Motivation	Description of the method	biochemical process example	Conclusion	References
00	0000	000000		

An Approximation of Minimax Control using Random Sampling and Symbolic Computation

Jawher Jerray ¹ Laurent Fribourg² Étienne André³

¹ Université Sorbonne Paris Nord, LIPN, CNRS, UMR 7030, F-93430, Villetaneuse, France and ²Université Paris-Saclay, CNRS, ENS Paris-Saclay, LMF, F91190 Gif-sur-Yvette, France and ³Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France

Friday 9th July, 2021

ADHS 2021

Motivation	Description of the method	biochemical process example	Conclusion O	References
Outline				

1 Motivation

2 Description of the method

3 biochemical process example

4 Conclusion

Motivation	Description of the method	biochemical process example	Conclusion	References
0				
Motivatio	n			

Dynamical systems:

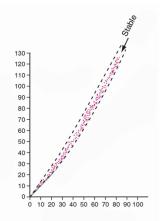
- in which a function describes the time dependence of a point in a geometrical space.
- we only know certain observed or calculated states of its past or present state.
- dynamical systems have a direct impact on human development.

\Rightarrow The importance of studying:

- synchronization
- behavior
- robust control

Motivation	Description of the method	biochemical process example	Conclusion	References
00				
Robusto	699			

- A control is considered robust if the dynamical system still stable, which means small perturbations to the solution using this control lead to a new solution that stays close to the original solution forever.
- A stable system produces a bounded output for a given bounded input.



Motivation 00	Description of the method ●000	biochemical process example	Conclusion O	References
Descript	ion of the method			

- We consider a dynamic system with control $u(\cdot)$ and a bounded disturbance function $d(\cdot)$ over a domain *D*). The control $u(\cdot)$ is a piecewise constant function that changes of value only at times $t = \tau, 2\tau, \ldots$.
- The set of possible controls of the system for $t \in [0, T]$ is finite and can be described by the set $\mathcal{U} \equiv U^K$ where $T = K\tau$ and $K \in \mathbb{N}$.

Motivation 00	Description of the method ●000	biochemical process example	Conclusion O	References
Descripti	on of the method			

- We consider a dynamic system with control $u(\cdot)$ and a bounded disturbance function $d(\cdot)$ over a domain *D*). The control $u(\cdot)$ is a piecewise constant function that changes of value only at times $t = \tau, 2\tau, \ldots$.
- The set of possible controls of the system for $t \in [0, T]$ is finite and can be described by the set $\mathcal{U} \equiv U^K$ where $T = K\tau$ and $K \in \mathbb{N}$.
- We suppose given a cost function $C : \mathbb{R}^n \times U^K \to \mathbb{R}_{\geq 0}$, which allows calculating the value $\int_0^T C(x(t), u(t)) dt$ for any solution x(t) of $\dot{x}(t) = f(x(t), u(t), d(t))$ for $t \in [0, T]$.

Motivation 00	Description of the method •••••	biochemical process example	Conclusion O	References
Descript	tion of the method			

- We consider a dynamic system with control $u(\cdot)$ and a bounded disturbance function $d(\cdot)$ over a domain *D*). The control $u(\cdot)$ is a piecewise constant function that changes of value only at times $t = \tau, 2\tau, \ldots$.
- The set of possible controls of the system for $t \in [0, T]$ is finite and can be described by the set $\mathcal{U} \equiv U^K$ where $T = K\tau$ and $K \in \mathbb{N}$.
- We suppose given a cost function $C : \mathbb{R}^n \times U^K \to \mathbb{R}_{\geq 0}$, which allows calculating the value $\int_0^T C(x(t), u(t)) dt$ for any solution x(t) of $\dot{x}(t) = f(x(t), u(t), d(t))$ for $t \in [0, T]$.
- The *minimax method* aims to find a control *v* defined by:

$$v = \operatorname*{arg\,min}_{u \in U^K} \max_{x(\cdot)} \mathcal{J}_{z_0,\varepsilon}(x(\cdot), u(\cdot))$$

with $\mathcal{J}_{z_0,\varepsilon}(x(\cdot), u(\cdot)) \equiv \left\{ \int_0^T C(x(t), u(t)) dt \mid \exists d(\cdot) \in D : \dot{x}(t) = f(x(t), u(t), d(t)) \text{ for } t \in [0, T] \land x(0) \in B(z_0, \varepsilon) \right\}.$

Motivation 00	Description of the method •••••	biochemical process example	Conclusion O	References
Descript	tion of the method			

- We consider a dynamic system with control $u(\cdot)$ and a bounded disturbance function $d(\cdot)$ over a domain *D*). The control $u(\cdot)$ is a piecewise constant function that changes of value only at times $t = \tau, 2\tau, \ldots$.
- The set of possible controls of the system for $t \in [0, T]$ is finite and can be described by the set $\mathcal{U} \equiv U^K$ where $T = K\tau$ and $K \in \mathbb{N}$.
- We suppose given a cost function $C : \mathbb{R}^n \times U^K \to \mathbb{R}_{\geq 0}$, which allows calculating the value $\int_0^T C(x(t), u(t)) dt$ for any solution x(t) of $\dot{x}(t) = f(x(t), u(t), d(t))$ for $t \in [0, T]$.
- The *minimax method* aims to find a control *v* defined by:

$$v = \underset{u \in U^{K}}{\arg\min\max} \mathcal{J}_{z_{0},\varepsilon}(x(\cdot), u(\cdot))$$

with $\mathcal{J}_{z_0,\varepsilon}(x(\cdot), u(\cdot)) \equiv \left\{ \int_0^T C(x(t), u(t)) dt \mid \exists d(\cdot) \in D : \dot{x}(t) = f(x(t), u(t), d(t)) \text{ for } t \in [0, T] \land x(0) \in B(z_0, \varepsilon) \right\}.$

• We propose here a simplified method composed of two steps.

Motivation	Description of the method	biochemical process example	Conclusion	References
	0000			

Description of the method

First Step:

■ Obtain an upper-bound $\mathcal{K}_{z_0,\varepsilon}(u(\cdot))$ of $\max_{x(\cdot)} \mathcal{J}_{z_0,\varepsilon}(x(\cdot), u(\cdot))$ using an Euler-based symbolic computation method, with:

$$\mathcal{K}_{z_0,\varepsilon}(u(\cdot)) \equiv \max_{x(\cdot)\in \mathcal{B}(\tilde{x}_{z_0}^{u(\cdot)}(\cdot),\delta_{\varepsilon,D}^{u(\cdot)}(\cdot))} \{\int_0^I \mathcal{C}(x(t),u(t))dt\},\$$

where

- $\tilde{x}_{z_0}^u(\cdot)$ denotes Euler's approximate solution of $\dot{x}(t) = f(x(t), u(t), \mathbf{0})$ for $t \in [0, T]$ with null perturbation (i. e., $d(\cdot) = 0$) and initial condition $z_0 \in \mathbb{R}^n$,
- $\delta_{e,0}^{(r,j)}(\cdot)$ denotes the upper-bound of the distance between an exact solution and an Euler approximate solution,
- $\mathbf{x}(\cdot) \in B(\tilde{\mathbf{x}}_{z_0}^{u(\cdot)}(\cdot), \delta_{\varepsilon, D}^{u(\cdot)}(\cdot))$ means, for all $t \in [0, T]$: $\mathbf{x}(t) \in B(\tilde{\mathbf{x}}_{z_0}^{u(\cdot)}(t), \delta_{\varepsilon, D}^{u(\cdot)}(t))$. In particular $\mathbf{x}(0) \in B(z_0, \varepsilon)$.¹

¹ $y \in B(z, a)$ with $y, z \in \mathbb{R}^n$ and $a \ge 0$ means $||y - z|| \le a$ where $|| \cdot ||$ denotes the Euclidean norm.

Motivation	Description of the method	biochemical process example	Conclusion	References
	0000			

Description of the method

Second Step:

- We will not consider the absolute minimum, but a *probable near-minimum* of $\mathcal{K}_{z_0,\varepsilon}(u(\cdot))$ (see [Vid01]).
- The probably approximate near-minimum of $\mathcal{K}_{z_0,\varepsilon}$ is obtained by drawing randomly *N* control u_1, \cdots, u_N of U^K , i.e., by generating *N* independent identically distributed (i.i.d.) samples u_1, \cdots, u_N of U^K , with a uniform probability (i. e., with probability $1/|U|^N$) then by taking $\mathcal{K}_{z_0,\varepsilon}(u_N^*)$ with $u_N^* = \arg\min_{u_1, \cdots, u_N} \mathcal{K}_{z_0,\varepsilon}(u_i)$.

Motivation 00	Description of the method ○○○●	biochemical process example	Conclusion O	References
Descript	tion of the method			

Description of the method

Advantage of the method:

- Avoid the excessive complexity of minimax methods,
- Use of samples with large size, as is often the case in statistical learning.
- Take into account *constraints* on the state of the system during its evolution.

Motivation	Description of the method	biochemical process example ●000000	Conclusion O	References
Biochemica	al process example			

Consider a biochemical process model *Y* of continuous culture fermentation (see [HouskaCDC09]) and initial condition in $B_0 = B(x_0, \varepsilon)$ for some $x_0 \in \mathbb{R}^2$ and $\varepsilon > 0$ (see [BQ20]):. Let $Y = (X, S, P) \in \mathbb{R}^3$ satisfies the differential system:

$$\begin{cases} \frac{dX}{dt} = -DX(t) + \mu(t)X(t) \\ \frac{dS}{dt} = D(S_f(t) - S(t)) - \frac{\mu(t)X(t)}{Y_{X/S}} \\ \frac{dP}{dt} = -DP + (\alpha\mu(t) + \beta)X(t) \end{cases}$$

[[]BQ20] J. B. van den Berg and E. Queirolo, "A general framework for validated continuation of periodic orbits in systems of polynomial ODEs," Journal of Computational Dynamics, vol. 0, no. 2158-2491-2019-0-10, 2020, ISSN: 2158-2491-D01: 10, 3934/jcd. 2021004.

Motivation	Description of the method	biochemical process example	Conclusion O	References
Biochemi	cal process exampl	e		

Consider a biochemical process model *Y* of continuous culture fermentation (see [HouskaCDC09]) and initial condition in $B_0 = B(x_0, \varepsilon)$ for some $x_0 \in \mathbb{R}^2$ and $\varepsilon > 0$ (see [BQ20]):. Let $Y = (X, S, P) \in \mathbb{R}^3$ satisfies the differential system:

$$\begin{cases} \frac{dX}{dt} = -DX(t) + \mu(t)X(t) \\ \frac{dS}{dt} = D(S_{f}(t) - S(t)) - \frac{\mu(t)X(t)}{Y_{x/s}} \\ \frac{dP}{dt} = -DP + (\alpha\mu(t) + \beta)X(t) \end{cases}$$

The model is controlled by $S_f \in [S_f^{min}, S_f^{max}]$ and the specific growth rate $\mu : \mathbb{R} \to \mathbb{R}$ of the biomass is a function of the states:

$$\mu(t) = \mu_m \frac{\left(1 - \frac{P(t)}{P_m}\right)S(t)}{K_m + S(t) + \frac{S(t)^2}{K_i}}$$

[BQ20] J. B. van den Berg and E. Queirolo, "A general framework for validated continuation of periodic orbits in systems of polynomial ODEs," Journal of Computational Dynamics, vol. 0, no. 2158-2491-2019-0-10, 2020, ISSN: 2158-2491. DOI: 10.3934/jcd.2021004.

Motivation	Description of the method	biochemical process example	Conclusion O	References
Biochemica	al process example			

Maximize the average productivity presented by the cost function:

$$\mathcal{J}_{Z_0,\varepsilon}(x(\cdot),S_f(\cdot)) = \frac{1}{T}\int_0^T DP(t)dt$$

While satisfying the constraint on the state X:

$$\frac{1}{T}\int_0^T X(t)dt \le 5.8$$

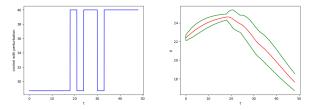
Motivation 00	Description of the method	biochemical process example ○○●○○○	Conclusion O	References
Biochemi	cal process examp	ام		

- The set $S \subset \mathbb{R}^n \equiv [3, 8] \times [10, 28] \times [15.5, 25.5]$.
- The codomain [28.7, 40] of the original continuous control function $S_f(\cdot)$ is discretized into a finite set U. After discretization, $S_t(\cdot)$ is a piecewise-constant function that takes its values in the finite set U made of 2 values uniformly taken in {28.7, 40}.
- We take: $z_0 = (6.52, 12.5, 22.40), \tau = 3, \Delta t = \tau/100^2, T = 48, K = T/\tau = 16.$ We consider an additive disturbance *d* with $d(\cdot) \in \mathcal{D} = [-0.05, 0.05]$.
- In total, we have $2^k = 2^{16}$ possible control cases.

 $^{^{2}\}Delta t$ is the "sub-sampling' parameter of the Euler scheme.

Motivation 00	Description of the method	biochemical process example	Conclusion O	References
— · · ·				

Biochemical process example

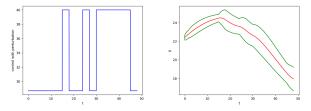


Left: control u^* satisfying the constraint on X, obtained by selection among 655 samples picked randomly; right: P(t) under u^* without perturbation (red curve) and with an additive perturbation $d \in [-0.05, 0.05]$ (green curve) over 1 period (T = 48) for $\Delta t = 1/400$ and initial condition (X(0), S(0), P(0)) = (6.52, 12.5, 22.4).

- We randomly pick one sample over every 100 possible controls, which gives $2^{16}/100\approx 655$ samples.
- We get: $\mathcal{K}_{z_0,\varepsilon}(u^*) = 3.1618$ (the constraint on the state *X* is satisfied since $\frac{1}{T} \int_0^T X(t) dt = 5.782 \le 5.8$). The CPU computation time of this example is 7 seconds.

Motivation	Description of the method	biochemical process example	Conclusion O	References

Biochemical process example

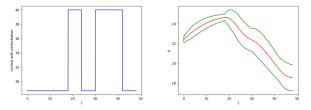


Left: control u^* satisfying the constraint on X, obtained by selection among 6554 samples picked randomly; right: P(t) under u^* without perturbation (red curve) and with an additive perturbation $d \in [-0.05, 0.05]$ (green curve) over 1 period (T = 48) for $\Delta t = 1/400$ and initial condition (X(0), S(0), P(0)) = (6.52, 12.5, 22.4).

- We randomly pick one sample over every 10 possible controls, which gives $2^{16}/10\approx 6,554$ samples.
- We get: $\mathcal{K}_{z_0,\varepsilon}(u^*) = 3.1667$. (the constraint on the state X is satisfied since $\frac{1}{T} \int_0^T X(t) dt = 5.794 \le 5.8$) The CPU computation time of this example is 18.69 seconds.

Motivation	Description of the method	biochemical process example	Conclusion	References
		000000		
D 1 1	· · · ·			

Biochemical process example



Left: control u^* satisfying the constraint on X, obtained by selection among 65536 samples picked randomly; right: P(t) under u^* without perturbation (red curve) and with an additive perturbation $d \in [-0.05, 0.05]$ (green curve) over 1 period (T = 48) for $\Delta t = 1/400$ and initial condition (X(0), S(0), P(0)) = (6.52, 12.5, 22.4).

We consider all the possible controls, which gives $2^{16} = 65,536$ samples. (The computation is tractable in this example because the set *U* contains only 2 modes, and because the length *K* of the horizon is moderate.)

We get: $\mathcal{K}_{z_0,\varepsilon}(u^*) = 3.1677$ (the constraint is satisfied since $\frac{1}{T} \int_0^T X(t) dt = 5.7995 \le 5.8$). The CPU computation time of this example is 200 seconds.

Motivation	Description of the method	biochemical process example	Conclusion	References
			•	

Conclusion

Conclusion

- We showed that the simple combination of random sampling with a symbolic computation method allows to deal with robust optimization problems for nonlinear systems on non-convex domains.
- The method doesn't contain sophisticated theories such as analysis of viscosity solutions of the Hamilton-Jacobi-Bellman-Isaacs equation.

Motivation 00	Description of the method	biochemical process example	Conclusion O	References
[BQ20]	continuation of periodic	E. Queirolo, "A general frame orbits in systems of polynomi ics, vol. 0, no. 2158-2491-20 34/jcd.2021004.	ial ODEs," <mark>Journal</mark> d	
[Vid01]	statistical learning theor	mized algorithms for robust co y," Automatica , vol. 37, no. 1 .0.1016/S0005-1098(01)001	10, pp. 1515–1528, 2	

