol. 9, no. 2, pp. 62–82, 1990. DOI: 10.1177/027836499000900206. [Online]. Available: https://doi.org/10.1177/027836499000900206.

ORBITADOR: A tool to analyze the stability of periodical dynamical systems

Motivation	Method 0000	ORBITADOR O	Biped example ●O	Conclusion and Perspectives O	References
Biped S	System				

We consider a simple model of biped walker [McG90], seen as a hybrid oscillator. The model has a continuous state variable $\mathbf{x}(t) = (\phi_1(t), \phi_1(t), \phi_2(t), \phi_2(t))^\top$. The dynamics is described by $\frac{\mathbf{d}\mathbf{x}(t)}{\mathbf{d}\mathbf{t}} = \mathbf{f}(\mathbf{x}) + w$ with $w \in \mathcal{W} \subset \mathbb{R}^4$:

$$f(\mathbf{x}) = \begin{pmatrix} \dot{\phi_1} \\ \sin(\phi_1 - \gamma) \\ \dot{\phi_2} \\ \sin(\phi_1 - \gamma) + \dot{\phi_1}^2 \sin \phi_2 - \cos(\phi_1 - \gamma) \sin \phi_2 \end{pmatrix}$$
$$Reset(\mathbf{x}) = \begin{pmatrix} -\phi_1 \\ \dot{\phi_1} \sin(2\phi_1) \\ -2\phi_1 \\ \dot{\phi_1} \cos 2\phi_1(1 - \cos 2\phi_1) \end{pmatrix}$$
$$Guard(\mathbf{x}) \equiv (2\phi_1 - \phi_2 = 0 \land \phi_2 < -\delta).$$

[McG90] T. McGeer, "Passive dynamic walking." The International Journal of Robotics Research, vol. 9, no. 2, pp. 62–82, 1990. DOI: 10.1177/027836499000900206. [Online]. Available: https://doi.org/10.1177/027836499000900206.

Motivation	Method 0000	ORBITADOR O	Biped example	Conclusion and Perspectives	References

Biped System with uncertainty

Importing Biped example to ORBITADOR

Motivation	Method	ORBITADOR	Biped example	Conclusion and Perspectives	References
			00		

Biped System with uncertainty

Biped system with uncertainty $w \in W = [-0.0001, 0.0001]^4$, initial radius $\varepsilon = 0.001$, approximate period T = 3.8826s and time-step $\tau = 2 \cdot 10^{-5}$.

Motivation	Method	ORBITADOR	Biped example	Conclusion and Perspectives	References				
			00						

Biped system with uncertainty $w \in W = [-0.0001, 0.0001]^4$, initial radius $\varepsilon = 0.001$, approximate period T = 3.8826s and time-step $\tau = 2 \cdot 10^{-5}$.

- ORBITADOR finds: $B_{\mathcal{W}}((i_0 + 1)T) \subset B_{\mathcal{W}}(i_0T)$ for $i_0 = 4$.
- The system converges towards an attractive limit cycle contained in $I_{W} \equiv \bigcup_{t \in [4T, 5T]} B_{W}(t)$.

Motivation	Method	ORBITADOR	Biped example	Conclusion and Perspectives	References
				•	

Conclusion and Perspectives

Conclusion

- We presented ORBITADOR a tool that guarantees the existence of limit cycles and constructs invariant sets around them.
- ORBITADOR uses a very general criterion of inclusion of one set in another.

Perspectives

- Adapt the method to solve the convergence to a limit cycle for complex systems.
- Upgrade ORBITADOR so that it computes dynamical systems with control.

lotivatio	n Method 0000	ORBITADOR O	Biped example	Conclusion and Perspectives O	References		
	[JF21]	J. Jerray and L. Fribourg, "Determination of limit cycles using stroboscopic set-valued maps," in 7th IFAC Conference on Analysis and Design of Hybrid Systems (ADHS'21), July 7-9, 2021, Brussels, Belgium, 2021.					
	[LCADSC+17]	A. Le Coënt, J. Alexandre Dit Sandretto, A. Chapoutot, L. Fribourg, F. De Vuyst, and L. Chamoin, "Distributed control synthesis using Euler's method," in Proc. of International Workshop on Reachability Problems (RP'17), ser. Lecture Notes in Computer Science, vol. 247, Springer, 2017, pp. 118–131.					
[LCDVCF17]		A. Le Coënt, F. De Vuyst, L. Chamoin, and L. Fribourg, "Control synthesis of nonlinear sampled switched systems using Euler's method," in SNR, (Apr. 22, 2017), ser. EPTCS, vol. 247, Uppsala, Sweden, 2017, pp. 18–33. DOI: 10.4204/EPTCS.247.2.					
[McG90]		T. McGeer, "Passive dynamic walking," The International Journal of Robotics Research, vol. 9, no. 2, pp. 62–82, 1990. DOI: 10.1177/027836499000900206. [Online]. Available: https://doi.org/10.1177/027836499000900206.					

