Motivation	Problematic and description of the method	Euler's method and error bounds	Systems with bounded uncertainty	Biochemical process example

Robust optimal periodic control using guaranteed Euler's method

Jawher Jerray¹ Laurent Fribourg² and Étienne André³

¹Université Sorbonne Paris Nord, LIPN, CNRS, UMR 7030, F-93430, Villetaneuse, France and ²Université Paris-Saclay, LSV, CNRS, ENS Paris-Saclay and ³Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France

Tuesday 25th May, 2021

American Control Conference 2021

Motivation	Problematic and description of the method	Euler's method and error bounds	Systems with bounded uncertainty	Biochemical process example

Outline

1 Motivation

- 2 Problematic and description of the method
- 3 Euler's method and error bounds
- 4 Systems with bounded uncertainty
- 5 Biochemical process example
- 6 Conclusion and Perspectives

Motivation	Problematic and description of the method	Euler's method and error bounds	Systems with bounded uncertainty	Biochemical process example
000				

Motivation

- Dynamical systems:
 - in which a function describes the time dependence of a point in a geometrical space.
 - we only know certain observed or calculated states of its past or present state.
 - dynamical systems have a direct impact on human development.
- \Rightarrow The importance of studying:
 - synchronization
 - behavior
 - robust control

Motivation	Problematic and description of the method	Euler's method and error bounds	Systems with bounded uncertainty	Biochemical process example
000				

Motivation

- Dynamical systems:
 - in which a function describes the time dependence of a point in a geometrical space.
 - we only know certain observed or calculated states of its past or present state.
 - dynamical systems have a direct impact on human development.
- \Rightarrow The importance of studying:
 - synchronization
 - behavior
 - robust control

Electronic Stability Control (ESC)

Motivation	Problematic and description of the method	Euler's method and error bounds	Systems with bounded uncertainty	Biochemical process example
000				

Robustness

- A control is considered robust if the dynamical system still stable, which means small perturbations to the solution using this control lead to a new solution that stays close to the original solution forever.
- A stable system produces a bounded output for a given bounded input.

Motivation	Problematic and description of the method	Euler's method and error bounds	Systems with bounded uncertainty	Biochemical process example
000				

An invariant

- The bounded output of some periodic stable system that is generated by a periodic robust control can be considered as an invariant from certain t.
- An invariant is an unchanged object after operations applied to it.

Motivation	Problematic and description of the method	Euler's method and error bounds	Systems with bounded uncertainty	Biochemical process example
	•0			

Problematic

Motivation	Problematic and description of the method	Euler's method and error bounds	Systems with bounded uncertainty	Biochemical process example
	00			

Description of the method

Given a differential system $\Sigma : dy/dt = f_u(y)$ of dimension *n* controlled by *u*, an initial point $y_0 \in \mathbb{R}^n$, a real $\varepsilon > 0$, and a ball $B_0 = B(y_0, \varepsilon)^1$

The center of each ball at time *t* is the Euler approximate solution $\tilde{Y}_{y_0}^u(t)$ of the system starting at y_0 , and the radius is a function $\delta_{\varepsilon}^u(t)$ bounding the distance between $\tilde{Y}_{y_0}^u(t)$ and an exact solution $Y_{y_0}^u(t)$ starting at B_0 .

Motivation	Problematic and description of the method	Euler's method and error bounds	Systems with bounded uncertainty	Biochemical process example
	00			

Description of the method

Given a differential system $\Sigma : dy/dt = f_u(y)$ of dimension *n* controlled by *u*, an initial point $y_0 \in \mathbb{R}^n$, a real $\varepsilon > 0$, and a ball $B_0 = B(y_0, \varepsilon)^1$

The tube can be described as $\bigcup_{t>0} B(t)$ where $B(t) \equiv B(\tilde{Y}^{U}_{V_0}(t), \delta_{\varepsilon}(t))$.

¹ $B(y_0, \varepsilon)$ is the set $\{z \in \mathbb{R}^n \mid ||z - y_0|| \le \varepsilon\}$ where $|| \cdot ||$ denotes the Euclidean distance.

Motivation	Problematic and description of the method	Euler's method and error bounds	Systems with bounded uncertainty	Biochemical process example
	00			

Description of the method

Given a differential system $\Sigma : dy/dt = f_u(y)$ of dimension *n* controlled by *u*, an initial point $y_0 \in \mathbb{R}^n$, a real $\varepsilon > 0$, and a ball $B_0 = B(y_0, \varepsilon)^1$

■ To find a *bounded* invariant, we look for a positive real *T* such that $B((i + 1)T) \subseteq B(iT)$ for some $i \in \mathbb{N}$. In case of success, the ball B(iT) is guaranteed to contain the "stroboscopic" sequence $\{B(jT)\}_{j=i,i+1,...}$ of sets B(t) at time t = iT, (i + 1)T, ... and thus constitutes the sought bounded invariant set.

¹ $B(y_0, \varepsilon)$ is the set $\{z \in \mathbb{R}^n \mid ||z - y_0|| \le \varepsilon\}$ where $||\cdot||$ denotes the Euclidean distance.

Motivation	Problematic and description of the method	Euler's method and error bounds	Systems with bounded uncertainty	Biochemical process example
		•0000		

Euler's method and error bounds

Let us consider the differential system controlled by *u*:

$$\frac{dy(t)}{dt}=f_u(y(t)).$$

where $f_u(y(t))$ stands for $f(\mathbf{u}(t), y(t))$ with $\mathbf{u}(t) = u$ for $t \in [0, \tau]$, and $y(t) \in \mathbb{R}^n$ denotes the state of the system at time *t* where τ is the integration time-step.

- $Y_{y_0}^u(t)$ denotes the exact continuous solution *y* of the system at time $t \in [0, \tau]$ under constant control *u*, with initial condition *y*₀.
- $\tilde{Y}_{y_0}^u(t) \equiv y_0 + tf_u(y_0)$ denotes Euler's approximate value of $Y_{y_0}^u(t)$ for $t \in [0, \tau]$.

Motivation	Problematic and description of the method	Euler's method and error bounds	Systems with bounded uncertainty	Biochemical process example
		00000		

Finite horizon and dynamic programming

Let us explain the principle of the method to find a control pattern $\pi \in U^k$ based on DP and Euler integration method used in [CF19a; CF19b]. Given $k \in \mathbb{N}$ and $\tau \in \mathbb{R}_{>0}$, we consider the following *finite time horizon optimal control*

Given $k \in \mathbb{N}$ and $\tau \in \mathbb{R}_{>0}$, we consider the following *finite time horizon optimal control problem*: Find for each $y \in S$

• the value $\mathbf{v}_k(y)$, i.e.,

$$\mathbf{v}_{k}(y) = \min_{\pi \in U^{k}} \left\{ J_{k}(y,\pi) \right\} \equiv \min_{\pi \in U^{k}} \left\{ \| Y_{y}^{\pi}(k\tau) - y_{end} \| \right\}.$$

and an *optimal pattern*:

$$\pi_k(\mathbf{y}) := \arg\min_{\pi \in U^k} \big\{ \| Y_{\mathbf{y}}^{\pi}(k\tau) - \mathbf{y}_{end} \| \big\}.$$

The space S is discretized by means of a grid \mathcal{X} such that any point $y_0 \in S$ has an " ε -representative" $z_0 \in \mathcal{X}$. This method is generated by a procedure $PROC_k^{\varepsilon}$ which, for any $y \in S$, takes its representative $z \in \mathcal{X}$ as input, and returns a pattern $\pi_k^{\varepsilon} \in U^k$ corresponding to an approximate optimal value of $\mathbf{v}_k(y)$ (see [CF19b]).

000 00 00000 00 00	Motivation	Problematic and description of the method	Euler's method and error bounds	Systems with bounded uncertainty	Biochemical process example
	000	00	00000	00	00

Proposition

[LCDVCF17] Consider the solution $Y_{y_0}^u(t)$ of $\frac{dy}{dt} = f_u(y)$ with initial condition y_0 of ε -representative z_0 (hence such that $||y_0 - z_0|| \le \varepsilon$), and the approximate solution $\tilde{Y}_{z_0}^u(t)$ given by the explicit Euler scheme. For all $t \in [0, \tau]$, we have:

 $\|Y_{y_0}^u(t) - \tilde{Y}_{z_0}^u(t)\| \leq \delta_{\varepsilon}^u(t).$

Motivation	Problematic and description of the method	Euler's method and error bounds	Systems with bounded uncertainty	Biochemical process example
		00000		

Definition

$$\begin{split} \delta_{\varepsilon}^{u}(t) &\text{ is defined as follows for } t \in [0, \tau]: \\ \text{if } \lambda_{u} < 0: \\ \delta_{\varepsilon}^{u}(t) &= \left(\varepsilon^{2} e^{\lambda_{u} t} + \frac{C^{2}}{\lambda_{u}^{2}} \left(t^{2} + \frac{2t}{\lambda_{u}} + \frac{2}{\lambda_{u}^{2}} \left(1 - e^{\lambda_{u} t}\right)\right) \right)^{\frac{1}{2}} \\ \text{if } \lambda_{u} &= 0: \end{split}$$

$$\delta_{\varepsilon}^{u}(t) = \left(\varepsilon^{2}e^{t} + C^{2}(-t^{2} - 2t + 2(e^{t} - 1))\right)^{\frac{1}{2}}$$

if $\lambda_u > 0$:

$$\delta_{\varepsilon}^{u}(t) = \left(\varepsilon^{2}e^{3\lambda_{u}t} + \frac{C^{2}}{3\lambda_{u}^{2}}\left(-t^{2} - \frac{2t}{3\lambda_{u}} + \frac{2}{9\lambda_{u}^{2}}\left(e^{3\lambda_{u}t} - 1\right)\right)\right)^{\frac{1}{2}}$$

where C_u and λ_u are real constants specific to function f_u , defined as follows:

$$C_u = \sup_{y \in \mathcal{S}} L_u \|f_u(y)\|,$$

Motivation	Problematic and description of the method	Euler's method and error bounds	Systems with bounded uncertainty	Biochemical process example
		00000		

Definition

L_u denotes the Lipschitz constant for *f_u*, and λ_u is the "one-sided Lipschitz constant" (or "logarithmic Lipschitz constant" [AS14]) associated to *f_u*, i. e., the minimal constant such that, for all *y*₁, *y*₂ $\in S$:

$$\langle f_u(y_1) - f_u(y_2), y_1 - y_2 \rangle \leq \lambda_u \|y_1 - y_2\|^2,$$
 (H0)

where $\langle \cdot, \cdot \rangle$ denotes the scalar product of two vectors of $\mathcal{S}.$

The constant λ_u can be computed using a nonlinear optimization solver (e.g., CPLEX [Cpl09]) or using the Jacobian matrix of *f*.

[[]AS14] Z. Aminzare and E. D. Sontag, "Contraction methods for nonlinear systems: A brief introduction and some open problems," in 53rd IEEE Conference on Decision and Control, CDC 2014, Los Angeles, CA, USA, December 15-17, 2014, 2014, pp. 3835–3847.

[Cpl09] I. I. Cplex, "V12. 1: User's manual for cplex," International Business Machines Corporation, vol. 46, no. 53, p. 157, 2009.

Motivation	Problematic and description of the method	Euler's method and error bounds	Systems with bounded uncertainty	Biochemical process example
			•0	

Systems with bounded uncertainty

A differential system with bounded uncertainty is of the form

$$\frac{dy(t)}{dt}=f_u(y(t),w(t)),$$

with $t \in \mathbb{R}^n \ge 0$, states $y(t) \in \mathbb{R}^n$, and uncertainty $w(t) \in \mathcal{W} \subset \mathbb{R}^n$ (\mathcal{W} is compact, i.e., closed and bounded).

■ We suppose (see [LCADSC+17]) that there exist constants $\lambda_u \in \mathbb{R}$ and $\gamma_u \in \mathbb{R}_{\geq 0}$ such that, for all $y_1, y_2 \in S$ and $w_1, w_2 \in \mathcal{W}$:

$$\langle f_u(y_1, w_1) - f_u(y_2, w_2), y_1 - y_2 \rangle \leq \lambda_u ||y_1 - y_2||^2 + \gamma_u ||y_1 - y_2|| ||w_1 - w_2||$$
 (H1).

Instead of computing λ and γ globally for S, it is advantageous to compute them *locally* depending on the subregion of S occupied by the system state during a considered interval of time.

[[]LCADSC+17] A. Le Coënt et al., "Distributed control synthesis using Euler's method," in Proc. of International Workshop on Reachability Problems (RP'17), ser. Lecture Notes in Computer Science, vol. 247, Springer, 2017, pp. 118–131.

Motivation	Problematic and description of the method	Euler's method and error bounds	Systems with bounded uncertainty	Biochemical process example
000	00	00000	00	00

Proposition

 $\delta^{u}_{arepsilon,\mathcal{W}}(t)$ is defined as follows for $t\in[0, au]$:

$$if \lambda_{u} < 0: \quad \delta^{u}_{\varepsilon,\mathcal{W}}(t) = \left(\frac{C^{2}}{-\lambda_{u}^{4}}\left(-\lambda_{u}^{2}t^{2}-2\lambda_{u}t+2e^{\lambda_{u}t}-2\right)\right) + \frac{1}{\lambda_{u}^{2}}\left(\frac{C\gamma_{u}|\mathcal{W}|}{-\lambda_{u}}\left(-\lambda_{u}t+e^{\lambda_{u}t}-1\right)+\lambda_{u}\left(\frac{\gamma_{u}^{2}(|\mathcal{W}|/2)^{2}}{-\lambda_{u}}\left(e^{\lambda_{u}t}-1\right)+\lambda_{u}\varepsilon^{2}e^{\lambda_{u}t}\right)\right)\right)^{1/2}$$

$$(1)$$

$$if \lambda_{u} > 0: \quad \delta_{\varepsilon,\mathcal{W}}^{u}(t) = \frac{1}{(3\lambda_{u})^{3/2}} \left(\frac{C^{2}}{\lambda_{u}} \left(-9\lambda_{u}^{2}t^{2} - 6\lambda_{u}t + 2e^{3\lambda_{u}t} - 2 \right) + 3\lambda_{u} \left(\frac{C\gamma_{u}|\mathcal{W}|}{\lambda_{u}} \left(-3\lambda_{u}t + e^{3\lambda_{u}t} - 1 \right) + 3\lambda_{u} \left(\frac{\gamma_{u}^{2}(|\mathcal{W}|/2)^{2}}{\lambda_{u}} (e^{3\lambda_{u}t} - 1) + 3\lambda_{u}\varepsilon^{2}e^{3\lambda_{u}t} \right) \right) \right)^{1/2}$$

$$\begin{split} \text{if } \lambda &= 0: \quad \delta^{u}_{\varepsilon,\mathcal{W}}(t) = \left(C^{2} \left(-t^{2}-2t+2e^{t}-2 \right) + \left(C\gamma |\mathcal{W}| \left(-t+e^{t}-1 \right) \right. \right. \\ &+ \left. \left(\gamma^{2} (|\mathcal{W}|/2)^{2} (e^{t}-1) + \varepsilon^{2} e^{t} \right) \right) \right)^{1/2} \end{split}$$

(3)

000 00 00000 00 00	Motivation	Problematic and description of the method	Euler's method and error bounds	Systems with bounded uncertainty	Biochemical process example
	000	00	00000	00	•0

Biochemical process example

Consider a biochemical process model *Y* of continuous culture fermentation (see [HLID09]) and initial condition in $B_0 = B(x_0, \varepsilon)$ for some $x_0 \in \mathbb{R}^2$ and $\varepsilon > 0$ (see [BQ20]):. Let $Y = (X, S, P) \in \mathbb{R}^3$ satisfies the differential system:

$$\begin{cases} \frac{dX}{dt} = -DX(t) + \mu(t)X(t) \\ \frac{dS}{dt} = D(S_f(t) - S(t)) - \frac{\mu(t)X(t)}{Y_{x/s}} \\ \frac{dP}{dt} = -DP + (\alpha\mu(t) + \beta)X(t) \end{cases}$$

[HLID09] B. Houska et al., "Approximate robust optimization of time-periodic stationary states with application to biochemical processes," in CDC, (Dec. 16–18, 2009), Shanghai, China: IEEE, 2009, pp. 6280–6285. DOI: 10.1109/CDC.2009.5400684.

[BQ20] J. B. van den Berg and E. Queirolo, "A general framework for validated continuation of periodic orbits in

Jawher Jerray (LIPN)

Robust optimal periodic control using guaranteed Euler's method

000 00 00000 00 OO	Motivation	Problematic and description of the method	Euler's method and error bounds	Systems with bounded uncertainty	Biochemical process example
	000	00	00000	00	•0

Biochemical process example

Consider a biochemical process model *Y* of continuous culture fermentation (see [HLID09]) and initial condition in $B_0 = B(x_0, \varepsilon)$ for some $x_0 \in \mathbb{R}^2$ and $\varepsilon > 0$ (see [BQ20]):. Let $Y = (X, S, P) \in \mathbb{R}^3$ satisfies the differential system:

$$\begin{aligned} \int \frac{dX}{dt} &= -DX(t) + \mu(t)X(t) \\ \frac{dS}{dt} &= D(S_f(t) - S(t)) - \frac{\mu(t)X(t)}{Y_{X/S}} \\ \frac{dF}{dt} &= -DP + (\alpha\mu(t) + \beta)X(t) \end{aligned}$$

where *X* denotes the biomass concentration, *S* the substrate concentration, and *P* the product concentration of a continuous fermentation process. The model is controlled by $S_f \in [S_f^{min}, S_f^{max}]$. While the dilution rate *D*, the biomass yield $Y_{x/s}$, and the product yield parameters α and β are assumed to be constant and thus independent of the actual operating condition, the specific growth rate $\mu : \mathbb{R} \to \mathbb{R}$ of the biomass is a function of the states:

$$\mu(t) = \mu_m \frac{\left(1 - \frac{P(t)}{P_m}\right)S(t)}{K_m + S(t) + \frac{S(t)^2}{K_i}}$$

[HLID09] B. Houska et al., "Approximate robust optimization of time-periodic stationary states with application to biochemical processes," in CDC, (Dec. 16–18, 2009), Shanghai, China: IEEE, 2009, pp. 6280–6285. DOI: 10.1109/CDC.2009.5400684.

[RO20] J. B. van den Berg and F. Oueirolo, "A general framework for validated continuation of periodic orbits in Jawher Jerray (LIPN) Robust optimal periodic control using guaranteed Euler's method

Motivation	Problematic and description of the method	Euler's method and error bounds	Systems with bounded uncertainty	Biochemical process example
				00

Biochemical process with uncertainty

Consider now the system Σ' with uncertainty $w(\cdot) \in W_0 = [-0.005, 0.005]$ and initial condition Y_0 :

$$\begin{cases} \frac{dX}{dt} = -DX(t) + \mu(t)X(t) + w \\ \frac{dS}{dt} = D(S_f(t) - S(t)) - \frac{\mu(t)X(t)}{Y_{X/s}} + w \\ \frac{dP}{dt} = -DP + (\alpha\mu(t) + \beta)X(t) + w \end{cases}$$
(4)

Motivation	Problematic and description of the method	Euler's method and error bounds	Systems with bounded uncertainty	Biochemical process example
000	00	00000	00	00

Biochemical process with uncertainty

Biochemical process with an additive perturbation $||w|| \le 0.005$ over 4 periods (4T = 192) for $\Delta t = 1/400$ and initial condition (X(0), S(0), P(0)) = (6.52, 12.5, 22.4), with X(t), S(t), P(t) and control $S_f(t)$.

• We have: $B((i_0 + 1)T_0) \subset B(i_0T_0)$ for $i_0 = 1$.

Motivation	Problematic and description of the method	Euler's method and error bounds	Systems with bounded uncertainty	Biochemical process example
000	00	00000	00	00

Conclusion and Perspectives

Conclusion

- We presented a simple method to generate a bounded invariant for a differential system.
- We have given a simple condition which guarantees that, under a repeated control sequence the system with perturbation is robust.
- The method uses a simple algorithm to compute local rates of contraction in the framework of Euler's method.
- The method uses a very general criterion of inclusion of one set in another.

Perspectives

Extend our method in order to take into account the specification of state constraints during the evolution of the system.

Motivation	Problematic and description of the method	Euler's method and error bounds	Systems with bounded uncertainty	Biochemical process example

[AS14]	Z. Aminzare and E. D. Sontag, "Contraction methods for nonlinear systems: A brief introduction and some open problems," in 53rd IEEE Conference on Decision and Control, CDC 2014, Los Angeles, CA, USA, December 15-17, 2014, 2014, pp. 3835–3847.
[BQ20]	J. B. van den Berg and E. Queirolo, "A general framework for validated continuation of periodic orbits in systems of polynomial ODEs," Journal of Computational Dynamics, vol. 0, no. 2158-2491-2019-0-10, 2020, ISSN: 2158-2491. DOI: 10.3934/jcd.2021004.
[CF19a]	A. L. Coënt and L. Fribourg, "Guaranteed control of sampled switched systems using semi-Lagrangian schemes and one-sided Lipschitz constants," in CDC, (Dec. 11–13, 2019), Nice, France: IEEE, 2019, pp. 599–604. DOI: 10.1109/CDC40024.2019.9029376.
[CF19b]	——, "Guaranteed optimal reachability control of reaction-diffusion equations using one-sided Lipschitz constants and model reduction," in WESE, (Oct. 17–18, 2019), R. D. Chamberlain, M. Grimheden, and W. Taha, Eds., ser. LNCS, vol. 11971, New York City, NY, USA: Springer, 2019, pp. 181–202. DOI: 10.1007/978-3-030-41131-2_9.
[Cpl09]	I. I. Cplex, "V12. 1: User's manual for cplex," International Business Machines Corporation, vol. 46, no. 53, p. 157, 2009.
[HLID09]	B. Houska, F. Logist, J. F. M. V. Impe, and M. Diehl, "Approximate robust optimization of time-periodic stationary states with application

Motivation Problematic and description of the method		Euler's method and error bounds	Systems with bounded uncertainty 00	Biochemical process example	
	to biochemical processes," in CDC, (Dec. 16–18, 2009), Shanghai, China: IEEE, 2009, pp. 6280–6285. DOI: 10.1109/CDC.2009.5400684.				
נו	LCADSC+17]	A. Le Coënt, F. De Vuyst, Euler's meth Reachability Science, vol.	J. Alexandre Dit Sandretto, A. Chapoutot, L. Fribourg, and L. Chamoin, "Distributed control synthesis using od," in Proc. of International Workshop on y Problems (RP'17), ser. Lecture Notes in Computer . 247, Springer, 2017, pp. 118–131.		

[LCDVCF17] A. Le Coënt, F. De Vuyst, L. Chamoin, and L. Fribourg, "Control synthesis of nonlinear sampled switched systems using Euler's method," in SNR, (Apr. 22, 2017), ser. EPTCS, vol. 247, Uppsala, Sweden, 2017, pp. 18–33. DOI: 10.4204/EPTCS.247.2.

