Motivation	Synchronization using a reachability method	Symbolic reachability using Euler's method	Biped example	Conclusion and Perspectives	Reference

Guaranteed phase synchronization of hybrid oscillators using symbolic Euler's method

Jawher Jerray ¹ Laurent Fribourg² Étienne André³

¹ Université Sorbonne Paris Nord, LIPN, CNRS, UMR 7030, F-93430, Villetaneuse, France and ² Université Paris-Saclay, LSV, CNRS, ENS Paris-Saclay and ³ Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France

Sunday 12th July, 2020

Motivation	Synchronization using a reachability method	Symbolic reachability using Euler's method	Biped example	Conclusion and Perspectives	Reference

Outline

1 Motivation

- 2 Synchronization using a reachability method
- 3 Symbolic reachability using Euler's method
- 4 Biped example
- 5 Conclusion and Perspectives

				-	
000	000		0000		
Motivation	Synchronization using a reachability method	Symbolic reachability using Euler's method	Biped example	Conclusion and Perspectives	Reference

Motivation

- Dynamical systems:
 - in which a function describes the time dependence of a point in a geometrical space.
 - we only know certain observed or calculated states of its past or present state.
 - dynamical systems have a direct impact on human development.
- \Rightarrow The importance of studying:
 - stability compared to the initial conditions
 - behavior
 - synchronization

000	000	00	0000		
Motivation	Synchronization using a reachability method	Symbolic reachability using Euler's method	Biped example	Conclusion and Perspectives	Reference

Motivation

- Dynamical systems:
 - in which a function describes the time dependence of a point in a geometrical space.
 - we only know certain observed or calculated states of its past or present state.
 - dynamical systems have a direct impact on human development.
- \Rightarrow The importance of studying:
 - stability compared to the initial conditions
 - behavior
 - synchronization

Heart rate variability (HRV)

Solar System

Motivation	Synchronization using a reachability method	Symbolic reachability using Euler's method	Biped example	Conclusion and Perspectives	Reference
000					

Synchronization

- Adjustment of rhythms of active oscillatory objects due to their weak interaction
- Coordination of multiple events.

Two oscillators in phase after a lapse of time

Motivation	Synchronization using a reachability method	Symbolic reachability using Euler's method	Biped example	Conclusion and Perspectives	Reference
000	000	00	0000	0	

How to highlight the synchronization of dynamical system formally?

- Challenge of describing such systems because their equations are non-linear.
- To study non-linear systems, we often visualize them in a space of configurations (position and speed).

Motivation Synchronization using a reacha	ability method Symbolic reachability using	Euler's method Biped example	Conclusion and Perspectives	Reference
000 000	00	0000	0	

Synchronization using a reachability method

We consider a system composed of 2 subsystems governed by a system of differential equations (ODEs) of the form $\dot{x}(t) = f(x(t))$. The system of ODEs is thus of the form:

$$\begin{cases} \dot{x_1}(t) = f_1(x_1(t), x_2(t)) \\ \dot{x_2}(t) = f_2(x_1(t), x_2(t)) \end{cases}$$
(1)

with $x(t) = (x_1(t), x_2(t)) \in \mathbb{R}^m \times \mathbb{R}^m$, where *m* is the dimension of the state space of each subsystem.

Motivation	Synchronization using a reachability method	Symbolic reachability using Euler's method	Biped example	Conclusion and Perspectives	Reference
000	000	00	0000	0	

Synchronization using a reachability method

Given a point of $x_i(t)$ of $S_i \equiv (a_i, b_i, e_i)$ at time *t*, we can define its *phase* $\phi[x_i(t)]$ by:

$$\phi[x_i(t)] = (ord(x_i(t)) - ord(a_i))/(ord(b_i) - ord(a_i)))$$

where a_i , b_i are the end points of its main diagonal, e_i the size of its horizontal base and $ord(a_i)$ (resp. $ord(b_i)$) denotes the ordinate of a_i (resp. b_i).

Motivation	Synchronization using a reachability method	Symbolic reachability using Euler's method	Biped example	Conclusion and Perspectives	Reference
000	000	00	0000	0	

Synchronization using a reachability method

Scheme of S_1 (left) and S_2 (right) at t = 0 (top) and for some $t \in [kT, (k + 1)T)$ (bottom)

Symbolic reachability using Euler's method

- We use the symbolic Euler's method [LCDVCF17,Fri17]
- We consider a subset $B = B_1 \times B_2$, where $B_i \subset \mathbb{R}^m$ (i = 1, 2) is a ball of the form $\mathcal{B}(c_i, r)$ with c_i is the *centre* and *r* is the *radius*.

In order to compute the set of solutions starting at B^0 . We define for $t \ge 0$:

 $B^{euler}(t) = \mathcal{B}(c_1(t), r(t)) \times \mathcal{B}(c_2(t), r(t)),$

where $(c_1(t), c_2(t)) \in \mathbb{R}^m \times \mathbb{R}^m$ is the approximated value of solution x(t) of $\dot{x} = f(x)$ with initial condition $x(0) = (c_1^0, c_2^0)$ given by *Euler's explicit method*, and $r(t) \approx r^0 e^{\lambda t}$ is the *expanded* radius using the *one-sided* Lipschitz constant λ [Söd06].

[LCDVCF17] A. Le Coënt et al., "Control synthesis of nonlinear sampled switched systems using Euler's method," in SNR, (Apr. 22, 2017), ser. EPTCS, vol. 247, Uppsala, Sweden, 2017, pp. 18–33. DOI: 10.4204/EPTCS.247.2.

[Fri17] L. Fribourg, "Euler's method applied to the control of switched systems," in FORMATS, (Sep. 5, 2017–Sep. 7, 2017), ser. LNCS, vol. 10419, Berlin, Germany: Springer, Sep. 2017, pp. 3–21. DOI: 10.1007/978-3-319-65765-3_1. [Online]. Available: https://doi.org/10.1007/978-3-319-65765-3_1.

[[]S6d06] G. Sőderlind, "The logarithmic norm. History and modern theory," BIT Numerical Mathematics, vol. 46, no. 3, pp. 631–652, 2006, ISSN: 1572-9125. DOI: 10.1007/s10543-006-0069-9. [Online]. Available: https://doi.org/10.1007/s10543-006-0069-9.

Symbolic reachability using Euler's method

Proposition

Given a covering $\{B_j\}_{j \in J_i}$ of S_i (i = 1, 2). If for all $(j_1, j_2) \in J_1 \times J_2$, $PROC1(B_{j_1} \times B_{j_2})$ succeeds. Then, for all initial condition $(x_1^0, x_2^0) \in S$, there exists $t \in [kT, (k + 1)T)$ such that $(x_1(t), x_2(t)) \in S$. Besides: $|phase(x_1(t)) - phase(x_2(t))| \le \epsilon + \min(e_1/f_1, e_2/f_2)$ where $f_i = |ord(b_i) - ord(a_i)|$.

Motivation	Synchronization using a reachability method	Symbolic reachability using Euler's method	Biped example	Conclusion and Perspectives	Reference
			0000		

Biped

The passive biped model [McG90], seen as a hybrid oscillator, exhibits indeed a stable limit-cycle oscillation for appropriate parameter values that corresponds to periodic movements of the legs [SKN17].

Biped walker

[McG90] T. McGeer, "Passive dynamic walking," The International Journal of Robotics Research, vol. 9, no. 2, pp. 62–82, 1990. DOI: 10.1177/027836499000900206. [Online]. Available: https://doi.org/10.1177/027836499000900206. [SKN17] S. Shirasaka, W. Kurebayashi, and H. Nakao, "Phase reduction theory for hybrid nonlinear oscillators.

Physical Review E, vol. 95, 1 Jan. 2017. DOI: 10.1103/PhysRevE.95.012212.

Jawher Jerray (LIPN) Guarante

Guaranteed phase synchronization of hybrid oscillators using symbolic Euler's method

Motivation	Synchronization using a reachability method	Symbolic reachability using Euler's method	Biped example	Conclusion and Perspectives	Reference
			0000		

Biped example

The model has a continuous state variable $\mathbf{x}(t) = (\phi_1(t), \phi_1(t), \phi_2(t), \phi_2(t))^{\top}$. The dynamics is described by $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$ with:

$$f(\mathbf{x}) = \begin{pmatrix} \dot{\phi_1} \\ \sin(\phi_1 - \gamma) \\ \dot{\phi_2} \\ \sin(\phi_1 - \gamma) + \dot{\phi_1^2} \sin \phi_2 - \cos(\phi_1 - \gamma) \sin \phi_2 \end{pmatrix}$$
(2)
$$Reset(\mathbf{x}) = \begin{pmatrix} -\phi_1 \\ \dot{\phi_1} \sin(2\phi_1) \\ -2\phi_1 \\ \dot{\phi_1} \cos 2\phi_1(1 - \cos 2\phi_1) \end{pmatrix}$$
(3)
$$Guard(\mathbf{x}) \equiv (2\phi_1 - \phi_2 = 0 \land \phi_2 < -\delta).$$
(4)

with $\delta = 0.1$ and $\gamma = 0.009$.

Motivation	Synchronization using a reachability method	Symbolic reachability using Euler's method	Biped example	Conclusion and Perspectives	Reference
000	000	00	0000	0	

Biped example

Biped: A cyclic trajectory for plan ϕ_1 (left) and ϕ_2 (right); the green zone indicates the contractive area ($\lambda < 0$) and the red zone the expansive one ($\lambda > 0$)

- The time-step used in Euler's method is $\tau = 2 \cdot 10^{-5}$.
- The period of the system is $T = 776440\tau$.
- The radius expansion factor after one period is E = 2.63.
- The number of periods considered for synchronization is k = 30.

Motivation .	Synchronization using a reachability method	Symbolic reachability using Euler's method	Biped example	Conclusion and Perspectives	Reference
000	000		0000		

Biped example

Biped: Synchronization of 10 (pairs of) balls, located initially on the parallelogram perimeters, after k = 30 periods (without radius expansion for clarity).

Motivation Synchronization using a reach	nability method Symbolic reachability us	sing Euler's method Biped example	Conclusion and Perspectives	Reference
000 000	00	0000	•	

Conclusion and Perspectives

Conclusion

- We presented a symbolic reachability method to prove phase synchronization of oscillators.
- A finite number of points, displaced from their original position on a synchronization orbit, return after some time into a close neighborhood of the orbit.

Perspectives

- Adapt the *phase reduction* to solve systems with higher state space dimension.
- Replace the symbolic Euler's method by any other symbolic reachability procedure to cover larger sets S.

Motivation	Synchronization using a reachability method	Symbolic reachability using Euler's method	Biped example	Conclusion and Perspectives	Reference

L. Fribourg, "Euler's method applied to the control of switched systems," in FORMATS, (Sep. 5, 2017–Sep. 7, 2017), ser. LNCS, vol. 10419, Berlin, Germany: Springer, Sep. 2017, pp. 3–21. DOI: 10.1007/978-3-319-65765-3_1. [Online]. Available: https://doi.org/10.1007/978-3-319-65765-3_1.

A. Le Coënt, F. De Vuyst, L. Chamoin, and L. Fribourg, "Control synthesis of nonlinear sampled switched systems using Euler's method," in SNR, (Apr. 22, 2017), ser. EPTCS, vol. 247, Uppsala, Sweden, 2017, pp. 18–33. DOI: 10.4204/EPTCS.247.2.

T. McGeer, "Passive dynamic walking," The International Journal of Robotics Research, vol. 9, no. 2, pp. 62–82, 1990. DOI: 10.1177/027836499000900206. [Online]. Available: https://doi.org/10.1177/027836499000900206.

S. Shirasaka, W. Kurebayashi, and H. Nakao, "Phase reduction theory for hybrid nonlinear oscillators," Physical Review E, vol. 95, 1 Jan. 2017. DOI: 10.1103/PhysRevE.95.012212.

G. Söderlind, "The logarithmic norm. History and modern theory," BIT Numerical Mathematics, vol. 46, no. 3, pp. 631–652, 2006, ISSN: 1572-9125. DOI: 10.1007/s10543-006-0069-9. [Online]. Available: https://doi.org/10.1007/s10543-006-0069-9.

Motivation	Synchronization using a reachability method	Symbolic reachability using Euler's method	Biped example	Conclusion and Perspectives	Reference
000	000	00	0000	0	

Source of the graphics used I

Title: Heart rate Author: health.harvard.edu Source: https://www.health.harvard.edu/heart-health/what-your-heart-rate-is-telling-you License: CC BY-SA 3.0

Title: Solar System 2.0 - the helical model Author: DjSadhu Source: https://www.youtube.com/watch?v=mvgaxQGPg7I License: CC BV-SA 3.0

