How to simulate Turing machines by invertible
one-dimensional cellular automata

Jean-Christophe Dubacq*
Département de Mathématiques et d’Informatique,

Ecole Normale Supérieure de Lyon,
46, allée d’Italie, 69364 Lyon Cedex 07, France

December 4, 1995

Abstract

The issue of testing invertibility of cellular automata has been often discussed.
Constructing invertible automata is very useful for simulating invertible dynamical
systems, based on local rules. The computation universality of cellular automata has
long been positively resolved, and by showing that any cellular automaton could be
simulated by an invertible one having a superior dimension, Toffoli proved that in-
vertible cellular automaton of dimension d > 2 were computation-universal. Morita
proved that any invertible Turing Machine could be simulated by a one-dimensional
invertible cellular automaton, which proved computation-universality of invertible
cellular automata. This article shows how to simulate any Turing Machine by an
invertible cellular automaton with no loss of time and gives, as a corollary, an easier
proof of this result.

Keywords: cellular automata, universality, invertibility.

1 Introduction

A cellular automaton can be seen as a simple array of cells, each cell interacting with
a defined set of neighbors, and changing of state according to an internal table in a
synchronous way (i.e. each cell considers the old states of the other cells to compute its
new state). One of the best known example of cellular automaton is Conway’s game of
Life.

We define and use a subclass of cellular automata that can be easily used for handling
simulations of small local processes. These partitioned cellular automata are a convenient
tool for describing some processes of cellular computations. In this subclass, we consider
that there are several flows of information that go through each cell. The set of neighbors
defines the direction and all the characteristics of that information flow, that is quantified
by a product of finite sets. All that can be done by a cell is to melt the different
flows, creating new ones or deleting some others, according to a deterministic table of

*2,rue Lebaudy, 78710 Rosny/Seine, France ; email: jedubacq@ens.ens-lyon.fr

transition. The description of these automata allows easier handling than the one of a
random cellular automaton.
The purpose of the second part of this paper is to prove the following result :

Theorem 1 Any I-tape Turing Machine can be simulated without loss of time by an
tnwvertible partitionned cellular automaton.

Morita, in [3], proved that invertible Turing Machines could be simulated by invertible
cellular automata, and he also presented a proof that Turing Machines could be simu-
lated by invertible ones, but the transformation of a TM into an invertible one needs a
quadratic time to run. Our construction is independant of Morita’s result.

The idea of the proof is to have each cell simulating one tape cell of the Turing
machine, while conveying to the left an history of all the transformations performed by
the head.

2 Definitions and properties

In this section, we shall define a subclass of cellular automata that are called partitionned
cellular automata. These automata are very simple to use in simulation of local pro-
cesses, and easy to define. Their formal definition allows primary results that are quite
interesting.

2.1 Partitioned cellular automata.

Partitioned cellular automata (PCA) are formally defined as quadruplets (d,S, N, f)
where:

e d is the dimension of the PCA;

e S=85 x8 x...xS8, where 81,8, ...,S, are finite sets of state;

e r € N is the number of neighbors;

o N =1{z1,2,..., 2} is a finite subset of Z¢ (the neighbourhood of the PCA);

f is the transition function defined from S — S with the following conditions:

— f is the composition of two functions ® o Gus;
— & is a function from S into S;
— Gy is the function defined from SV into S by

OGN (81,82, ..y 8r) = (sg), sg), . sg’;))

where s,(zz) is the 7" component of the i*" neighbor.

Figure 1: The set of neighbors of A and the action of G2 141}

i =_-_ B

Initial configuration Cy

s ™

A single step of computation over Cop by Gy_o _1 11}

|

A single step of computation over Cy by A

Figure 2: Applying A to a configuration

As an exemple we give the action of the following PCA:
A= (17 {07 1, 2} X {03 1, 2} X {0, 1, 2}5 {725 -1, +1}7 sorting o g{—2,—1,+1})

where the function sorting is the function that takes a list of three numbers as input
and gives the same list in increasing order as output.

A PCA is useful for moving around information (as quantified by the various sets of
states). Information will move in straight line if ® is the identity function or could be
melted locally by the action of ®.

The difference between partitionned cellular automata and cellular automata is that
the local transition function is always defined as being the composition of Gy and of
another fonction, and that the set of states is really defined as being a product of sets.

2.2 Invertibility

Lemma 1 A partitioned cellular automaton A is invertible iff its function ® is a bijec-
tion.

Proof. First we prove that if ® is not a bijection, then A is not invertible. We exhibate
two distincts configurations that have the same image. As ® is not bijective, it is
also not injective (as it goes from a finite set into the same finite set). Hence, there
does exist two states of the PCA that have the same image. Let’s denote them by
(01,02,...,0.) and (01,02, ...,0,). Then, let’s take two configurations that are identical
except for the neighbors of a cell ¢ in which the i*® component of the i*" neighbor is
o; in the configuration Cy and 6; in the configuration Cy. If we apply A on these two

configurations, it is clear that Gar lets all the cells identical except the cell ¢, and that ®
applied to c lets all the cells identical (as both configurations get the same state for cell
¢). Hence, we get a configuration that has two ancestors, and A is not invertible.

Now, we shall prove that if ® is a bijection, the PCA A is invertible. We simply
construct A~!. Let’s denote the state of a cell ¢ by s.. Let A~! = (d,S,N,g) with g a

function that can be written as G_p o @1 where ®—1 is the extension of ! to SV:

P (Seys Scgs - -5 Se,) = (D7 (56,), D7 (5¢0), -, DT (5,))

Hence, the i*" component of a cell ¢ is (<I>_1(S’C,Zi))(i), where s/, is the state of the cell ¢

after having applied A to the initial configuration. We can expand it into:

((I)_l(@(gN(scfZﬁzu Sc—zitzzy - -+ aScfZﬁzr)))(i)
ic€. (GN(SezitzsSezitans s Se—zitz)) P, d.e. SS,)Z#ZZ,, i.e. s, As that computation
stands for any cell ¢ and any i,1 < i < r, the automata A is invertible and admits A~!
for inverse. U

Let us note that the inverse for the PCA we built is not exactly a PCA since the
melting is done before the translation, but it is not fundamentally different (and it is still

a CA).

2.3 Consequences

We have just built a subclass of CA that is very easily described, and for which invert-
ibility is easily decidable. This section tries to explain why the transformation doesn’t
preserve invertibility. As Kari showed in [1] that in general case, invertibility of 2D
cellular automata is undecidable, there is a difference between the two classes. CA can
obviously simulate PCA, as the definition of these can be seen as just a definition of
a subset. PCA can simulate CA as follows: just make each cell send the whole infor-
mation to all the neighbors, and then let each cell apply the transition function of the
CA to a cell (as every cell will know the states of the neighbors). But the simulation
does not preserve bijectivity (because just a few states of the cells correspond to the
simulation). Thus it is not possible to prove that invertibility of the PCA is equivalent
to the invertibility of the corresponding CA. In fact, we build a mapping from one set
of configurations into another set of configurations that is a bijection in the case of the
simulation of a PCA by a CA (hence decidability of invertibility is kept) and that is not
surjective in the case of the simulation of a generic CA by a PCA.

3 Simulation of Turing Machines by one-dimensional in-
vertible partitioned cellular automata

We are interested in the possibility of simulating processes with partitioned cellular
automata, especially the simulation of Turing Machines. This resolves the problem of

universality of invertible cellular automata, as invertible partitioned cellular automata
are a subset of invertible cellular automata and simulation of a Turing Machine allows
the computation of any computable function. Morita already analysed the relations
between universality and cellular automata in [3], [4] and [2], but this study brings a
new approach to the problem.

3.1 Deterministic Turing Machine

The Turing Machine that we shall consider in this section can be defined as a triplet
T = (F, Q,7) where:

e F is a finite set of symbols (the set of characters of the Turing Machine) in which
we can distinguish a blank symbol, denoted by 0,

e Qis a finite set of states of the R/W head, in which we can distinguish an acceptance
halt-state qy,

e 7 is a function from F x Q@ — F x Q x {left, right}, the transition function of the
Turing Machine 7.

A configuration of a tape is given by a mapping from Z into F. A configuration of a
Turing Machine is the configuration of a tape and the position and internal state of the
head. For each computation step, the R/W head that is initiated to a starting position
makes a transition according to the function 7 depending on the value of the cell and the
value of the state of the head, rewrites a new value in the cell, and then moves whether
to the right or to the left (according to 7).

A valid configuration is a configuration that can be deduced from an initial mapping
from Z into F with a finite number of symbols different from 0 and the head at the left
end of the tape in a finite number of steps.

3.2 Definition of A,
Being given a Turing Machine T, we shall consider the following PCA A;:

N =1{0,1,-1,2}
Y=09u{y}

Ar = (1, F x B X X x (F x X x {left, right}), N, ® o G}

We shall denote the state of a cell by (a,b, c,d) and partially define ® in the following
way:

o Ifb#1t,c=18,d= (0,4 left), then, if we suppose (a’,b,0) = 7(a, b):

O(a,b,i,d) = (a,V,5 (a,b,left)) if & = left
(d',h,V, (a,b,left)) if § = right

o Ifb=1,c#1t,d=(0,8left), then, if we suppose (a’,c,0) = 7(a,c):

®(a,b,c,d) = (d,d,h,(a,c right)) if 6 = left
= (d,h,d,(a,cright)) if 6 = right

o If b=c=14, then
®(a,b,,d) = (a,4,1,d)

We shall prove that @ restricted to the already-defined states is injective. Hence, we will
be able to extend @ to a bijective function by choosing any image not already used for
the remaining undefined states.

Remark that the number of states of the A is 2f2(q + 1)3, where f is the size of the
set of characters of T" and ¢ is the number of states of 7.

Lemma 2 The restriction of ® to the previous configurations is injective.

Proof. Injectivity of ® in a same group of states is trivial, as d is always (0, g, left). We
shall just check that there can’t be any confusion between two different groups. The two
first groups (b or ¢ different from f) are obviously distinct because of the last component
of the images. Moreover, no element of these two groups can be seen as an element of
the third one, as the second element of the last component is necessarily different from
1 in the first two groups and is j in the third. O

Corollary 1 ® can be extended into a bijective function. Hence, A, is an invertible
one-dimenstonal cellular automaton.

3.3 Simulation of T" by A.

Valid configurations of A, are defined as configurations of the form (0, f,1, (0,1, left))
(blank cells) everywhere but in a finite number of cells, where it can be of the form
(7, 8,8, (0,8, left)), with v € F (clean cells) or (v,f,4,%), with vy € F and kK € F x ¥ X
{left,right} (used cells). Moreover, there must be exactly one cell in the line that has
the form (v, a, 1, (0, f, left)) with a # § and v € F, for which all cells on the right are either
blank or clean. The set of these configurations defines the Turing-valid configurations.

Lemma 3 There exists an injection from the set of configurations of T into the set of
Turing-valid configurations of A

Proof. Let C be a configuration of T. We build a Turing-valid configuration of A, as
follows:

o Vi #1,Cc(i) = (C(5), b8, (0,8, left));

o Cc(1) =(C(1),qo,8,(0,b,left)), where go is the initial state of the Turing Machine
T.

|

|

|

a a/
r(a,b)=(a’ .V lef /
b | b |rab=@pleft| :
07 left b left
a a/
7(a,b)=(a’ b ,righ /
b | & |reh—@yaight) [§ | b
0,7 left ajb)left
a a
h b T(a,b):ﬂb',left) by ;
078 i i
a a/
7(a,b)=(a’ b’ right /
D | b |res—wyight) § [b
0} et ajb it
a a
I R
dier T || e

Figure 3: Transition rules for A,

The configuration we get for A, is clearly Turing-valid. The injectivity results from the
mapping of C into Cc¢. ([

Now, we shall prove the main theorem:

Theoreme 1 The automaton A, simulates the computation of T on any configuration
C of T with no loss of time.

Proof. We just have to show a function that turns the configuration of A, obtained from
Turing-valid configurations by iterations of A, into configurations of 7" obtained by the
same number of computation steps. We do this by writing that the line of cells is turned
into the tape of T' by keeping just the first field of it (i.e. the character of the cell). The
R/W head is also in the only state that is different from f in the second or third fields.
We'll just write that the position of the R/W head is the abciss minus one of a cell from
which the second field is different from f, or the abciss plus one of a cell from which the
third field is different from . In fact, we have to guarantee that there’s only one cell
for which the second or the third field is different from [to prove the validity of that
transformation.

We can prove by induction the following property: there exists one and only one cell
(with abciss x() for which the second or third field is different from f, and Va > z, the
fourth field is (0, f, left). It’s true for the Turing-valid configurations. Let’s suppose that
it is true for the n'” iteration. The R/W head is on the cell g (symbol different from
0). After the iteration of Gar, the R/W head is either one cell on left, or one cell on
right. The shift on left of the fourth fields that are different from (0, g, left) implies that
they are at most in cell g — 2; the R/W head being in position g — 1 or g + 1, the
fourth component is (0, , left) and the function ® ensures that there is only one R/W
head after the application of ®. Hence, the condition is true for the (n+ 1) application
of A, because the configuration is still Turing-valid.

The last check is for the correctness of the simulation of the Turing Machine T". The
move of the R/W head is correct, as given by the function 7. The tape is correctly
simulated, because the cells change only if the R/W head is operating on them, and, if it
operates, the transition is the one that would be done by the Turing Machine (according
to the definition of ®). Hence, for any instant ¢, there is an exact correspondance between
the tape of T and the configuration of the cellular automaton. O

From the preceding, we can deduce the following corollary:

Corollary 2 There exist universal invertible one-dimensional cellular automata.

Acknowledgements

I would like to thank the people that have directed my work, Jacques /Mazoyer and
Bruno Durand, of the Laboratoire d’informatique du Parallélisme of the Ecole Normale
Supérieure de Lyon.

References

[1] J. Kari. Reversability of 2D cellular automata is undecidable. Physica, D 45:379-385,
1990.

[2] K. Morita. Any irreversible cellular automaton can be simulated by a reversible.
Technical report, IEICE, 1992.

[3] K. Morita and M. Harao. Computation universality of one-dimensional reversible
(injective). Transactions of the IEICE, E-72(6):758-762, June 1989.

[4] K. Morita and S. Ueno. Computation-universal models of two-dimensional 16-state
reversible automata. IEICE Trans. Inf. and Syst., E75-D(1):141-147, January 1992.

