
Cheat

THÈSE
présentée en vue de l’obtention du grade de

Docteur de l’Université Paris 13
Discipline: Informatique

Efficient Parametric Verification
of Parametric Timed Automata

NGUYỄN Hoàng Gia

Soutenue publiquement le 28 août 2018

Jury:

Étienne ANDRÉ MCF, HDR
Université Paris 13, France Co-directeur

Christophe FOUQUERÉ Professeur
Université Paris 13, France Président

Didier LIME MCF, HDR
École Centrale de Nantes, France Rapporteur

Wojciech PENCZEK Professeur
Polish Academy of Sciences, Poland Rapporteur

Laure PETRUCCI Professeur
Université Paris 13, France Co-directrice

Jun SUN
MCF

Singapore University of
Technology and Design, Singapore

Examinateur

Abstract

Critical real-time systems are becoming ubiquitous and are playing a vital
role in our world. To provide guarantees that the system is behaving correctly,
the correctness of these systems need to be verified before running. Besides
functional checking, the timed behavior checking is also crucial. Indeed, the
correctness of the systems also depends on the timing values or delays of internal
operations that can be affected by the environment.

Verification techniques assure that software or hardware systems fully satisfy
all their expected requirements. Most formal verification methods for timed
systems guarantee the correctness of a timed system for the predefined timing
values in its blueprint, but not for other undefined timing values which might
occur by the environment change and lead to undesired system behaviors. Un-
fortunately, verifying such system for various timing values can be an obstacle
and time-consuming. Therefore, by abstracting these specific timing values
with parameters, many timing values of a system can be easily synthesized and
checked at the same time: this technique is also known as parameter synthesis.

As a huge challenge for the verification, parameter synthesis techniques also
suffer from the “state space explosion” problem, which is the explosion of the
number of possible states while verifying a system formally.

First of all, we are interested in taking advantage of the capabilities of current
distributed architectures, and parameter synthesis algorithms should be redefined
and adapted to the distributed case. We propose in the thesis several distribution
schemes that can accelerate our parameter synthesis procedures.

We also focus on studying the techniques such as symbolic verification, zone
subsumption, etc. and how they affect the state space explosion problem. Then
we introduce several smart state exploration techniques with some heuristics, in
order to reduce the state space explosion. These techniques and heuristics are
integrated into our new synthesis algorithms, and one of these algorithms is also
extended in a distributed manner which gives an impressive performance in our
benchmarks.

Furthermore, to achieve a reliable result we present an approach for detecting
timed systems doing an infinite amount of actions in a finite time, which is
known as the Zeno phenomenon in theory. In reality, it is infeasible and such
counterexamples should always be avoided. Additionally, to detect the non-Zeno
phenomenon on a large scale network model, we also distribute our approach
on clusters. In the end, we introduce an algorithm to detect non-Zeno runs and
its distributed version of it for large-scale models. At the time of writing this
thesis, this is also the first work on non-Zeno parameter synthesis.

Keywords: Model checking, verification, real-time systems, parametric
timed automata, parameter synthesis, distributed verification, parametric verifi-
cation, exploration order, Zeno behaviors, distributed algorithms, IMITATOR.

2

Résumé

Les systèmes temps-réel critiques deviennent de plus en plus ubiquitaires et
jouent un rôle majeur de nos jours. Pour garantir le bon comportement d’un
système, leur correction doit être vérifiée avant les mises en service opérationnel.
Outre la vérification fonctionnelle, la vérification du comportement temporel est
également cruciale.

Les techniques de vérification garantissent que les systèmes logiciels ou
matériels satisfont les contraintes attendues. La plupart des méthodes de
vérification formelle pour les systèmes temporisés garantissent leur correction pour
des valeurs prédéfinies des contraintes temporelles, mais pas pour d’autres valeurs
non définies a priori, dues par exemple à un changement de l’environnement,
et qui peuvent conduire à des comportements du système non désirés. Mal-
heureusement, la vérification de tels systèmes pour différentes valeurs temporelles
peut être un obstacle et coûteuse en temps. Ainsi, en s’abstrayant de valeurs
temporelles spécifiques à l’aide de paramètres, de nombreuses valeurs temporelles
d’un système peuvent être synthétisées et vérifiées simultanément: cette technique
est la synthèse de paramètres.

Les techniques de synthèse de paramètres constituent un défi majeur pour la
vérification. Elles souffrent du problème de l’explosion combinatoire de l’espace
d’états, c’est-à-dire de la génération d’un nombre d’états considérable lors de la
vérification formelle du système.

Dans un premier temps, nous nous sommes intéressés à tirer parti des
spécificités des architectures informatiques distribuées modernes. Ainsi, les
algorithmes de synthèse de paramètres ont dû être redéfinis et adaptés au cas
distribué. Nous proposons dans cette thèse différents schémas de distribution
pour accélérer les procédures de synthèse de paramètres.

Nous nous intéressons également à l’étude de techniques telles que la vérification
symbolique, la subsomption, etc. et à leur impact sur l’explosion de l’espace
d’états. Nous introduisons donc ensuite plusieurs heuristiques d’exploration afin
de réduire l’explosion de l’espace d’états. Celles-ci sont intégrées à nos nouveaux
algorithmes de synthèse de paramètres. L’un de ces algorithmes est étendu
de manière distribuée, conduisant à des performances spectaculaires dans nos
expérimentations.

Enfin, pour obtenir un résultat réalisable, nous présentons une approche qui
détecte de systèmes temporisés effectuant un nombre infini d’actions en un temps
fini, connu sous le nom de phénomène Zeno. En pratique, de tels comportements
ne peuvent pas avoir lieu, et ne constituent pas des contre-exemples effectifs. De
plus, nous proposons une approche distribuée pour détecter des phénomènes non
Zeno à large échelle. Nous introduisons un algorithme détectant des comporte-
ments non Zeno, ainsi que sa version distribuée. Au moment de l’écriture de cette
thèse, ceci constitue les premiers résultats sur la synthèse de paramètres non Zeno.

Mots-clefs : Model checking, vérification, systèmes temps-réel, automates
temporisés paramétré, synthèse de paramètres, vérification distribuée, vérification
paramétrée, stratégie d’exploration, comportements Zeno, algorithmes distribués,
IMITATOR.

2

Remerciements

À l’issue de la rédaction de cette recherche, je suis convaincu que la thèse est
loin d’être un travail solitaire. En effet, cette thèse n’aurait pu exister dans sa
forme actuelle sans les personnes avec qui j’ai eu l’occasion de travailler ou de
rencontrer au cours de ces trois années.

Mes remerciements vont en premier lieu à mes directeurs de thèse Prof. Assoc.
Étienne André 1 et Prof. Laure Petrucci 2, en qui j’ai trouvé des professeurs
talentueux, compréhensifs, humains, toujours disponibles. Leurs conseils, leurs
encadrements, leurs implications, leurs corrections, leurs critiques ont beaucoup
apporté à mon travail. Tout ce travail n’aurait pas abouti sans leurs encourage-
ments et leurs soutiens constants.

Je tiens à remercier Christophe Fouqueré 3 d’avoir accepté d’être président
du jury. Un très grand merci à Didier Lime 4 et Wojciech Penczek 5 pour m’avoir
fait l’honneur d’être les rapporteurs de cette thèse. Prof. Assoc. Sun Jun 6 qui
aura été pour cette thèse bien plus qu’un examinateur.

Je voudrais m’exprimer ma gratitude envers Prof. Assoc. Camille Coti 7,
Prof. Assoc. Sami Evangelista 8 et Prof. Jaco van de Pol 9 pour leurs renseigne-
ments pendant des travaux en communs.

Je m’adresse un merci affectueux à Prof. Assoc. Quan Thanh Tho 10 et son
groupe SAVE qui m’ont, d’une manière ou d’une autre, encouragé à entrepren-
dre une thèse. Je souhaiterais aussi m’adresser ma gratitude aux professeurs
d’université Bordeaux et d’université Paris 6 qui m’ont donné les cours informa-
tiques au Vietnam.

Enfin, je voudrais remercier ma famille qui a, en tout temps, fait preuve
d’affection et de compréhension. C’est elle qui m’a offert les meilleures conditions
de recherche. Ces remerciements seraient incomplets si je n’adressais pas à
l’ensemble des membres de LIPN et à mes amis Vietnamiens pour leur soutien
moral ainsi que pour la très bonne ambiance que j’ai toujours trouvée au centre.

1http://lipn.univ-paris13.fr/˜andre/
2http://lipn.univ-paris13.fr/˜petrucci/
3https://lipn.univ-paris13.fr/˜fouquere/
4http://www.irccyn.ec-nantes.fr/˜lime/
5http://www.ipipan.waw.pl/˜penczek/
6people.sutd.edu.sg/˜sunjun/
7http://lipn.univ-paris13.fr/˜coti/
8http://lipn.univ-paris13.fr/˜evangelista/
9http://wwwhome.ewi.utwente.nl/˜vdpol/

10http://www.cse.hcmut.edu.vn/˜qttho/

http://lipn.univ-paris13.fr/~andre/
http://lipn.univ-paris13.fr/~petrucci/
https://lipn.univ-paris13.fr/~fouquere/
http://www.irccyn.ec-nantes.fr/~lime/
http://www.ipipan.waw.pl/~penczek/
people.sutd.edu.sg/~sunjun/
http://lipn.univ-paris13.fr/~coti/
http://lipn.univ-paris13.fr/~evangelista/
http://wwwhome.ewi.utwente.nl/~vdpol/
http://www.cse.hcmut.edu.vn/~qttho/

Contents

1 Introduction 9
1.1 Context . 9

1.1.1 Formal methods . 10
1.1.2 Testing vs. formal verification 10
1.1.3 Model checking and verification 11
1.1.4 Real-time model checking 12
1.1.5 Parametric model checking 12

1.2 Objectives . 13
1.3 Contributions . 14
1.4 Organization of the document . 16

2 Preliminary definitions 17
2.1 Introduction . 18
2.2 Labeled transition systems . 19
2.3 Clocks, parameters and constraints 19

2.3.1 Clocks . 19
2.3.2 Parameters . 19
2.3.3 Constraints . 20

2.4 Timed Automata . 21
2.4.1 Introduction . 21
2.4.2 Syntax . 21
2.4.3 Concrete semantics . 23
2.4.4 Problems . 25
2.4.5 Tools and applications . 26

2.5 Parametric timed automata . 27
2.5.1 Introduction . 27
2.5.2 Syntax . 27
2.5.3 Concrete semantics . 29
2.5.4 Symbolic semantics . 29
2.5.5 Subsumption abstraction 32
2.5.6 Problems . 34
2.5.7 Tools and applications . 34
2.5.8 Related formalisms . 34

1

2.6 System property specification . 35
2.7 Temporal logic . 35
2.8 State of the art . 36

2.8.1 Decision and computation problems 37
2.8.2 Decidability of PTA . 38

2.9 Parameter synthesis . 41
2.9.1 The good parameters problem 41
2.9.2 The Inverse problem . 42
2.9.3 The Inverse Method . 42
2.9.4 The Behavioral Cartography 43
2.9.5 EF-problems . 44

2.10 IMITATOR . 46
2.11 Efficient verification . 47

2.11.1 On-the-fly verification . 47
2.11.2 Abstracted verification . 47
2.11.3 Compositional verification 47

2.12 Parallel computing . 47

3 Distributed verification of parametric real-time systems 50
3.1 Introduction . 50
3.2 Static domain decomposition . 52
3.3 Master-worker point distribution algorithms 54

3.3.1 Principle: master-worker 54
3.3.2 An abstract algorithm for the master 55
3.3.3 Sequential point distribution 56
3.3.4 Random + sequential point distribution 57
3.3.5 Shuffle point distribution 58

3.4 Dynamic domain decomposition 59
3.4.1 Master algorithm . 60
3.4.2 Worker algorithm . 61
3.4.3 An additional heuristic . 62

3.5 Experiments . 63
3.6 Conclusion . 69

4 Reachability preservation based parameter synthesis 70
4.1 Introduction . 70
4.2 Solving the EF-emptiness problem using reachability preservation 71

4.2.1 Undecidability of the preservation of reachability 71
4.2.2 Parameter synthesis preserving the reachability 73
4.2.3 EF-synthesis using PRP 76

4.3 Towards distributed parameter synthesis 77
4.4 Experimental comparison . 78
4.5 Conclusion . 81

2

5 Efficient synthesis using optimized state exploration strategies 82
5.1 Introduction . 82
5.2 Parametric zone inclusion algorithm 84
5.3 Parametric ranking strategy . 86
5.4 Parametric priority strategy . 90
5.5 Experimental evaluation . 93

5.5.1 Symbolic state merging 94
5.5.2 Comparison . 95
5.5.3 Final interpretation . 96

5.6 Conclusion . 96

6 Layered and Collecting NDFS with Subsumption for Paramet-
ric Timed Automata 100
6.1 Introduction . 100
6.2 Preserving accepting runs with subsumption 102
6.3 Parametric timed nested depth-first search with subsumption . . 103

6.3.1 NDFS with subsumption for PTA 103
6.3.2 Early pruning of the red search 106
6.3.3 Starting the red search early: A layered NDFS 106

6.4 Collecting NDFS for parameter synthesis 108
6.5 Experiments . 108

6.5.1 Implementation . 110
6.5.2 Experimental results . 110

6.6 Conclusion . 113

7 Parametric model checking under non-Zenoness assumption 114
7.1 Introduction . 115
7.2 Undecidability of the non-Zeno emptiness problem 116
7.3 CUB-parametric timed automata 117

7.3.1 CUB timed automata . 117
7.3.2 Parametric clock upper bounds 118
7.3.3 CUB parametric timed automata 119
7.3.4 CUB PTA detection . 120
7.3.5 Transforming a PTA into a disjunctive CUB-PTA 123

7.4 Zeno-free cycle synthesis in CUB-PTAs 125
7.5 Distributing non-Zeno parametric model checking 133

7.5.1 Master algorithms . 133
7.5.2 Worker algorithm . 134
7.5.3 Handling the case of a network of PTAs 136

7.6 Experiments . 137
7.6.1 Evaluation of the non-distributed version 137
7.6.2 Evaluation of the distributed version 140

7.7 Conclusion . 141

3

8 Conclusion and perspectives 143
8.1 Summary of the thesis . 143
8.2 Perspectives . 145

A Appendix 161
A.1 Decidability . 161

A.1.1 Turing machine . 161
A.1.2 Halting problem . 162
A.1.3 Decidable and undecidable problems 163
A.1.4 Reducibility . 163

A.2 Two-counter machine . 164

B Distributed verification of parametric real-time systems 165
B.1 Existing algorithms . 165

B.1.1 The Inverse Method algorithm 165
B.1.2 The Behavioral Cartography algorithm 167

B.2 Master-worker point distribution algorithms 167
B.2.1 Sequential point distribution: initialization algorithm . . 167
B.2.2 Random point distribution: initialization algorithm 167
B.2.3 Shuffle point distribution: algorithms 168

C Reachability preservation based parameter synthesis for timed
automata 169
C.1 Reachability synthesis algorithm 169
C.2 Proof of Proposition 4.2.3 . 170

4

List of Figures

1.1 The concept of model checking 11

2.1 Example of labeled transition system 19
2.2 Example of timed automaton . 22
2.3 Example of network of parametric timed automata 24
2.4 Example of concrete run for the TA A in Fig. 2.3c 25
2.5 Example of trace for the TA A in Fig. 2.3c 25
2.6 Example of trace set for the TA A in Fig. 2.3c 26
2.7 Examples of parametric timed automaton and parametric timed

Büchi automaton . 28
2.8 Example of network of parametric timed automata 30
2.9 Example of symbolic run for the PTA A in Fig. 2.8c 31
2.10 Example of parametric zone graph PZG for the PTA A in Fig. 2.8c 32
2.11 Example of parametric zone graph PZG for the PBTA in Fig. 2.7b 33
2.12 Example of trace for the PTA A in Fig. 2.8c 33
2.13 Example of trace set for the PTA A in Fig. 2.8c 33
2.14 An example of parameter domain in multi-dimensions (hyperrect-

angle or polyhedron) . 41
2.15 Graphical example . 43
2.16 Examples of graphical behavioral cartographies in 2 dimensions . 44
2.17 EFsynth algorithm . 45
2.18 An example of a PTA A1 [JLR15] 45
2.19 Functional view of IMITATOR . 46

3.1 Graphical representations and challenges 53
3.2 Examples of graphical behavioral cartographies in 2 dimensions . 53
3.3 Sequential algorithm illustration 56
3.4 Random algorithm illustration 57
3.5 Shuffle algorithm illustration . 58
3.6 Subdomain algorithm illustration 59
3.7 Subdomain algorithm with splitting process illustration 60
3.8 Experiments: execution time and speedup (1/3) 66
3.9 Experiments: execution time and speedup (2/3) 67
3.10 Experiments: execution time and speedup (3/3) 68

5

4.1 Undecidability of PREACH-emptiness: PTA A 72
4.2 EF-synthesis using PRPC and EFsynth for A1 77
4.3 Cartography output by PRPC for Sched1 78
4.4 Cartography output by PRPC for Sched2 with a = 50 79

5.1 Examples . 86
5.2 Parametric zone graphs of Fig. 5.1a where the number n in a state

label sn reflects the exploration order 87
5.3 PZG with parametric ranking strategy 89
5.4 Comparing our two strategies . 90
5.5 Blowup example . 91
5.6 Inefficiency in largest zone first like algorithms 93

6.1 The symbolic state space PZG(B) of the model in Fig. 2.7b without
information on contraints . 102

7.1 Undecidability of the non-Zeno emptiness problem 117
7.2 Examples: detection of and transformation into CUB-PTAs . . . 121
7.3 Transformed version of Fig. 7.2c 122
7.4 Examples of PTAs to illustrate the CUB concept 123
7.5 Non-Zeno synthesis process flowchart 131
7.6 Parametric zone graph examples of the disjunctive CUB-PTAs . 132

6

List of Algorithms

1 Worker algorithm . 55
2 Abstract algorithm for the master 56
3 Sequential.choosePoint() . 57
4 Random.choosePoint() . 58
5 Subdomain: Master . 61
6 Subdomain: Worker n . 62

7 PRP(A, v) . 74
8 PRPC(A,D) . 76

9 State exploration with parametric zone inclusion 85
10 Ranking by parametric zone size 88
11 init rank(l, C) . 89
12 max rank((l, C), r) . 89
13 Parametric priority strategy algorithm 92

14 Classical ndfs . 104
15 ndfs with subsumption checks and red prune of dfsBlue (in light-

blue) and early pruning (in yellow). 105
16 Layered ndfs . 107
17 Layered collecting ndfs . 109

18 CUBdetect(A) . 120
19 CUBtrans(A): Transformation into a CUB-PTA 126
20 CUB-PTA non-Zeno synthesis algorithm synthNZ(A) 130
21 distSynthNZ(A): Master . 135
22 distSynthNZ(A): worker n . 136

23 Inverse Method IM(A, v) . 166
24 Behavioral Cartography BC(A, D) 167
25 Sequential.initialize() . 167
26 Random.initialize() . 167
27 Shuffle.initialize() . 168
28 Shuffle.choosePoint() . 168

7

29 Reachability synthesis EFsynth(A, s,G, S) 170

8

1
C

h
a

p
t

e
r

Introduction

Contents
1.1 Context . 9

1.1.1 Formal methods . 10
1.1.2 Testing vs. formal verification 10
1.1.3 Model checking and verification 11
1.1.4 Real-time model checking 12
1.1.5 Parametric model checking 12

1.2 Objectives . 13
1.3 Contributions . 14
1.4 Organization of the document 16

1.1 Context
The evolution of information technology industry makes computers becoming
ever more present in our daily lives and computer software is becoming more
and more complicated. Hence, there is more chance for failure. Failure is
unacceptable for critical systems such as those used in the medical industry,
biology, e-commerce, aeronautics, etc.

For instance, self-driving cars become more popular and real-time processing
is an important issue, especially when self-driving cars are moving fast and need
to react very quickly. Any delay in processing can lead to a fatal crash. Even
when a car accident happens, any failure or delay of the airbag inflation can also
cause serious injury or even human loss.

9

In 1991, the American army fired a Patriot Missile to intercept an Iraqi
missile. Interception failed because of an inaccurate time calculation due to clock
drift, and the Iraqi missile destroyed an American army barracks. Consequently,
28 soldiers died and 100 were injured. The reason is a floating point rounding
error deriving from the system’s internal clock. This incident shows that the
robustness of timed critical systems is very important.

Other catastrophic failures come from other computer bugs in history, such
as the Ariane 5 rocket that exploded 40 seconds after takeoff in 1996 and a bug in
the Intel Pentium II chip in 1994. These bugs cost more than 400 million dollars.
Between 1985 and 1987, the overdose of X-rays in the Therac-25 accident caused
the death of at least 2 patients, and 4 patients were given radiation overdose.

Moreover, whether a system is a software or a hardware system, the later
the bug is found, the more it costs and a question is how we could find the time
interval of functional safety or fault tolerant of real-time systems. This is also
the goal of this thesis, which is to find these time intervals efficiently.

1.1.1 Formal methods
Formal methods [HBH+99], are understood broadly as a particular kind of math-
ematically based techniques for the specification, verification and development.
They are methods used to check rigorously the correctness of hardware and
software. While traditional testing and simulation can prove the presence of
bugs (errors) with finite test cases, and do not guarantee the absence of bugs.
In contrast, formal methods based on mathematics, logic and reasoning, aim to
prove the absence of bugs. In general, formal design can be seen as a three-step
process:

• Formal Specification: design of a rigorously specified mathematical model
to describe the system.

• Formal Verification: exhaustive search of the state space of the model to
prove its correctness w.r.t. the expected properties.

• Implementation: convert the specification into code by development.

1.1.2 Testing vs. formal verification
Software and hardware testing has played an important role in finding bugs in
systems for past decades. Software testing is a process based on predefining sets
of given inputs and expected outputs for a software system and detecting the
differences between its actual outputs with the expected outputs. For hardware
systems, where fabrication processes are costly, in order to make sure a system
works correctly it is usually tested by simulating a model of the real-world system.
But the challenge is that with nowadays complex systems, it is impossible to
identify or predict bad behaviors or guarantee that systems will perform as they
should. However, testing cannot assure that a given system is error-free.

10

In other words, formal methods such as formal specification, formal verifica-
tion, etc. have been proved to be successful as an effective and automatic solution
that can guarantee a given system is error-free while reducing the number of re-
sources and time spent. Instead of checking the system with its expected outputs,
formal verification or formal methods are based on mathematical foundations to
reason about the correctness of the system under consideration during the design
phase. The system and its desirable behaviors are formalized and represented
mathematically and precisely as a state machine and properties respectively.
Then a computer program called model checker checks that the system property
is satisfied by the model or exhibits an example that shows it is not satisfied.
The next section will describe model checking and model checkers in detail.

1.1.3 Model checking and verification
Verification technologies such as model checking [BK08] or theorem proving
are two well established formal verification techniques, and this thesis will
be dedicated to model checking, which has been proved to be a successful
technique and has many applications in various domains both in academy and
industry. More specifically, it is widely used in hardware and software analysis
for networking and telecommunications, medical, aeronautic, biology industries,
etc.

Furthermore, in 2007, an ACM Turing award which is the most prestigious
award in computer science was given to Edmund Melson Clarke, Ernest Allen
Emerson and Joseph Sifakis for their excellence in developing model checking
into a highly effective verification technology, and it could be seen as a recent
evidence of success of the model checking field.

System Model

System
Properties

Model Checker

Yes
Satisfied

No
Counter Example

Figure 1.1 – The concept of model checking

In the model checking, the system to be verified is modeled as a transition
system, and the property to be checked is expressed in a formal language such as
e. g. temporal logics. Then, the transition system and the property are used as
inputs to a model checker. The model checker explores exhaustively all reachable
states of the transition system, to check whether the property is true, and the set
of all explored states is called state space. Otherwise, if the property is not valid,
the model checker exhibits a counter-example that violates the property. Based
on this counter-example, we can detect the errors in the model and correct them.
A diversity of properties can be verified by model-checking, such as deadlock
freedom, invariants, request-response properties, etc. These properties can be

11

categorized into five classes: reachability, safety, liveness, deadlock-freeness, and
fairness properties.

However, the main obstacle of the model checking approach is state space
explosion: the transition graph usually becomes exponentially large based on
the size of the system, which causes the exploration of the whole state space to
become impracticable.

1.1.4 Real-time model checking
Real-time systems are notoriously difficult to design due to the complicated use of
timing constraints, and must therefore be verified, e. g. using model checking. The
correctness of real-time systems depends not only on its functional correctness
but also on the timing values. As a consequence, the timing requirements
in the system are therefore taken into consideration, and model checking is
extended in order to verify real-time systems by adding timing information to
the system model. Many formalisms were proposed to model and verify real-
time systems e. g. timed Petri nets [Mer74] (an extension of Petri nets [Pet62]),
timed communicating sequential processes (CSP) [Der00, OW02] (an extension
of CSP [Hoa78]) and timed automata [AD90, AD94] (an extension of finite state
automata). In Section 2.4 we will recall timed automata (TAs) which is one of
the most popular formalisms used to verify real-time systems.

Unfortunately, due to frequent changes in the specification and the need of
checking a wide range of timing values of the real-time systems, real-time model
checking does not have the ability to adapt to these requirements. Technically,
these limitations can be surpassed by parametric model checking which is
introduced in Section 1.1.5.

1.1.5 Parametric model checking
Under time-critical conditions, the timing characteristics are vital in the design
of real-time systems. In particular, when these systems are deployed in different
environments, some unpredictable timing delays or unexpected behaviors might
occur, which are not included in their design. Furthermore, from an industrial
point of view, a new real-time system is often constructed or improved from its
previous system design with some changes in the specification. Unfortunately,
checking a specific system with given concrete timing values in real-time model
checking is not sufficient. As a consequence, these requirements of frequently
changing specifications are infeasible for real-time model checking (Section 1.1.4)
in most cases, and this might be an explanation why formal methods are not as
widespread as they could be.

To overcome the shortcomings of real-time model checking, parametric model
checking was proposed to verify such real-time systems where some timing
constants are unknown or uncertain. In a parametric model, we abstract the
details of timing information of the real-time system by using parameters. It
makes sense considering the delays as parameters, by this mean we can strengthen
the system model and enrich the final result by finding parameter ranges for

12

which the system is correct or incorrect. Then the verification problems become
parameter synthesis problems [AHV93]. Throughout this thesis, we will use
parametric timed automata (PTA) [AHV93], an extension of TAs, for solving
our synthesis problems. This formalism will be recalled in Section 2.5.

Additionally, many formalisms have been well adapted to the parametric
case: parametric timed Petri nets [TLR09] (an extension of time Petri nets
[Mer74]), parametric stateful timed CSP [ALSD14] (an extension of timed CSP
[Der00, OW02]) and parametric timed automata (PTAs) [AHV93] (an extension
of TAs [AD90, AD94]). In Section 2.5, we will present PTAs, which are used in
this thesis and are also one of the most popular formalisms used for parametric
model checking (other related formalisms are given in detail in Section 2.5.8).
Section 2.9 will be dedicated to parameter synthesis problems.

Besides representing a range of timing values, other types of parameters can
also be defined to represent the probabilities (uncertainty) [Geo14, KNSS99,
Bea03], weights or cost (energy) [ADD+11, ADD+13], actions [KMP15, WR88],
or discrete (processes) [Abd12, DSZ10, AD16].

1.2 Objectives
We have presented the context of real-time model checking for timed systems
and benefits of using parametric model checking in Section 1.1.5. The general
objective of the thesis aims at making the parametric verification procedures
more efficient and reliable.

To this end, we follow mainly two approaches. In the first approach, we
focus on developing efficient and reliable parametric checking algorithms, or
semi-algorithms in case the termination of the algorithms is not guaranteed
because of undecidable problems (Section 2.8.2). In the other, to make our
parametric checking algorithms more efficient, we extend them in a distributed
manner, so as to take advantage of high performance computing power available
nowadays.

We indicate below the research avenues for the parameter synthesis approach
and the objectives of this thesis are also summarized:

1. Although most problems of interest are undecidable for PTAs [And15], some
(semi-)algorithms were proposed to tackle practical parameter synthesis
(e. g. [ACEF09, KP12, JLR15, ABB+16]). Nevertheless, these algorithms
still suffer from the state space explosion problem, where the number of
states in the system increases exponentially. One of our objectives is to
propose new efficient parameter synthesis algorithms. Then, by taking
advantage of the capabilities of current distributed architectures, these
algorithms will be redefined to be adapted to the distributed case.

2. Abstraction is proved as an efficient solution to the state space explosion
problem [CC77, LGS+95]. One of the main abstractions widely used is
the parametric zone graph, a symbolic semantics of a parametric timed
automaton, which will be presented in Section 2.5. Besides that, we also

13

use parametric inclusion abstraction or zone subsumption techniques to
reduce state space explosion.
Zone inclusion algorithm is an algorithm relied on zone subsumption
technique to reduce state space explosion. Unfortunately, the zone inclusion
algorithm is strongly affected by exploration order strategies and thus it
might explore unnecessary states. Consequently, it will cause some issues
such as time-consumption and high memory usage. In order to synthesize
parameter valuations more efficiently, choosing an optimal search order for
our state exploration algorithms is one of our goals.
In addition to synthesize parameter valuations of which a given state of
a system is reachable, it is necessary to synthesize parameter valuations
that a good state of a system is eventually reachable, this problem is also
known as parameter synthesis for liveness properties. Then, by using zone
subsumption technique, another goal is to synthesize parameter valuations
for liveness properties efficiently.

3. The Zeno phenomenon in parametric model checking, also called Zeno
behavior, is a non-realizable behavior where an infinite number of actions or
discrete transitions can execute within a finite time in the model. Therefore,
Zeno behavior is infeasible in reality and should be avoided. It is highly
desirable when performing parametric model-checking that the parameter
valuations satisfying the property should not allow the appearance of Zeno
behaviors. Although there are many researches on the Zeno phenomenon
for TAs ([BDR03, Tri99, TYB05, HS10, WSW+15]), there is none for
PTAs.

1.3 Contributions
The main objectives of this thesis are to answer the research questions described in
Section 1.2 and to develop adequate techniques or approaches. The contributions
of this thesis are:

• In Chapter 3, we propose distributed parameter synthesis algorithms to
compute Behavioral Cartography (BC) efficiently using parallel, distributed
computing resources. Among the distributed algorithms we propose in this
chapter, we show that the dynamic domain decomposition algorithm with
heuristic Subdomain+H is faster than existing algorithms on large scale
BC.
This work has been achieved in collaboration with Étienne André and
Camille Coti. It has been published in the 17th International Conference
on Formal Engineering Methods - ICFEM’15. [ACN15]

• In Chapter 4, we introduce Parametric Reachability Preservation parameter
synthesis algorithm (PRP) which is more efficient than BC. We then a
compare the PRP with the previous BC. Furthermore, by reusing the

14

dynamic domain decomposition algorithm presented in Chapter 3, we
propose a distributed version of PRP algorithm on behavioral cartography
named PRPC which is faster and almost always outperforms the distributed
BC algorithms.
This work has been done in collaboration with Étienne André, Giuseppe
Lipari and Sun Youcheng. It has been published in the 7th NASA Formal
Methods Symposium - NFM’15. [ALNS15]

• In Chapter 5, we propose some heuristic strategies based on breadth first
search BFS for parametric zone inclusion algorithms called parametric
priority strategy PRIOR and parametric ranking strategy RS, which mit-
igates state space explosion by reducing the inefficient phenomenon in
state exploration.
This work has been done in collaboration with Étienne André and Laure
Petrucci. It has been published in the 22nd International Conference on
Engineering of Complex Computer Systems - ICECCS’17. [ANP17]

• In Chapter 6, we introduces a series of variations of Nested Depth-First
Search algorithm (NDFS) for PTAs. In fact, we introduce a new layered
NDFS approach to Linear Temporal Logic (LTL) model checking and use
this approach for our algorithms. In particular, we apply subsumption
abstraction to PTA for the first time. This new layered approach and
subsumption are added to our Layer NDFS and Layer Collecting NDFS
algorithms called LayerNDFSsub and LayerCollectNDFSsub.
This work has been done in collaboration with Laure Petrucci and Jaco
van de Pol. It has been published in the 23nd International Conference on
Engineering of Complex Computer Systems - ICECCS’18. [NPvdP18]

• In Chapter 7, we prove that the parameter synthesis problem for PTAs
with non-Zenoness assumption is undecidable and we develop the semi-
algorithms named CUBdetect and CUBtrans to solve the non-Zeno synthesis
problem using CUB-PTA approach (clock upper bound parametric timed
automata). In order to check large-scale models, we also design the
distributed version of this CUBtrans semi-algorithm named distSynthNZ.

– This work has been done in collaboration with Étienne André, Laure
Petrucci and Sun Jun. It has been published in the 9th NASA Formal
Methods Symposium - NFM’17. [ANPS17]

– The work for the distributed version has been done in collaboration
with Étienne André, Laure Petrucci and Sun Jun. This work will be
submitted to a journal.

In order to evaluate the efficiency of these algorithms or semi-algorithms, we
implemented all algorithms or semi-algorithms of each chapter in the IMITATOR
tool [AFKS12], and we will also give an experimental validation together with a
detailed contribution in each chapter.

15

1.4 Organization of the document
The structure of this document is organized in the following way. First of all, in
Chapter 2, we give the formal definition of notions that will be frequently used
later on.

After establishing some of the groundworks for the thesis, Chapter 3 is
devoted to distributed parameter synthesis algorithms, where we introduce
distributed behavioral cartography (BC) algorithms in detail. Then, Chapter 4
presents another parameter synthesis algorithm called parametric reachability
preservation PRP which is more efficient than the previous BC algorithm. We
also present the distributed algorithm of PRP which reuses the concepts of the
distributed BC algorithm. In Chapter 5, we introduce state exploration order
strategies for parametric zone inclusion, which contribute to alleviating the state
space explosion problem. In Chapter 6, we propose some variations of Nested
Depth-First Search algorithm (NDFS) making parameter synthesis for liveness
properties more efficient. Then in Chapter 7, we introduce the Zeno phenomenon
and approaches to detect non-Zeno runs in parametric timed automata. Our
algorithm is then extended in distributed fashion and a performance evaluation
is discussed.

Finally, in Chapter 8, concludes and presents directions for future research.

16

2
C

h
a

p
t

e
r

Preliminary definitions

Contents
2.1 Introduction . 18
2.2 Labeled transition systems 19
2.3 Clocks, parameters and constraints 19

2.3.1 Clocks . 19
2.3.2 Parameters . 19
2.3.3 Constraints . 20

2.4 Timed Automata . 21
2.4.1 Introduction . 21
2.4.2 Syntax . 21
2.4.3 Concrete semantics 23
2.4.4 Problems . 25
2.4.5 Tools and applications 26

2.5 Parametric timed automata 27
2.5.1 Introduction . 27
2.5.2 Syntax . 27
2.5.3 Concrete semantics 29
2.5.4 Symbolic semantics 29
2.5.5 Subsumption abstraction 32
2.5.6 Problems . 34
2.5.7 Tools and applications 34
2.5.8 Related formalisms 34

2.6 System property specification 35

17

2.7 Temporal logic . 35
2.8 State of the art . 36

2.8.1 Decision and computation problems 37
2.8.2 Decidability of PTA 38

2.9 Parameter synthesis 41
2.9.1 The good parameters problem 41
2.9.2 The Inverse problem 42
2.9.3 The Inverse Method 42
2.9.4 The Behavioral Cartography 43
2.9.5 EF-problems . 44

2.10 IMITATOR . 46
2.11 Efficient verification 47

2.11.1 On-the-fly verification 47
2.11.2 Abstracted verification 47
2.11.3 Compositional verification 47

2.12 Parallel computing . 47

2.1 Introduction
This chapter introduces the basic knowledge of model checking and concepts
related to this thesis. The remainder of the chapter is organized as follows:

1. In order to introduce the formalism and formal language are used in this
thesis, from Section 2.2 to Section 2.5, show how labeled transition systems
can be extended to parametric timed automata. Section 2.6 recalls some
basic system properties and then Section 2.7 shows how these properties
can be formalized in temporal logics.

2. The state of the art in Section 2.8 enumerates several decidable and
undecidable problems of parametric model checking in the last few decades.
Then the next Section 2.9 focuses only on problems and algorithms used
repeatedly in this thesis.

3. Section 2.10 gives a brief introduction to IMITATOR, a parameter synthesis
tool for real-time systems, in which our algorithms will be all implemented
for evaluation purposes.

4. Section 2.11 recalls popular verification techniques that tackle state space
explosion problem.

5. Section 2.12 covers basic knowledge of parallel computing and related
concepts of it.

18

2.2 Labeled transition systems
We first introduce labeled transition systems, which will be used later in this
chapter to represent the semantics of timed automata and parametric timed
automata.

s0 s1 b
a

Figure 2.1 – Example of labeled transition system

Definition 2.2.1. A labeled transition system (LTS) is a quadruple LT S =
(Σ, S, S0,⇒), with Σ a set of symbols, S a set of states, S0 ⊆ S a set of
initial states, and ⇒ ∈ S × Σ × S a transition relation. We write s a⇒ s′

for (s, a, s′) ∈ ⇒. A run (of length m) of LT S is an alternating sequence of
states si ∈ S and symbols ai ∈ Σ of the form s0

a0⇒ s1
a1⇒ · · · am−1⇒ sm, where

s0 ∈ S0. A state si is reachable if it belongs to some run r.

Example 1. We give in Fig. 2.1 a simple example of LTS containing two states
s0, s1 (represented as circles), a transition from s0 to s1 (represented as an edge)
labeled by an action a and a self-loop on s1 labeled by an action b. The initial
state is s0.

2.3 Clocks, parameters and constraints
Let N, Z, Q+ and R+ denote the sets of non-negative integers, integers, non-
negative rational numbers and nonnegative real numbers respectively.

2.3.1 Clocks
We assume a set X = {x1, . . . , xH} of clocks, i. e. real-valued variables that
evolve at the same rate. A clock valuation is a function w : X → R+. We identify
a clock valuation w with the point (w(x1), . . . , w(xH)) of RH+ . We write ~0 for
the clock valuation that assigns 0 to all clocks. Given d ∈ R+, w + d denotes
the valuation such that (w + d)(x) = w(x) + d, for all x ∈ X. Given R ⊆ X, we
define the reset of a valuation w, denoted by [w]R, as follows: [w]R(x) = 0 if
x ∈ R, and [w]R(x) = w(x) otherwise.

2.3.2 Parameters
We assume a set P = {p1, . . . , pM} of parameters, i. e. unknown constants. A
parameter valuation v is a function v : P → Q+. We identify a valuation v
with the point (v(p1), . . . , v(pM)) of QM+ . An integer parameter valuation is a
valuation v such that ∀p ∈ P, v(p) ∈ N.

19

2.3.3 Constraints
We assume C ∈ {<,≤} and ./ ∈ {<,≤,≥, >}.

Linear terms Linear term lt denotes a linear term over X ∪ P of the form∑
1≤i≤H αixi +

∑
1≤j≤M βjpj + d, with xi ∈ X, pj ∈ P , and αi, βj , d ∈ Z.

Similarly, plt denotes a parametric linear term over P , that is a linear term
without clocks (αi = 0 for all i).

A constraint C (i. e. a convex polyhedron) over X ∪ P is a set of inequalities
of the form lt ./ lt′, with lt, lt′ two linear terms.

We denote by true (resp. false) the constraint that corresponds to the set of
all possible (resp. the empty set of) valuations.

Guards A guard g is a constraint over X ∪ P defined by inequalities of the
form x ./ plt. We assume w.l.o.g. that, in each guard, given a clock x, at most
one inequality is in the form xC plt, that is a clock has a single upper bound (or
none). A non-parametric guard is a guard over X, i. e. with inequalities x ./ z,
with z ∈ N.

Parametric zones A parametric zone C is a constraint over X ∪ P defined
by inequalities of the form xi − xj ./ plt.

Parametric constraints A parametric constraint K is a constraint over P
defined by inequalities of the form plt ./ plt′, with plt, plt′ two parametric linear
terms. We use the notation v |= K to indicate that valuating parameters p with
v(p) in K evaluates to true. We denote by > (resp. ⊥) the parametric constraint
that corresponds to the set of all possible (resp. the empty set of) parameter
valuations. Given two parametric constraints K1 and K2, we write K1 ⊆ K2
whenever for all v, v |= K1 ⇒ v |= K2.

Operations on constraints We denote by C↓P the projection of C onto P ,
obtained by eliminating the clock variables.

We define the time elapsing of C, denoted by C↗, as the constraint over X
and P obtained from C by delaying an arbitrary amount of time.

Given R ⊆ X, we define the reset of C, denoted by [C]R, as the constraint
obtained from C by resetting the clocks in R, and keeping the other clocks
unchanged.

Given a parameter valuation v, C[v] denotes the constraint over X obtained
by replacing each parameter p in C with v(p). Likewise, given a clock valua-
tion w, C[v][w] denotes the expression obtained by replacing each clock x in C[v]
with w(x). We say that v satisfies C, denoted by v |= C, if the set of clock
valuations satisfying C[v] is nonempty. Given a parameter valuation v and a
clock valuation w, we denote by <w|v> the valuation over X ∪ P such that for
all clocks x, x[<w|v>] = x[w] and for all parameters p, p[<w|v>] = p[v]. We

20

use the notation <w|v> |= C to indicate that C[v][w] evaluates to true. We say
that C is satisfiable if ∃w, v s.t. <w|v> |= C.

2.4 Timed Automata
2.4.1 Introduction
Timed automata (TAs) [AD90, AD94], are an extension of finite state automata
and a sub-class of hybrid automata [Hen96]. This is a widely used formalism for
real-time systems modeling and verification with timing constraints, providing
explicit manipulation of clock variables.

In a timed automaton, real-time behavior is captured by clock constraints
on system transitions, setting or resetting clocks, etc. All real-valued clocks
increase at the same rate. Clock values can be compared with constants in
constraints called “invariants” that allow (or not) to stay in a location (sets of
linear inequalities that must be satisfied to be able to remain in a location) or in
constraint called “guards” to take a transition (sets of linear inequalities that
must be satisfied to be able to take a transition). Moreover, some of the clocks
can be reset when executing a transition.

Parallel composition of several timed automata is defined as a single timed
automaton. It provides the designer with a powerful and intuitive way to
represent timed systems. It is important to note that the verification of the
timed automaton is very sensitive to the size of each automaton and the number
of automata in parallel, thus often leading to the state space explosion problem.

2.4.2 Syntax

Definition 2.4.1. A timed automaton (TA) A is a tuple
A = (Σ, L, l0, F,X, I, E), where: i) Σ is a finite set of actions, ii) L
is a finite set of locations, iii) l0 ∈ L is the initial location, iv) F is a set
of final locations, v) X is a set of clocks, vi) I is the invariant function,
assigning to every location l ∈ L a constraint I(l), vii) E is a set of edges
e = (l, g, a,R, l′) where l, l′ ∈ L are the source and target locations, a ∈ Σ is
an action, R ⊆ X is a set of clocks to be reset, and g is a guard.

In practice, discrete variables are often used in TA, located on transitions. The
value of discrete variable can be used in guards and updated by the transitions.
Note that we will not introduce them in any theoretical part of this thesis but
we will use them in our system models.

We give here conventions for the graphical representation of TA: locations
are represented by nodes, next to which the invariant of the location is written;
transitions are represented by arcs going from one location to another location or
the same location (self-loops). Next to a transition are the associated guard, the
action name and the set of clocks to be reset. Note that constraints in guards
and invariants equal to true will be omitted. The initial location is usually
represented with an unlabeled arrow pointing from nothing to it.

21

l0

x ≤ 5

l1 b
x > 3

x := 0
a

Figure 2.2 – Example of timed automaton

Example 2. We give in Fig. 2.2 a simple example of TA containing two locations
l0 and l1, an action a and a clock x. The initial location is l0.

In this TA, location l0 has invariant x ≤ 5, location l1 has invariant true.
The transition from location l0 to location l1 has guard x > 3 through action a
and resets clock x.

In the beginning, the system stays at location l0 with invariant x ≤ 5. Then
it can increase an amount of time less than 5 and take the transition having the
action a to go to location l1 when x > 3. The clock x will be reset to zero by
the transition before entering location l1. After that, the system can take the
self-loop at any time or the clock x can increase infinitely at location l1.

Parallel composition of TAs Several TAs can cooperate. This is obtained
by building a product of TAs. A state in the product is a pair of states, where
each state indicates the progress one of the TA has made. A transition in the
product can be a local transition of a TA or a synchronization between several
TAs. We present here the definition and notion of network of timed automata
and show how N TAs can be composed into a single TA. Note that, for simplicity
purposes, shared clock variables will not be used in our theoretical example.

22

Definition 2.4.2 (synchronized product of TAs). Let N ∈ N. Given a
set of TAs Ai = (Σi, Li, (l0)i, Fi, Xi, Ii, Ei), 1 ≤ i ≤ N , the synchronized
product of Ai, 1 ≤ i ≤ N , denoted by A1 ‖ A2 ‖ · · · ‖ AN , is the tuple
(Σ, L, l0, F,X, I, E), where:

1. Σ =
⋃N
i=1 Σi,

2. L =
∏N
i=1 Li,

3. l0 = ((l0)1, . . . , (l0)N),

4. F = {(l1, . . . , lN) ∈ L | ∃i, 1 ≤ i ≤ N s.t. li ∈ Fi},

5. X =
⋃

1≤i≤N Xi,

6. I((l1, . . . , lN)) =
∧N
i=1 Ii(li) for all (l1, . . . , lN) ∈ L,

and E is defined as follows. For all a ∈ Σ, let ζa be the subset of indices
i ∈ 1, . . . , N such that a ∈ Σi. For all a ∈ Σ, for all (l1, . . . , lN) ∈ L, for all
(l′1, . . . , l′N) ∈ L,

(
(l1, . . . , lN), g, a, R, (l′1, . . . , l′N)

)
∈ E iff:

• for all i ∈ ζa, there exist gi, Ri such that (li, gi, a, Ri, l′i) ∈ Ei, g =∧
i∈ζa

gi, R =
⋃
i∈ζa

Ri, and,

• for all i 6∈ ζa, l′i = li.

Example 3. We give in Fig. 2.3 an example of a network of two TAs A′ and TA
A′′, presented in Fig. 2.3a and Fig. 2.3b respectively. The synchronized product
of these 2 PTAs A′ ‖ A′′ corresponds to the TA in Fig. 2.3c, where l0 = (l ′0 , l ′′0),
l1 = (l ′1 , l ′′0), l2 = (l ′2 , l ′′1) and l3 = (l ′2 , l ′′2).

2.4.3 Concrete semantics
The semantics of TAs is constructed from a LTS, where states are made by a
location and a valuation for each clock. Given a TA A = (Σ, L, l0, F,X, I, E):

Concrete state A concrete state of A is a pair s = (l, w) where l ∈ L is a
location, and w is a valuation of each clock.

Initial concrete state The initial concrete state of A is s0 =
(
l0,~0) =

(
l0, 0).

That is, the initial state corresponds to all clocks equal to 0.

23

l′0 x1 ≤ 7

l′2

x1 ≤ 6

l′1

x1 ≤ 9

x1 := 0
b

x1 ≥ 1
b

a

(a) TA A′

l′′0

x2 ≤ 5
l′′1 l′′2

x2 := 0
b

x2 ≥ 5
c

x2 := 0
b

(b) TA A′′

l0 x1 ≤ 7

l2

x1 ≤ 6
∧ x2 ≤ 5

l1

x1 ≤ 9

l3 x1 ≤ 6
x1 ≥ 1
x2 := 0

b

a

x2 ≥ 5
c

x1 := 0
x2 := 0

b

(c) TA A which is a synchronized product of A′ and A′′

Figure 2.3 – Example of network of parametric timed automata

Definition 2.4.3 (Concrete semantics of a TA). The concrete semantics of
A is given by the LTS (S, s0,→), with S = {(l, w) ∈ L×RH+ | I(l)[w] is true},
s0 = (l0,~0), and → consists of the discrete and (continuous) delay transition
relations:

• discrete transitions: (l, w) e→ (l′, w′), if (l, w), (l′, w′) ∈ S, there exists
e = (l, g, a,R, l′) ∈ E, w′ = [w]R, and g[w] is true.

• delay transitions: (l, w) d→ (l, w+d), with d ∈ R+, if ∀d′ ∈ [0, d], (l, w+
d′) ∈ S.

We write (l,w) d,e→ (l ′,w′) for a sequence of delay and discrete transitions
where ((l,w), e, (l ′,w′)) ∈→ if ∃d,w′′ : (l,w) d→ (l,w′′) e→ (l ′,w′).

Concrete run A concrete run is a sequence r = s0α0s1α1 · · · snαn · · · s.t.
∀i, (si, αi, si+1) ∈ →. We consider as usual that concrete runs strictly alternate
delays di and discrete transitions ei and we thus write concrete runs in the form
r = s0

(d0,e0)→ s1
(d1,e1)→ · · · . We refer to a state of a run starting from the initial

state of a TA A as a concrete state of A. Note that when a run is finite, it must

24

end with a concrete state.
An infinite run is said to be Zeno if it contains an infinite number of discrete

transitions within a finite delay, i. e. if the sum of all delays di is bounded.

Example 4. Fig. 2.4 depicts an example of concrete run of the TA A in Fig. 2.3c.
This run starts at the initial location l0 on which the values of both clocks equal
zero. Then they both increase by 1 time units and reset x2 to zero before taking
the action b. After that, in l2 we spend 5 time units and then take action c to
go to l3. Continuously, at l3 we take action c and reset values of both clocks
immediately to go back to l2. Again, we spend at least 5 time units in l3 before
taking action c to go back to l2, and so on.

s0
l0

x1 = 0
x2 = 0

s1
l2

x1 = 1
x2 = 0

s2
l3

x1 = 6
x2 = 5

s3
l2

x1 = 0
x2 = 0

...
(1, b) (5, c) (0, b) (5, c)

Figure 2.4 – Example of concrete run for the TA A in Fig. 2.3c

Trace Let (l0, w0) (d0,e0)→ (l1, w1) (d1,e1)→ · · · (dm−1,em−1)→ (lm, wm) be a run of A,
its corresponding trace is l0

e0⇒ l1
e1⇒ · · · em−1⇒ lm. In fact, the trace is built from a

run by removing the valuation of the clocks. It can be seen as a “time abstract”
run. Two concrete runs are said to be equivalent if their corresponding traces
are equal.

Example 5. The trace associated with the concrete run of Fig. 2.4 is depicted
in Fig. 2.5.

l0 l2 l3 l2 ...b c b c

Figure 2.5 – Example of trace for the TA A in Fig. 2.3c

Trace set The trace set of A is the set of traces associated with all maximal
runs of A.

Example 6. The trace set associated with the TA A in Fig. 2.3c is depicted in
Fig. 2.6.

2.4.4 Problems
Although TAs were successfully used for verifying models of complex distributed
systems using powerful model checkers, they still suffer from some limitations:

25

l0

l1

l2 l3 l2 l3

a

b

c b
c

b

Figure 2.6 – Example of trace set for the TA A in Fig. 2.3c

1. TA cannot model systems incompletely specified (i. e. timing constants are
not known yet). Therefore, with such systems, it cannot be used at the
beginning of design phases.

2. Verifying a system for a set of timing constants usually requires replacing
all of them one by one if they are supposed to be integer-valued. And it is
infeasible if they are real-valued (dense interval).

3. Robustness in TA often assumes that all guards have delays that can be
enlarged or shrunk by the same small variation. But independent variations
or considering both enlarging and shrinking was not addressed, and it is
actually unclear whether this can be even considered for TA although the
robust semantics can help tackling some problems, see e. g. [Mar11].

In the next section we will introduce parametric timed automaton (PTA)
[AHV93] which can leverage these drawbacks by allowing the use of timing
parameters, hence allowing for modeling constants unknown or known with some
imprecision.

2.4.5 Tools and applications
Tools TAs have been studied in various settings (such as planning [KMH01])
and benefit from powerful model checkers such as Uppaal [LPY97], Kronos
[BDM+98], PAT [SLDP09], Roméo [LRST09], TReX [ABS01] or the schedula-
bility analyser TIMES [AFM+02], etc.

Applications Over the past two decades, TA based tools have become more
and more mature, some academic research tools now being used in various indus-
tries. These verification tools for TA based models such as Uppaal, Kronos, PAT
and Rabbit have also proven to be most successful [LPY97, BDM+98, Wan02,
BLN03], and have been used to model and verify a variety of hardware systems
and software systems such as network and telecommunication protocols, hard-
ware circuits, distributed algorithms, security protocols, web service protocols,
etc.

26

2.5 Parametric timed automata
2.5.1 Introduction
Parametric timed automata (PTAs) are an extension of timed automata to the
parametric case. It allows, within guards and invariants, the use of parameters
(i. e. unknown constants) in place of constants [AHV93]. By adding parameters,
the model checking problem with a binary answer (“yes/no”) becomes the
parameter synthesis problem with a richer answer: a set of valuations for which
a property holds. This parametric model is interesting when one does not only
want to check that a system is correct for one value of the constants, but for a
whole dense set of values. Besides, the parametric timed automata model is also
interesting to synthesize parameters for which a given property is satisfied.

2.5.2 Syntax

Definition 2.5.1. A parametric timed automaton (PTA) A is a 9-tuple
A = (Σ, L, l0, F,X, P,K0, I, E), where: i) Σ is a finite set of actions, ii) L
is a finite set of locations, iii) l0 ∈ L is the initial location, iv) F is a set of
final locations, v) X is a set of clocks, vi) P is a set of parameters, vii) K0 is
the initial parameter constraint, viii) I is the invariant function, assigning to
every location l ∈ L a constraint I(l), ix) E is a set of edges e = (l, g, a,R, l′)
where l, l′ ∈ L are the source and target locations, a ∈ Σ is an action, R ⊆ X
is a set of clocks to be reset, and g is a guard.

Similarly to the PTAs, we provide below the basic definitions of Parametric
Timed Büchi Automata, a variant of PTAs with replacing the set of final locations
with a set of accepting locations.

Definition 2.5.2. A Parametric Timed Büchi Automaton (PTBA) B is a
9-tuple B = (Σ, L, l0, F,X, P,K0, I, E), where: i) Σ is a finite set of actions,
ii) L is a finite set of locations, iii) l0 ∈ L is the initial location, iv) F is a
set of accepting locations, v) X is a set of clocks, vi) P is a set of parameters,
vii) K0 is the initial parameter constraint, viii) I is the invariant function,
assigning to every location l ∈ L a constraint I(l), ix) E is a set of edges
e = (l, g, a,R, l′) where l, l′ ∈ L are the source and target locations, a ∈ Σ is
an action, R ⊆ X is a set of clocks to be reset, and g is a guard.

Given a PTA A = (Σ, L, l0, X, P,K0, I, E), and a parameter valuation v,
A[v] denotes the TA obtained from A by substituting every occurrence of a
parameter pi by the constant v(pi) in the guards and invariants.

The initial constraint K0 is used to constrain some parameters (as in, e. g.
[HRSV02, ACEF09]). In other words, it defines a domain of valuation for the
parameters. For example, given two parameters pmin and pmax, we may want to
ensure that pmin ≤ pmax. Given A = (Σ, L, l0, F,X, P,K0, I, E), we write A.K0
as a shortcut for the initial constraint of A. In addition, given K ′0, we denote by
A(K ′0) the PTA where A.K0 is replaced with K ′0.

27

Given a parameter valuation v |= A.K0, we denote byA[v] the non-parametric
TA where all occurrences of a parameter pi have been replaced by v(pi). If
v 6|= A.K0, we assume the model is not defined (i. e. it corresponds to the empty
TA, with no location).

Example 7. We give in Fig. 2.7a an example of PTA containing two locations
l0 and l1, an action a, 2 parameters p1 and p2, and a clock x. The initial location
is l0. In this PTA, location l0 has invariant x ≤ 5p1, location l1 has invariant
true. The transition from location l0 to location l1 has guard x > 3p2 through
action a and resets clock x. Thus, it can increase an amount of time less than
5p1 and take the transition having the action a to go to location l1 as soon as
x > 3p2. The clock x will be reset to zero. After that, the system can take the
self-loop at any time or the clock x can increase infinitely at location l1.

l0

x ≤ 5p1

l1 b
x > 3p2

x := 0
a

(a) A parametric timed automaton

l0

y ≤ p
l1 l2

y ≤ q

x := 0
y := 0

y := 0
a

x := 0; y := 0
x > r
b

c

(b) A parametric timed Büchi automaton

Figure 2.7 – Examples of parametric timed automaton and parametric timed
Büchi automaton

Example 8. Fig. 2.7b shows a PTBA, where only location l1 is accepting. It
has two clocks x and y, and three parameters p, q and r used in the guard of
action b and in the invariants of locations l1 and l2.

Parallel composition of PTAs Similarly to the parallel composition of TAs,
we now introduce the notion of a network of parametric timed automata, and
show in the following definition how N PTAs can be composed into a single PTA.

28

Definition 2.5.3 (synchronized product of PTAs). Let N ∈ N. Given
a set of PTAs Ai = (Σi, Li, (l0)i, Fi, Xi, Pi, (K0)i, Ii, Ei), 1 ≤ i ≤ N , the
synchronized product of Ai, 1 ≤ i ≤ N , denoted by A1 ‖ A2 ‖ · · · ‖ AN , is
the tuple (Σ, L, l0, F,X, P,K0, I, E), where:

1. Σ =
⋃N
i=1 Σi,

2. L =
∏N
i=1 Li,

3. l0 = ((l0)1, . . . , (l0)N),

4. F = {(l1, . . . , lN) ∈ L | ∃i, 1 ≤ i ≤ N s.t. li ∈ Fi},

5. X =
⋃

1≤i≤N Xi,

6. P =
⋃

1≤i≤N Pi,

7. K0 =
∧N
i=1(K0)i

8. I((l1, . . . , lN)) =
∧N
i=1 Ii(li) for all (l1, . . . , lN) ∈ L,

and E is defined as follows. For all a ∈ Σ, let ζa be the subset of indices
i ∈ 1, . . . , N such that a ∈ Σi. For all a ∈ Σ, for all (l1, . . . , lN) ∈ L, for all
(l′1, . . . , l′N) ∈ L,

(
(l1, . . . , lN), g, a, R, (l′1, . . . , l′N)

)
∈ E iff:

• for all i ∈ ζa, there exist gi, Ri such that (li, gi, a, Ri, l′i) ∈ Ei, g =∧
i∈ζa

gi, R =
⋃
i∈ζa

Ri, and,

• for all i 6∈ ζa, l′i = li.

Example 9. We give in Fig. 2.8 an example of network of two PTAs, A′ and
A′′, presented in Fig. 2.8a and Fig. 2.8b respectively. The synchronized product
of these 2 PTAs A′ ‖ A′′ corresponds to the PTA in Fig. 2.8c, where l0 = (l ′0 , l ′′0),
l1 = (l ′1 , l ′′0), l2 = (l ′2 , l ′′1) and l3 = (l ′2 , l ′′2).

2.5.3 Concrete semantics
The semantics of PTAs is constructed from a LTS, where states are made by
a location and a valuation for each clock. Let us recall the concrete semantics
of PTA (as in e. g. [JLR15]). Given a PTA A = (Σ, L, l0, F,X, P,K0, I, E)
and a parameter valuation v. By substituting parameters with the parameter
valuation v, the PTA A becomes TA A[v] and has the same concrete semantics
as TA in Section 2.4.3.

2.5.4 Symbolic semantics
Instead of representing each individual state separately as in concrete semantics of
PTAs (Section 2.5.3), symbolic semantics of PTAs can represent and manipulate
sets of concrete states.

29

l′0 x1 ≤ 7p1

l′2

x1 ≤ 6p1

l′1

x1 ≤ 9p1

x1 := 0
b

x1 ≥ p1
b

a

(a) PTA A′

l′′0 l′′1

x2 ≤ 5p2

l′′2
x2 := 0

b

x2 ≥ 5p2
c

x2 := 0
b

(b) PTA A′′

l0 x1 ≤ 7p1

l2

x1 ≤ 6p1
∧ x2 ≤ 5p2

l1

x1 ≤ 9p1

l3 x1 ≤ 6p1

x1 ≥ p1
x2 := 0

b

a

x2 ≥ 5p2
c

x1 := 0
x2 := 0

b

(c) PTA A which is the synchronized product of PTAs A′ and A′′

Figure 2.8 – Example of network of parametric timed automata

Let us recall the symbolic semantics of PTA (as in e. g. [ACEF09]). Given a
PTA A = (Σ, L, l0, F,X, P,K0, I, E):

Symbolic state A symbolic state is a pair s = (l, C) with l a location, and C
a constraint over X ∪ P (or zone). We may view a symbolic state s as the set
of pairs (l, w) where w is a clock valuation such that there exists a parameter
valuation v such that < w, v >|= C.

Initial symbolic state The initial state of A is s0 = (l0, (X = 0)↗ ∧ I(l0)),
i. e. clocks are initially set to 0, and can evolve as long as I(l0) is satisfied.

Initial constraint The constraint K0 corresponds to the initial constraint
over the parameters P . For example, in a PTA with two parameters p1 and p2,
we may want to constrain p1 to be always smaller or equal to p2, or p1 greater
than p2, in which case K0 is defined as K0 = p1 ≤ p2 or K0 = p1 > p2.

Computation of the state space The computation of the state space
relies on the Succ operation as follows: Given a symbolic state s = (l, C),

30

Succ(s) = {(l′, C ′) | ∃(l, g, a,R, l′) ∈ E s.t. C ′ =
(
[(C ∧ g)]R ∧ I(l′)

)↗ ∧ I(l′)}.
The Succ operation is effectively computable, using polyhedra operations: note
that the successor of a parametric zone C is a parametric zone (see e. g. [JLR15]).

Definition 2.5.4 (Symbolic semantics of a PTA). The symbolic semantics
of A is the LTS called parametric zone graph PZG = (E,S, s0,⇒), with
s ∈ S, s = {(l, C) | C ⊆ I(l)},

(
(l, C), e, (l′, C ′)

)
∈ ⇒ if e = (l, g, a,R, l′)

and C ′ =
(
[(C ∧ g)]R ∧ I(l′)

)↗ ∧ I(l′) with C ′ satisfiable. Note that if(
(l, C), e, (l′, C ′)

)
∈ ⇒, we can write Succ(s, e) = (l′, C ′).

The parametric zone graph PZG(A) of a PTA A is made of the states of A,
and there is an edge in PZG(A) from si to sj whenever sj ∈ Succ(si). In the
PZG, nodes are symbolic states, and arcs are labeled by edges S of the original
PTA.

Similar to the case in timed automata, the parametric zone graph generated
from a PTA A may be infinite. In (plain) timed automata, extrapolations are
used to obtain finite zone graphs. For instance, k- or lu-extrapolation uses the
extremal constant values appearing as lower- or upper-bounds in clock constraints
of the TA, in order to identify symbolic zones that cannot be distinguished.
Indeed, it is not obvious how extrapolation carries over in case clock constraints
have parameters. Therefore, we are forced to accept that parametric zone graphs
can be infinite.

Symbolic run A symbolic run of a PTA is an alternating sequence of symbolic
states and edges of the form s0

e0⇒ s1
e1⇒ · · · em−1⇒ sm, such that for all i =

0, . . . ,m− 1, ei ∈ E, and si
ei⇒ si+1 is such that si+1 belongs to Succ(si) and is

obtained via edge ei. In the following, we simply refer to the symbolic states
belonging to a run of A starting from s0 as states of A.
Example 10. By using the operation Succ presented previously for constructing
a symbolic run of PTA A, Fig. 2.9 depicts an example of symbolic run of the
PTA A in Fig. 2.8c.

s0
l0

x1 ≤ 7p1
p2 ≥ 0
x1 ≥ 0
x1 = x2

s1
l2

x2 ≤ 5p2
x1 ≤ 6p1
x2 ≥ 0

x1 ≥ p1 + x2

s2
l3

x1 ≤ 6p1
p2 ≥ 0
x2 ≥ 5p2

x1 ≥ p1 + x2

s3
l2

p1 ≥ p2
x1 ≤ 5p2
x1 ≥ 0
x1 = x2

...b c b c

Figure 2.9 – Example of symbolic run for the PTA A in Fig. 2.8c

Example 11. The PZG example of the PTA A in Fig. 2.8c and PBTA B in
Fig. 2.7b depicted in Fig. 2.10 and Fig. 2.11 respectively, and they are also
constructed by using the operation Succ.

31

s0
l0

x1 ≤ 7p1
p2 ≥ 0
x1 ≥ 0
x1 = x2

s1
l1

x1 ≤ 9p1
p2 ≥ 0
x1 ≥ 0
x1 = x2

s2
l2

x2 ≤ 5p2
x1 ≤ 6p1
x2 ≥ 0

x1 ≥ p1 + x2

s3
l3

x1 ≤ 6p1
p2 ≥ 0
x2 ≥ 5p2

x1 ≥ p1 + x2

s4
l2

p1 ≥ p2
x1 ≤ 5p2
x1 ≥ 0
x1 = x2

s5
l2

x1 ≤ 6p1
p1 ≥ p2
p2 ≥ 0
x1 ≥ 5p2
x1 = x2

a

b

c b

c

b

Figure 2.10 – Example of parametric zone graph PZG for the PTA A in Fig. 2.8c

Trace Given a run (l0, C0) e0⇒ (l1, C1) e1⇒ · · · em−1⇒ (lm, Cm), its corresponding
trace is l0

e0⇒ l1
e1⇒ · · · em−1⇒ lm. In fact, the trace is built from a run by removing

the valuation of the clocks and parameters, and thus can be seen as a “time
abstract” run. Two runs (concrete or symbolic) are said to be equivalent if their
associated traces are equal.

Example 12. The trace associated with the symbolic run of Fig. 2.9 is depicted
in Fig. 2.12.

Trace set The set of all traces of a PTA is called its trace set.

Example 13. The trace set associated with the PTA A in Fig. 2.8c is depicted
in Fig. 2.13.

2.5.5 Subsumption abstraction
We now discuss how to carry over subsumption abstraction from timed automata
to the parametric case. For timed automata, subsumption was introduced
in [DT98] and studied in [ELPvdP12] in the context of LTL model checking.
The idea is that a symbolic state may be replaced by a “larger” one, without
losing behaviour.

32

s0
l0

x = y

s1
l1

x ≤ p
x ≥ y

s2
l2

x = y
y ≤ q

s3
l1

y ≤ p
x = y

s4
l2

x = y
y ≤ q
p ≥ r

s5
l1

y ≤ p
x = y
p2 > r

a b c b

b

c

Figure 2.11 – Example of parametric zone graph PZG for the PBTA in Fig. 2.7b

l0 l2 l3 l2 ...b c b c

Figure 2.12 – Example of trace for the PTA A in Fig. 2.8c

l0

l1

l2 l3 l2 l3

a

b

c b
c

b

Figure 2.13 – Example of trace set for the PTA A in Fig. 2.8c

Definition 2.5.5 (Subsumption v). A state s = (l, C) ∈ S is subsumed by
another s′ = (l′, C ′), denoted s v s′, when l = l′ and C ⊆ C ′.

Definition 2.5.6 (Subsumption Abstraction). An abstraction over the
Parametric Zone Graph PZG(A) = (S, s0,⇒) is a total mapping α : S→ S
s.t. for all reachable symbolic states s, we have s v α(s).

Definition 2.5.7 (Induced PZG). An abstraction α over the Parametric
Zone Graph PZG(A) = (S, s0,⇒) induces an abstracted Parametric Zone
Graph PZGα(A) = (Sα, α(s0),⇒α), where:

• Sα = {α(s) | s ∈ S} is the set of states, s.t. Sα ⊆ S,

• α(s0) is the initial state, and

• the transition relation is: s⇒αs′ iff there exists s′′ s.t. s⇒s′′ and
s′ = α(s′′).

Note that if the image of the abstraction is finite, the abstract PZG is finite
as well. However, this is not always the case. The following lemma shows that

33

indeed abstraction does not lose behaviour.
Proposition 2.5.1 (v is a simulation relation). If s1 v s2 and s1⇒s′1 then
there exists s′2 s.t. s2⇒s′2 and s′1 v s′2.

Proof. By the definition of v, and the fact that the symbolic transition relation
⇒ is monotone w.r.t. ⊆ of zones.

Note that in practice, the subsumption abstraction is defined only over
the reachable state space, and it might introduce extra behaviour that the
unabstracted system cannot simulate. Typically α is constructed on-the-fly, i. e.
during analysis, by only abstracting to states that have already been found to be
reachable. This makes its performance depend heavily on the search order. In
particular, finding “large” states as early as possible can make the abstraction
coarser [DLL+12].

2.5.6 Problems
The main problem of PTA formalism is decidability. Unfortunately, unlike the
decidability of TA [BY03], almost all interesting parameter synthesis problems for
PTA [AHV93] are known to be undecidable in general, including the emptiness
of the valuations set for which a given location is reachable. We will dedicate
Section 2.8 to decidability, and Section 2.8.1 to parameter synthesis problems
which we will use in this thesis.

2.5.7 Tools and applications
Tools To the best of our knowledge, IMITATOR [AFKS12] for parametric
stopwatch automata is the only tool that takes PTA as an input.

Applications Beyond academic examples (such as variants of train controllers
[AHV93, HRSV02]), PTAs have been successfully used to specify and verify
numerous interesting case studies such as: e. g. the root contention protocol
[HRSV02], Philip’s bounded retransmission protocol [HRSV02], a 4-phase hand-
shake protocol [KP12], the alternating bit protocol [JLR15], an asynchronous
circuit commercialized by STMicroelectronics [CETFX09], (non-preemptive)
schedulability problems [JLR15, CPR08], a distributed prospective architecture
for the flight control system of the next generation of spacecrafts designed at
ASTRIUM Space Transportation [FSLM12], an unmanned aerial video system
by Thales, and even analysis of music scores [FJ13].

2.5.8 Related formalisms
Timed automata are not the only formalism extended to the parametric case.
Other popular formalisms are also extended to the parametric case, to model
and verify real-time systems such as:

34

• Hybrid Automata with Parameters (HAs) [AHV93, HH94]: State
space exploration algorithms for hybrid automata have been extended to
allow a parametric analysis and implemented in the tool Hytech [HHW97]
or HYMITATOR. .

• Parametric Interrupt Timed Automata (PITAs) [BHJL13]: A
parametrized version of interrupt timed automata, where polynomials
of parameters can occur in guards and updates. Different reachability
problems, including robust reachability, are were proven to be decidable
for this model.

• Parametric Timed Petri Nets (PTPNs) [TLR09]: Timed Petri Nets
(TPNs) are also a well-known formalism to model real-time systems besides
Timed Automata (TA), and parametric timed Petri nets are its parametric
extension.

For extensions of PTA, there are e. g. action synthesis problem for the
parameters [KMP15, AKPP16], probabilistic parameters [AFS13b].

2.6 System property specification
Given a model of a system and a specification of its desired properties [BK08],
a model-checker will check their satisfaction automatically and exhaustively.
A diversity of properties can be verified by model-checking, such as deadlock
freedom, invariants, request-response properties, etc. However, these properties
can be categorized into five classes: reachability, safety, liveness, deadlock-
freeness, and fairness properties.

• Reachability property: A certain state of system can be reached.

• Safety property: Desirable states of system should occur or an undesirable
state of system should never occurs (deadlock-freeness).

• Liveness property: A certain state of system will eventually occur.

• Deadlock-freeness property: A special property expressing that the system
can never be stuck and thus make no progress.

• Fairness property: A certain state of system will occur (or will fail to
occur) infinitely often.

2.7 Temporal logic
Temporal logic [Pnu77, BK08] is an extension of propositional logic with temporal
operators, which is dedicated for statements and reasoning that include the notion
of order in time. In 1977, A. Pnueli first used it to specify behavioral properties
(Linear Temporal Logic).

35

In the following, we present shortly the syntax of the Linear Temporal Logic
(LTL) and the Computation Tree Logic, which are the two most basic and popular
temporal logics to specify system properties including those in Section 2.6. Both
of these temporal logics are widely used for various formalisms such as LTSs,
TAs, Petri nets, Time Petri nets, Timed Petri nets, etc.

Linear Temporal Logic - LTL [Pnu77]. A Linear Temporal Logic is formula
defined by:

ϕ ::= ⊥|>|ap|¬ ϕ|ϕ ∧ ϕ|ϕ ∨ ϕ|Gϕ|Fϕ|ϕ Uϕ|Xϕ

Where ap is an atomic proposition, ϕ is a formula, G,F,U and X denote
the always, eventually, until and next operators respectively.

Computation Tree Logic - CTL [CE81]. A Computation Tree Logic or
branching-time logic is formula defined by:

ϕ ::= ⊥|>|a|¬ ϕ|ϕ ∧ ϕ|ϕ ∨ ϕ| AGϕ|AFϕ|AϕUϕ
|AXϕ|EGϕ|EFϕ|EϕUϕ|EXϕ

Where ap is an atomic proposition, ϕ is a formula, prefixes A and E denote
for all paths and there exists a path respectively. G,F,U and X denote the
always, eventually, until and next operators respectively.

The main difference between LTL and CTL is the quantifiers over paths,
LTL semantics expresses a property of a single path. While the CTL semantics
expresses a formula on all possible paths, considering either all possible paths
(A operator) or only single path (E operator) when encountering a branch.

Furthermore, LTL and CTL are incomparable and are both subsets of CTL*
[EH86]. There are also extensions of them and other temporal logics e. g. timed
computational tree logic (TCTL) [ACD90], metric temporal logic (MTL) [Koy90],
MITL [BL09], timed propositional temporal logic (TPTL) [AH89], temporal
logic of actions (TLA) [Lam94], µ-calculus, etc.

Example 14. Let a system be given, and a good state “GoodState” and a bad
state “BadState”. The LTL formula F(GoodState) describes the reachability
property that the system eventually reaches the GoodState. The CTL formula
AG(¬BadState) expresses the safety property that the system never reaches the
bad state in any case.

Note that, CTL notations such as EF,AF,EG and AG will be used repeat-
edly throughout this thesis.

2.8 State of the art
Model checking is known as being time-consuming. Indeed, to verify a large
model of dependent sub-models, it usually consumes a lot of time to traverse

36

all possible states in order to verify such model satisfying all its specifications.
Unfortunately, this procedure can even take forever and this problem was also
known as an inevitable issue for parameter synthesis. Therefore, by proving a
synthesis problem executed by the synthesis procedure is decidable, one can have
the ability to predict whether the synthesis procedure will eventually terminate
and then return complete results.

To convey an overall picture of the decidability problems of PTA, the first of
this section is dedicated to addressing common parameter synthesis problems.
Then the next parts show their related decidability results on PTA and its
subclasses in the past few years.

2.8.1 Decision and computation problems
Due to the richer result of parameter synthesis, properties mentioned in Sec-
tion 2.6 are no longer sufficient and should thus be extended and adapted.

Let P be a class of decision or computation problem (reachability, unavoid-
ability, etc.) of parameter synthesis [JLR15]. We give in the following the
general definitions of P-emptiness, P-universality, P-finiteness and P-synthesis
problems:

Decision problems:
P-emptiness problem:
Input: A PTA A and an instance φ of P
Problem: Is the set of parameter valuations v such that A[v] satisfies φ
empty?

P-universality problem:
Input: A PTA A and an instance φ of P
Problem: Are all parameter valuations v such that A[v] satisfies φ?

P-finiteness problem:
Input: A PTA A and an instance φ of P
Problem: Is the set of parameter valuations v such that A[v] satisfies φ
finite?

Computation problem:
P-synthesis problem:
Input: A PTA A and an instance φ of P
Problem: Compute the parameter valuations v such that A[v] satisfies φ

Consider again the common reachability and unavoidability properties such
as EF, AF, EG, AG, etc. expressed in CTL (see Section 2.7), and the liveness
properties from [AL17] such as deadlock-existence ED, cycle-existence EC. The
problem class P will be replaced with one of these properties to have a particular
problem of parameter synthesis (e. g. EF-emptiness, EF-synthesis, AF-emptiness,
AG-universality, etc). For example, given a PTA A and a subset G of its locations,

37

1. EF-emptiness asks: “is the set of parameter valuations v such that there
exists a run of A[v] reaching a location l ∈ G empty?”

2. AF-emptiness asks: “is the set of parameter valuations v such that all runs
of A[v] reach a location l ∈ G empty?”

3. EF-universality asks: “are all parameter valuations v such that there exists
a run of A[v] reaching a location l ∈ G?”

4. AF-universality asks: “are all parameter valuations v such that all runs of
A[v] reach a location l ∈ G?”

5. EF-synthesis does: “synthesize all parameter valuations v for which a run
reaches a given location l ∈ G.”

6. AF-synthesis does: “synthesize all parameter valuations v for which all
runs reach a given location l ∈ G.”

7. ED-emptiness asks: “is the set of parameters valuations v such that at
least one run of A[v] is deadlocked, i. e. has no discrete successor (possibly
after some delay), empty?”

8. AD-emptiness asks: “is the set of parameters valuations v such that all
runs of A[v] are deadlocked, i. e. have no discrete successor (possibly after
some delay), empty?”

9. EC-emptiness asks: “is the set of parameters valuations v such that there
exists at least one run of A[v] with an infinite number of discrete transitions,
empty?”

10. AC-emptiness asks: “is the set of parameters valuations v such that all
runs of A[v] have an infinite number of discrete transitions, empty?”

11. Additionally, language and trace set preservation emptiness (a membership
problem) asks: “does there exist another valuation v′ 6= v such that the
untimed languages of A[v] and A[v′] are the same?”

Note that EF-, AF-, EG-, AG-, ED- and EC-emptiness are equivalent to
AG-, EG-, AF-, EF-, AC- and AD-universality, respectively.

In this thesis, the EF-problem will be used repeatedly in several chapters.
Therefore, Section 2.9.5 will be devoted to the EF-problem. Other parameter
synthesis problems will be mentioned inside other chapters. For additional
properties please see e. g. [And15, AM15].

2.8.2 Decidability of PTA
In this section, we assume that the reader is familiar with the computation
theory such as halting problem, decidability, reducibility, etc. However, the
reader can also refer to Appendix A for a brief recall of the computation theory
(e. g. decidability, reducibility, 2-counter machine [Min67], etc).

38

In [ALR16b], it showed that Turing-recognizable languages (type-0 in Chom-
sky’s hierarchy or recursively enumerable languages) are also recognizable by
PTAs with some restrictions on the number of clocks and parameters. Further-
more, a Turing-machine can be simulated by a 2-counter machine [Min67], which
can be simulated by a PTA. Thanks to these simulations, we can prove a certain
problem of PTA is undecidable by reducing the halting problem for 2-counter
machines to this problem, which is known as undecidable.

The beginning of this section will be dedicated to the investigation of PTA’s
decidability. Following will show the attempts of simplifying and reducing its
syntactic to have simpler subclasses with the hope of making them decidable.

Decidability of simple PTAs

Let us recall some decision problems for PTA. The EF-emptiness problem is
undecidable [AHV93], even with a single real-valued parameter [Mil00], with only
strict constraints [Doy07] and with a single integer-valued parameter [BBLS15].
The AF-emptiness problem is undecidable even with a single bounded parameter
[JLR15] which is deduced from the proof of undecidability of L/U-PTA. Lan-
guage and trace preservation emptiness problems are undecidable even with a
single bounded parameter [AM15]. The EG and AG-emptiness problems are un-
decidable for PTAs, the AF-emptiness problem is undecidable for bounded PTAs,
and the EF-universality problem is undecidable for bounded PTAs and for PTAs
[ALR16a]. The EC-emptiness, ED-emptiness and EG-emptiness problems are
undecidable for PTAs with 3 clocks and a bounded single parameter, with 3 clocks
and 2 bounded parameters and with 4 clocks and 3 bounded parameters respec-
tively [AL17]. (See more in e. g., [Mil00, Doy07, BO14, BBLS15, And15, AL17]).

Many attempts were dedicated to find the thin boundary between decidability
and undecidability showing that a PTA will reach undecidability at three para-
metric clocks and only one rational-valued parameter, or only one parametric
clock, three non-parametric clocks and one rational-valued parameter [Mil00], or
three parametric clocks and one integer-valued parameter [BBLS15].

In general, bounding time, bounding the number of parameters or the domain
of the parameters does not lead to any decidability. But by restricting the number
of clocks, the use of clocks (compared or not with the parameters), and the use of
parameters (e. g. used only as upper or lower bounds) can lead to the decidability
of some problems. Research around PTAs since then consisted mainly in either
exhibiting subclasses of PTAs for which interesting problems become decidable,
or devising efficient semi-algorithms that would terminate “often enough” to be
useful.

Decidability of subclasses of PTA

L/U-PTA A famous subclass of PTA is L/U PTA [HRSV02] where each
parameter can be used only either as upper bounds or as lower bounds, and for
which the EF-emptiness problem (see section 2.9.5) becomes decidable (additional
results [BL09, JLR15, AL17]).

39

In [BL09], further problems were shown to be decidable for L/U PTA,
including the emptiness and the universality problem for infinite runs properties
(“do all parameter valuations have an infinite accepting run?”), for integer
parameter valuations.

In [JLR15], however, it was shown that the solution to the EF-synthesis
problem for L/U PTA cannot be represented as a finite union of polyhedra, hence
strongly limiting the practical interest of L/U PTA. Orthogonal to syntactical
restrictions on the model is the search for restrictions on the parameter domain:
in [JLR15], an algorithm is proposed to synthesize integer parameter valuations
in a bounded domain. This is of course decidable, and the authors devise two
symbolic algorithms that perform better than enumeration.

In [ALR16a], EF-emptiness, EF-universality and AF-emptiness problems
were again considered in solving several open problems for PTAs and their
subclasses. Based on results proved for the new subclass called Integer-Points
Parametric Timed Automata or (IP-PTAs) in this paper, and an original proof
for the undecidability of the EF-emptiness problem for general PTAs with a single
bounded rational-valued parameter and only non-strict constraints, the authors
proved that the EF-emptiness and EF-universality problems are decidable, and
the AF-emptiness problem is undecidable for bounded L/U-PTA.

In [AL17], the authors concentrate on liveness properties including EC-
emptiness, ED-emptiness and EG-emptiness. Unfortunately, most of the prob-
lems were shown to be undecidable, except the EC-emptiness problem is proved
to be decidable for L/U-PTA. The ED-emptiness and EG-emptiness problems
are undecidable for bounded PTAs with 3 clocks and 2 parameters and with 4
clocks and 3 parameters respectively. Furthermore, in the paper, bounded L/U-
PTAs are divided into two smaller subclasses called bounded open L/U-PTAs
and bounded closed L/U-PTAs (depending on the bounded parameter domain
interval). For closed bounded L/U-PTAs, The EC-emptiness and EG-emptiness
problem are decidable and The ED-emptiness problem is undecidable with 3
clocks and 2 parameters. For open bounded L/U-PTAs, the ED-emptiness and
EG-emptiness problems are undecidable with 3 clocks and 2 parameters and
with 4 clocks and 4 parameters respectively. The EC-emptiness is still in open
question.

Note that, bounded PTAs are a subclass of PTAs while bounded L/U-PTAs
are incomparable of terms of expressiveness with L/U-PTAs [ALR16b], which
means the undecidability results for bounded L/U-PTAs cannot be automatically
extended to L/U-PTAs; conversely, decidability results for L/U-PTAs cannot be
automatically extended to bounded L/U-PTAs.

L-PTA and U-PTA Lower-bound PTAs and upper-bound PTAs, abbrevi-
ated to L-PTAs and U-PTAs, are two subclasses defined in [BL09], where all
parameters are always lower bounds, and upper bounds respectively. They are
both very promising open classes with many undecidable problems for L/U-PTAs
still remain open for them. The only problem is given in [AM15], which shows
that the language-preservation problem is decidable for deterministic U-PTA

40

and deterministic L-PTA with a single integer-valued parameter and undecidable
for L/U-PTA.

IP-PTA Integer-Points parametric Timed Automata [ALR16a] IP-PTAs for
short, are a subclass of PTAs with bounded rational-value parameters. EF-
emptiness, EF-universality and AF-emptiness are undecidable for both IP-PTAs
and bounded IP-PTAs except the EF-emptiness problem which was proved to
be decidable for bounded IP-PTAs. This is also known as the first syntactic
restrictions making the reachability emptiness problem decidable for PTAs
besides L/U-PTAs (see more in [ALR16a]).

Future subclasses Although PTAs suffer from many problems being unde-
cidable in theory, there are many case studies using PTAs found to terminate
in practice. The question is there are future subclasses of PTAs, for which the
problems above become decidable.

2.9 Parameter synthesis
We recall in this section the algorithms and synthesis problems that are used
repeatedly throughout the thesis.

2.9.1 The good parameters problem

Figure 2.14 – An example of parameter domain in multi-dimensions (hyperrect-
angle or polyhedron)

The good parameters problem is a parameter synthesis problem that syn-
thesizes a set of values of the timing parameters guaranteeing that the system
behaves well and avoids any bad behavior [FJK08, AS13]. Note that, the set
of values of the timing parameters is usually called as a hyperrectangle (resp.
polyhedron [BY03]) parameter domain with each parameter corresponds with a
dimension of the hyperrectangle (resp. polyhedron), and with n dimension we will
have the polyhedron as Fig. 2.14 1 above. For simplicity purposes, we only use

1The polyhedron picture in this section is obtained from : http://http://commons.
wikimedia.org/wiki/File:Uniform_polyhedron-53-s012.png

41

http://http://commons.wikimedia.org/wiki/File:Uniform_polyhedron-53-s012.png
http://http://commons.wikimedia.org/wiki/File:Uniform_polyhedron-53-s012.png

rectangular parameter domains for our examples, such as the example in Fig. 2.15.

Good parameters problem:
Problem: Given a concurrent real time system and a hyperrectangle
parameter domain D0 ⊆ RM+ , what is the largest set of parameter values
within D0 for which the system is safe?

2.9.2 The Inverse problem
The inverse problem [AS13] is a subproblem of the good parameters problem
above Section 2.9.1.

Inverse problem:
Problem: Given a parametric timed automatonA and a reference valuation
v0, find a constraint K0 on the parameters such that:

• v0 |= K0, and

• for all v |= K0 the trace sets of A[v0] and A[v] are the same.

This problem considers an equality of trace sets between A[v0] and A[v], and
thus guarantees a “time-abstract” equivalence between the behavior of A[v0]
and A[v].

The synthesizing procedure starts with a given valuation v0 of the system,
then it synthesizes a constraint K0 with the same trace set as the one of v0.
The benefit of that is to give a robustness criterion by guaranteeing the same
behavior around v0.

2.9.3 The Inverse Method
The inverse method (IM) [AS13] generalizes the behavior of A[v] in the form of
a tile, i. e. a parameter constraint K where the discrete behavior is uniform (see
Fig. 2.15, where K = IM(A, v)). That is, for any point v′ satisfying K, the trace
sets of A[v′] and A[v] are equal. Hence any linear-time property (expressed in,
e. g. LTL) valid in A[v] is also valid in A[v′].

An application of IM is to derive robustness conditions for the system. The
study of the robustness in real-time systems (see, e. g. [Mar11]) aims at deciding
whether infinitesimal variations of time (due to, e. g. slightly extended or shrunk
deadlines, or clock drifts) may impact the overall, discrete system behavior.
However, IM may not terminate [ACEF09]. Indeed, parameter synthesis for PTA
is known to be undecidable [AF10]. Nevertheless, it behaves “well” in the sense
that it terminates for all case studies considered in Chapter 3, except for small
examples designed on purpose to show non-termination.

Note that, in general, tiles have no predefined “shape”: they are general
polyhedra in |P | dimensions that can have arbitrary size, number of vertices, and
edge slope. The computation time of IM also greatly varies, from milliseconds

42

to several hours, depending on the complexity of the model, and the size of the
trace set.

2.9.4 The Behavioral Cartography
Given a PTA A and a bounded parameter domain D (usually a hyperrectangle
in |P | dimensions), the behavioral cartography (BC) [AF10] repeatedly calls IM
on (some of the) integer or rational-valued points of D (of which there is a finite
number), so as to cover D with tiles. The result gives a tiling of D such that
the discrete behavior (trace set) is uniform in each tile.

In Fig. 2.15, BC first considers point v, and computes K = IM(A, v). Then,
BC iterates on the subsequent points, all already covered by K, until it meets
v′′, that is not yet covered. Hence, BC will then compute IM(A, v′′), and so on,
until all points in D are covered.

BC can be used for several applications: first, it identifies the system robust-
ness in the sense that, in each tile, parameters can vary as long as they remain
in the tile, without impacting the system’s discrete behavior. Second, BC can
be used to perform parameter optimization; the weakest conditions of the input
signal of an industrial asynchronous memory circuit (SPSMALL) were derived
using BC [AS13]. Third, given a set of linear time properties (i. e. that can be
verified on the trace set), it suffices to compute only once BC, and then to check
each property on the trace set generated for each tile in order to know a complete
(or nearly complete) set of parameter valuations satisfying each property.
Remark. BC does not guarantee the full, dense coverage of D for two reasons:

1. IM may not terminate, as the corresponding problem is undecidable [AM15].
In practice, in our implementation of BC in Chapter 3, this is addressed
using a timeout: if IM(A, v) does not terminate within some time bound,
BC switches to the next point, and v will (most probably) never be covered.
However, although it was shown possible in theory, this never happened in
any of our experiments.

2. IM generalizes integer points in the form of dense, rational-valued con-
straints, but it could happen in rare cases that some tiles do not contain
any integer points. This sometimes happened in our experiments (e. g. the

K

v v′ v′′

Figure 2.15 – Graphical example

43

small white zones in BC in Fig. 2.16a, around x = 100 and y = 55); usually,
calling BC on multiples of 1

3 instead of integers was empirically shown to
be sufficient in most cases (although in theory there might be an infinite
number of tiles in a bounded domain). Conversely, note that BC frequently
covers (parts of) the parametric space beyond D which is a predefined
dotted rectangle in Fig. 2.16; for instance, the case in Figs. 2.16b to 2.16d
(in Fig. 2.16b, the entire parametric space is even covered).

(a) SPSMALL (b) Flip-flop circuit

(c) Schedulability (d) RCP

Figure 2.16 – Examples of graphical behavioral cartographies in 2 dimensions

Also note that the motivation for considering integer points is that, in most
cases, considering integers is sufficient to cover entirely (or almost entirely) the
domain D. However, as said above, our implementation allows any “step” instead
of integers (e. g. multiples of 1

3).

2.9.5 EF-problems
We recall below two classical problems, as formalized in [JLR15].

44

EF-emptiness problem:
Input: A PTA A and a location lbad
Problem: Is the set of parameter valuations v such that A[v] reaches lbad
empty?

EF-synthesis problem:
Input: A PTA A and a location lbad
Problem: Compute the set of parameter valuations v such that A[v] reaches
lbad .

The EF-emptiness problem is undecidable [AHV93], and the set of parameter
valuations solving the EF-synthesis problem cannot be computed in general.
In [JLR15], the following semi-algorithm is proposed, that gives a complete
answer to EF-synthesis when it terminates.

Throughout the thesis, we call “EFsynth” the parameter synthesis semi-
algorithm that solves the EF-synthesis problem. We will be interested in the
reachability of bad locations. Given a PTA A = (Σ, L, l0, X, P,K0, I, E), we
assume a special location lbad ∈ L; without loss of generality, we assume that
this location is unique (the case with several bad locations can be reduced to
one only using additional transitions to lbad).

Let us recall the semi-algorithms in Fig. 2.17 for the EFsynth problem in
[JLR15], where S represents a passed list of symbolic states. S begins with an
empty list and then records the symbolic states that have already been explored
on a given path:

EFsynthlbad
((l, C), S) =

{
C↓P if l = lbad
∅ if (l, C) ∈ S⋃

s′∈Succ((l,C))
EFsynthlbad

(
s′, S ∪ {(l, C)}

)
otherwise

Figure 2.17 – EFsynth algorithm

Example 15. Consider the PTA A1 in Fig. 2.18 [JLR15], with clocks x and y
and parameters a and b. Then EFsynthl2(s0, ∅) does not terminate, and neither
does it if the range of the parameters is bounded from above (e. g. a, b ∈ [0, 50]).

l1

x ≤ b
l2

x = y = 0

x ≥ a
x := 0

y ≥ 20

Figure 2.18 – An example of a PTA A1 [JLR15]

From the proof of correctness of EFsynth in [JLR15], one can infer that the
result of EFsynth is still a (possibly incomplete) answer to the EF-synthesis
problem even when the algorithm is artificially stopped before its termination. By

45

artificially stopping EFsynth, we mean bounding the recursion depth: when the
depth indeed exceeds some bound, we replace the recursive call EFsynthlbad

(s′, S∪
{(l, C)}) with ⊥.

Proposition 2.9.1 ([JLR15]). Let K be the result of EFsynthlbad
(s0, ∅) when

EFsynth is stopped after being recursively called a bounded number of times.
For all v |= K, lbad is reachable in A[v].

Then, BC can give a (possibly incomplete) solution to the EF-synthesis
problem, by returning the union of all constraints for which the desired location
is reachable.

2.10 IMITATOR
IMITATOR2 [AFKS12, And09] stands for Inverse Method for Inferring Time
AbstracT behaviOR, and implements of the InverseMethod algorithm described in
[ACEF09], and also a tool for efficient synthesis for Timed Automata. Technically,
it is based on the inverse method [AFKS12] and the behavioral cartography for
PTA [AF10]. IMITATOR takes as input a network of PTAs and e. g. a reference
valuation v0, and then it synthesizes a constraint K solving the inverse problem.
In particular, it generalizes a concrete behavior of a PTA, by synthesizing
constraints on the parameters.

PTA

Options
IMITATOR Constraint K

Figure 2.19 – Functional view of IMITATOR

This tool has been originally developed by Étienne André, in collaboration
with various contributors.

Ocaml: A programming language is developed at INRIA in France [Har05,
MMH13]. Since its first release in 1996, it has excelled in a variety of applica-
tion domains and supports functional, imperative and object-oriented styles of
programming which ease the development of flexible and reliable software. Thus
Ocaml has become one of the most popular functional programming languages in
the world, which has many powerful features such as functional programming, pat-
tern matching, type inference, garbage collection, object-oriented programming,
safety, strongly and statically typed, type inference, polymorphism, modules
programs, separate compilation, etc. It is clear that OCaml is a good choice
for systems where need resource usage, predictability, and performance. Until
now, Ocaml language improvements have been frequently added to support the
growing commercial and academic purposes.

2https://www.imitator.fr/

46

https://www.imitator.fr/

2.11 Efficient verification
Since the early stages, one of the main drawbacks of model checking has been the
state explosion problem. Therefore, much of research in model checking over the
past few decades has involved developing techniques for dealing with this problem
such as symbolic model checking (see Section 2.5.4), abstraction verification,
compositional verification, symmetry verification, on-the-fly technique, partial
order reduction, bounded model checking, SAT bounded model checking, etc.

Besides symbolic model checking and on-the-fly techniques that are used in
all our algorithms. We also use abstraction verification in modeling our systems
and compositional verification for our distributed schemes. Hence, we give below
a short introduction to these techniques.

2.11.1 On-the-fly verification
This approach avoids constructing the entire state space of the model in the
memory and the states are generated only when needed. Thus it decreases the
computation time and allows us to analyze larger models [FJJV96, CVWY92].

2.11.2 Abstracted verification
With abstraction [Lon93], we try to simplify our models by hiding details, replace
complex data types with simpler abstract ones, or simplify some of the timing
behavior of the components. Indeed, verifying the simplified models is faster
than verifying the original ones. Note that we must establish a relationship
between the abstract models and the original ones, so that correctness at the
abstract level will imply correctness for the original system. Furthermore, there
must be a balance between hiding information and the need to be able to prove
the specification.

2.11.3 Compositional verification
In compositional verification [Lon93], a given system model is split up into sub-
models in order to faster verify. In fact, the key idea is to verify the properties
of individual components of the system but still guarantee the properties hold in
the whole system, and then use them to prove the overall system specification.
Note that it requires knowledge of how components of the design contribute to
satisfying the given specification.

2.12 Parallel computing
Although many approaches have been proposed in Section 2.11 to make model
checking more efficient, the state explosion problem still occupies the computer
hardware resources (both processor and memory) at most linearly. Then using
a model checker based on parallel (shared memory) and distributed (message
passing) computing will be more efficient to handle large state spaces. This section

47

will be dedicated to the basis of parallel computation, especially distributed
computing and message passing interface which are used in this thesis.

Parallel computing [B+10] is a form of computation in which many calcu-
lations are carried out simultaneously by parallel systems.

A parallel system is a system having more than one processor with parallel
processing abilities. This system is based on the connections between processors
and memories, and SIMD and MIMD are two main kinds of the parallel system
which are from four classifications defined by Flynn:

• Single Instruction Single Data Stream (SISD): Traditional sequen-
tial architecture. At one time, one instruction operates on one data.

• Single Instruction Multiple Data Stream (SIMD): Multiple data
streams are executed by only one instruction.

• Multiple Instruction, Single Data stream (MISD): Multiple instruc-
tions operate on a single data stream. This architecture is often used for
fault tolerance.

• Multiple Instruction Multiple Data Stream (MIMD): Multiple
processors execute different instructions on different data streams, which
leads to the flexibility in parallel processing. Parallel and distributed
systems are also recognized as MIMD architectures.

A parallel programming model can be executed on a parallel system. It
includes design and coding applications. The purpose is to parallelize a sequential
program in order to gain the ability to solve large complex problems or reduce
execution time or both. Moreover, the main idea behind parallel programming
is to parallelize the program to distribute work across multiple processors,
and finally gather all results from these processors. There are several parallel
programming models in common use, for instance:

• Shared memory: Multiple processors can communicate together by
reading and writing from a shared memory. It means data in shared
memory can be accessed by all the processors.

• Distributed memory: Unlike shared memory systems, each processor
has access to its own memory space.

Knowing them clearly could help to build the right algorithm. In the thesis,
we use distributed memory model for our algorithms, and processes communicate
with each other by using message passing.

48

Message Passing Interface - MPI [Bar, GFB+04] stands for Message Pass-
ing Interface, is a standardized and portable message-passing system designed
by a group of researchers from academia and industry to supply programmers
programming on a variety of parallel platforms.

The goal of the Message Passing Interface is to establish a portable, efficient,
and flexible standard for programming parallel applications. MPI provides
language bindings for C, C++, Fortran-77, and Fortran-90, non-official bindings
exist for python and Ocaml. There exist several open-source implementations
but the most widely used are being Open-MPI and MPICH2.

IMITATOR is written in Ocaml; Hence, we used “OcamlMPI” which is an
implementation of Open-MPI for this project.

It is necessary to get familiar with basic MPI definitions which are used in
next chapters:

Note that, MPI uses objects called communicators and groups to define which
collection of processes may communicate with each other

• Rank: It is a unique integer identifier for a process assigned by the system
when the process initializes and used by the programmer to specify the
source and destination of messages. Ranks are contiguous and begin at
zero.

• Communicator: This defines the group which may communicate, pos-
sesses its own unique identifier. Most MPI subroutines require to specify
the communicator as an argument.

• Group: It is an ordered set of processes and has its own unique identifier,
associated with a communicator.

In the next chapters, we will detail the main contributions of the thesis.
The succinct Section 2.9 and Section 2.8 should be sufficient for the reader to
understand all ideas and concepts that the thesis conveys.

49

3
C

h
a

p
t

e
r

Distributed verification of
parametric real-time systems

Contents
3.1 Introduction . 50
3.2 Static domain decomposition 52
3.3 Master-worker point distribution algorithms 54

3.3.1 Principle: master-worker 54
3.3.2 An abstract algorithm for the master 55
3.3.3 Sequential point distribution 56
3.3.4 Random + sequential point distribution 57
3.3.5 Shuffle point distribution 58

3.4 Dynamic domain decomposition 59
3.4.1 Master algorithm . 60
3.4.2 Worker algorithm . 61
3.4.3 An additional heuristic 62

3.5 Experiments . 63
3.6 Conclusion . 69

3.1 Introduction
Parametric verification is costly, so we try to distribute it in order to make it
faster. The behavioral cartography (BC) of PTA was presented in Section 2.9.4

50

and it seems to be the easiest algorithm to extend in a distributed manner.
Hence, this chapter is devoted to distributing BC on a cluster. Then we will
address EF in Chapter 4.

In [ACE14], the authors sketched two master-worker point distribution algo-
rithms to compute BC in a distributed fashion. Here, we present enhanced dis-
tributed algorithms to compute the cartography efficiently. Experimental results
show that our new algorithms (implemented in the IMITATOR tool [AFKS12])
significantly outperform previous distribution techniques.

Contribution The goal of this chapter is to propose efficient distributed
algorithms to compute BC efficiently using parallel, distributed computing
resources. Our contributions are as follows:

1. We formalize the existing point-by-point distribution algorithms (Sequential
and Random), that were only informally sketched in [ACE14].

2. Then, our main contribution is to propose three new distributed algorithms
to speed up the cartography: the first one (Static) is a static domain
decomposition scheme, where each node works independently on its own
parameter subdomain; the second one (Shuffle) addresses the drawbacks
of Sequential and Random; finally, the third one (Subdomain) is a new
master-worker, dynamic, distributed domain decomposition process.

3. We then evaluate our algorithms on real-time case studies. In all cases,
our new algorithms Shuffle and (a variant of) Subdomain outperform the
algorithms of [ACE14]. We also discuss how to choose the appropriate
algorithm depending on the case study.

Related works The design of efficient parameter synthesis techniques has
been tackled in various works, e. g. using SMT-based model checking techniques
[CGMT13], or using symbolic techniques for integer synthesis [JLR15]. BC helps
to quantify the system robustness; this has also been tackled using the “ASAP”
semantics [DWDR05] (see, e. g. [Mar11] for a survey), but usually in only one
dimension (a single variation δ of the timing delays is considered, whereas BC
allows as many dimensions as parameters). To the best of our knowledge, with
the exception of [ACE14], distributed computing techniques were not applied
yet to parameter synthesis for PTA.

Formal verification can be made in parallel in two ways: modeling languages
can be designed to be easy to use in a distributed fashion, or the verification algo-
rithms themselves can be parallelized. Our approach sits in the second category.
In recent years, some model checkers were extended to parallel computing, i. e.
running on multicore computers. This is the case of PKind [KT11], APMC (a
probabilistic model checker) [HBE+10], and FDR3 (for CSP refinement checking).
More recently, two algorithms were proposed to address multi-core LTL verifica-
tion [ELPvdP12] and emptiness checking of timed Büchi automata [LOD+13].
However, with the exception of FDR3 (that can run either on multicore or on

51

clusters), these works run verification on multicore computers (with a shared
memory) whereas our primary goal is to run verification on a cluster in or-
der to cope with memory consumption problem (where each node has its own
memory). Furthermore, there are other works with shared memory such as
the novel distributed memory algorithm for SMT-based parameter synthesis in
[BBD+16], or swarm verification for time optimal reachability (TOR) in uppaal
[ZNL16a, ZNL16b].

Outline We briefly define in Section 3.2 the static domain decomposition
algorithm (Static). Then, we formalize in Section 3.3 the master-worker scheme
and the two point distribution algorithms of [ACE14]; we also introduce a
third point distribution algorithm (Shuffle). We introduce in Section 3.4 our new
dynamic domain decomposition algorithm (Subdomain). We conduct experiments
in Section 3.5 and conclude in Section 3.6.

3.2 Static domain decomposition
In order to tackle larger case studies, our objective is to take advantage of the
iterative nature of the cartography (in contrast to most, if not all, other known
parameter synthesis algorithms), and to distribute it on N processes. There is
no theoretical obstacle in doing so, since all calls to IM are independent from
each other. The challenge is rather to select efficiently the points on which IM is
called, so that as few redundant constraints as possible are computed.

In this section, we briefly describe a static domain decomposition (“Static”).
That is, the rectangle D is split into N subdomains, and then each process is
responsible for handling its own subdomain in an independent manner (with no
communication). This domain decomposition method is often used for regular
data distributions, where all subdomains require the same processing time, and
preferably on domain shapes such as rectangles or hypercubes, that can easily
be mapped on a grid of processes.

Each node i performs the following procedure:

1. split D into N subdomains. Alternatively, a single node could perform the
split and then send to each other node its own subdomain (at the cost of
additional communications).

2. execute BC on the ith subdomain, i. e. iteratively select integer points and
call IM until all integer points in the ith subdomain are covered by tiles.

For example, in Fig. 3.1a, the domain D (the external dashed rectangle)
is split into four equal subdomains (the four internal dashed rectangles); vi,
1 ≤ i ≤ 4 represents a possible first point on which to call IM in each subdomain.
(K2 in Fig. 3.1a and Fig. 3.1b will be used later on.)

This static decomposition is straightforward but is not satisfactory for BC
for three main reasons.

52

K2v1 v2

v3 v4

(a) Redundancy

v1 v2 v3 K

(b) Choosing points

Figure 3.1 – Graphical representations and challenges

(a) SPSMALL (b) Flip-flop circuit

(c) Schedulability (d) RCP

Figure 3.2 – Examples of graphical behavioral cartographies in 2 dimensions

First, the general “shape” of the cartography is entirely arbitrary and un-
known beforehand, since tiles can themselves have any shape. Fig. 3.2 gives
examples of cartographies in 2 parameter dimensions: although the geometrical
distribution of the tiles of Fig. 3.2a within D is rather homogeneous, this is not
true at all for the others. For example, splitting the domain of Fig. 3.2b (resp.
Fig. 3.2d) into four equal parts would be very unfair for the node responsible of

53

the lower-left (resp. upper-right) subdomain, since most tiles are concentrated
there; this would also be inefficient, since the other nodes will rapidly become
idle.

Second, the geometrical distribution of the tiles says nothing on the time
necessary to compute each tile. Recall that the computation of IM can be very
long (up to several hours). Even when the tiles are homogeneously located
within D, some tiles may require much more time than others. For example, in
Fig. 3.2a (where the geometrical distribution of the tiles is rather homogeneous),
it could happen that the bottom-left tiles require much more time than others,
resulting in this node to work much longer, while the other nodes would rapidly
finish their duty. Again, this would result in a loss of efficiency due to load
unbalance since not all of the nodes are working actively.

Third, the absence of communication between nodes may result in redundant
computations. Let us go back to the example of cartography in Fig. 3.1a. Assume
that node 2 finishes first the computation of a tile, say K2. This tile not only
covers the entire subdomain of node 2, leading to the termination of process 2,
but it also covers node 4’s subdomain entirely and a large part of node 2’s
subdomain. Without communication, these nodes will keep working without
knowing that their subdomain has already been covered. In contrast, a smarter
distribution scheme should be such that, in this situation, nodes 2, 3 and 4 would
go to help node 1 finish its (not much covered yet) subdomain. We will address
this efficiency issue in the remainder of this chapter.

3.3 Master-worker point distribution algorithms
We formalize the abstract algorithm for the master (Section 3.3.2), the Sequential
(Section 3.3.3) and the Random point distribution (Section 3.3.4). Additionally,
we introduce a new point distribution Shuffle (Section 3.3.5).

3.3.1 Principle: master-worker
Workers ask the master for a point v, then execute IM(A, v), and finally send
the corresponding result K to the master. The master does not call IM itself,
but instead distributes points to the workers. Whereas this may be a loss of
efficiency when using few processes, this shall be compensated for a large number
of processes. Moreover, this parallel computation scheme balances the load
between workers automatically.

Master tag Argument
POINT(v) parameter valuation

STOP -
SUBDOMAIN(sd) new subdomain

TILES(T) latest tiles

Worker tag Argument
COMPLETED -

NOTIFYPOINT(v) parameter valuation
REQTILES -
RESULT(K) constraint computed

Table 3.1 – Tags for master-worker communications

54

The master and workers communicate with each other by sending messages
that are labeled using tags, using two asynchronous functions send(n,msg) and
receive(). Function send(n,msg) sends a tagged message msg to node n. Function
receive() is a blocking function that waits until a message is received, and returns
a pair (n,msg), where msg is the tagged message that has been received from
node n. Based on the tag of the message, receiving processes can decide what
to do with the message itself. Note that workers never communicate with each
other. We assume that messages are made of a tag and zero or one argument: for
example, POINT(v) sends a POINT tag together with the parameter valuation v.
We give the list of tags used throughout this chapter in Table 3.1.

3.3.2 An abstract algorithm for the master
We first formalize in Algorithm 2 the “abstract” master algorithm sketched
in [ACE14]; this algorithm contains variation points that can be instantiated to
give birth to concrete master algorithms. In this section, we only use the worker
tag RESULT and the master tags POINT and STOP. The workers, formalized
in Algorithm 1, only call the inverse method on the point they receive from the
master, and send the result back, until a STOP tag is received.

Algorithm 1: Worker algorithm
input : PTA A

1 while true do
2 switch receive() do
3 case m, STOP: do Terminate
4 case m,POINT(v): do
5 K ← IM(A, v)
6 send(m,RESULT(K))

Algorithm 2 takes as input a PTA A, a parameter domain D and the
number of processes N ; it is also parameterized by a point distribution mode M.
Each mode is responsible for instantiating the variation points to give birth
to a concrete algorithm. The master starts by creating an empty set of tiles
and then calls the mode initialization function M.initialize(), that initializes
the various variables needed by the concrete algorithms (line 1). Then, the
master sends a point to each node n; the way these points are chosen among
D (M.choosePoint()) is decided by the mode (line 2). Then the master enters
the main loop (line 3 to line 5): while there are uncovered points, every time
a node n sends a constraint K and asks for work, the master stores the result
in its list of tiles T ; then, it selects a point according to M and sends it to n.
Finally, once all integer points are covered, the master receives the last result
from every node and sends STOP tags (line 6–line 7).

The way points are picked by the master to be distributed to the workers
is a highly critical question. Choosing points in a wrong manner can lead to

55

Algorithm 2: Abstract algorithm for the master
input : PTA A, domain D, number of processes N , mode M
output : Set of tiles T
// Initialization phase

1 T ← ∅ ; M.initialize()
2 foreach process n ∈ {1, . . . , N} do send(n,POINT(M.choosePoint()))

// Main phase
3 while there are uncovered integer points in D do
4 n,RESULT(K)← receive() ; T ← T ∪ {K}
5 send(n,POINT(M.choosePoint()))

// Finalization phase
6 foreach process n ∈ {1, . . . , N} do
7 n,RESULT(K)← receive() ; T ← T ∪ {K} ; send(n,STOP)
8 return T

a dramatic loss of efficiency. For example, choosing points very close to each
other would most probably lead to the (redundant) computation of the same tile.
This situation is depicted graphically in Fig. 3.1b, where points v1, v2, v3 may
yield the same tile K. In the next three subsections, we formalize three master
modes; these modes will define additional global variables and must instantiate
initialize() and choosePoint().

3.3.3 Sequential point distribution

Figure 3.3 – Sequential algorithm illustration

The first point distribution algorithm (Sequential) is a direct extension of
the monolithic (i. e. non-distributed) algorithm: as in the non-distributed BC,
it enumerates all the points of D in a sequential manner starting from 0 as
described in Fig. 3.3. Sequential assumes a function nextPoint that, given a
parameter valuation v and a parameter domain D, returns the next point in D for
some lexicographic order on the points of D. Sequential maintains a single global
variable vprev, storing the latest point sent to a worker. The initialization function
Sequential.initialize() sets vprev to a special value ⊥ such that nextPoint(⊥)

56

returns the smallest point in D (e. g. 0 if 0 ∈ D). Sequential.choosePoint()
(given in Algorithm 3) returns the next point of D not covered by any tile yet.

Algorithm 3: Sequential.choosePoint()
variables : Point vprev (global)
output : Point v

1 v ← vprev
2 repeat v ← nextPoint(v,D) until v is not covered by any tile in T
3 vprev ← v ; return v

The main advantage of Sequential is that it is inexpensive on the master’s
side.

Its main drawback is the risk of redundant computations by the workers,
due to the situation depicted graphically in Fig. 3.1b: for instance, at the
beginning, the N processes will ask for work, and the master will give them
the first sequential N points, all very close to each other, with a high risk of
redundant computation.

3.3.4 Random + sequential point distribution

Figure 3.4 – Random algorithm illustration

The second point distribution algorithm (Random) selects points randomly
as described in Fig. 3.4, and then in a second phase performs a sequential
enumeration to check the full coverage of integers in D. This second phase is
necessary to guarantee that all the integer points have been covered. The second
phase starts after a given number MAX of consecutive failed attempts to find an
uncovered point randomly. Indeed, simply stopping BC after MAX tries could
give a probabilistic coverage (e. g. 99 %) of integer points, but cannot guarantee
the full coverage. Since finding the points not covered by a list of tiles has no
efficient practical solution, this sequential check is the only concrete option we
have.

Random maintains two global variables. First, seqPhase acts as a flag to
remember whether the algorithm is in the first or second phase. Second, vprev
stores the latest point sent to a worker (just as in Sequential). Random.initialize()
initially sets seqPhase to false and vprev to ⊥.

57

We give Random.choosePoint() in Algorithm 4. In the first phase (line 1
to line 7), Random.choosePoint() randomly computes a point, and then checks
whether it is covered by any tile; if not, it is returned. Otherwise, a second try
is made, and so on, until the maximum number MAX of attempts is reached. In
that latter case, it switches to the second phase (line 8 to line 11), consisting in
a sequential enumeration of all the points just as in Sequential.choosePoint().

Algorithm 4: Random.choosePoint()
variables : Point vprev, flag seqPhase, Int nbTries (global)
output : Point v
// First phase

1 if ¬seqPhase then
2 nbTries ← 0
3 while nbTries < MAX do
4 v ← randomPoint(D)
5 if v is not covered by any tile in T then return v
6 nbTries ← nbTries + 1
7 seqPhase ← true

// Second phase
8 if seqPhase then
9 v ← vprev

10 repeat v ← nextPoint(v) until v is not covered by any tile in T
11 vprev ← v ; return v

3.3.5 Shuffle point distribution

Figure 3.5 – Shuffle algorithm illustration

The main problem of Random is the fact that the second phase, necessary to
check the full coverage of integers, may be costly and even useless if almost all
the points have already been covered. To alleviate this problem, we propose a

58

new algorithm Shuffle that first computes statically a list of all integer points
in D, then shuffles this list, and then selects the points of the shuffled list in a
sequential manner. The sequential phase of Random is then dropped, at the cost
of being able to compute, store statically and shuffle a large quantity of points.

Shuffle maintains a single global variable, i. e. the list allPoints of all the
points in D that has been shuffled as described in Fig. 3.5. The Shuffle.initialize()
function assigns shuffle(allIntegers(D)) to allPoints. (We assume here that
function allIntegers(D) returns the list of all the integer points of D, and
function shuffle(L) shuffles the elements of a list L.)

Then, the Shuffle.choosePoint() function simply consists in selecting the next
uncovered point in allPoints. That is, it performs pop(allPoints), until the point
output is not covered by any tile, in which case it returns it (we assume here
that function pop(L) pops the first element of the list L and returns it).

3.4 Dynamic domain decomposition

Figure 3.6 – Subdomain algorithm illustration

The most intuitive solution for distributing BC is the Static distribution
scheme of Section 3.2, i. e. to split D into N subdomains, and then ask each
process to handle its own subdomain in an independent manner as described in
Fig. 3.6. As said in Section 3.2, this may lead to inefficient computations (which
will be confirmed by our experiments in Section 3.5). Still, we use this idea to
set up a dynamic domain decomposition algorithm. This algorithm is different
from the previous ones, in the sense that it does not fit in the abstract master
algorithm formalized in Section 3.3.2.

Initially, the master splits in D into N subdomains, and distributes the
subdomains to the workers. In contrast to the algorithms of Section 3.3, the
workers are now responsible for checking whether all the points in their subdomain
have been covered yet or not. This mechanism reduces the load on the master
without leading to redundant point coverage checks. Then, when a worker has
covered all the integer points in its subdomain (because the points are covered
by tiles computed either by this worker, or by other workers), it informs the
master; the master dynamically splits a subdomain (typically, one that has only

59

been covered a little) and sends it back to the idle worker.

Figure 3.7 – Subdomain algorithm with splitting process illustration

The main idea is that the master is responsible for handling the dynamic
distribution of the subdomains (including detecting the slowest workers to split
their subdomain as described in Fig. 3.7), whereas the workers are responsible
for covering all the points in their subdomain in a sequential manner. There is
no need for more complex algorithms, since each worker is working on its own in
its own subdomain.

3.4.1 Master algorithm
In the following, we assume several functions. We believe that understanding
the role of these functions is straightforward; in practice, they lead to very tricky
implementation issues (especially for the split function with arbitrary numbers
of processes and parameter dimensions).

We give the master algorithm in Algorithm 5. Besides the list of tiles T ,
the master maintains two arrays of size N : the array SD associating with each
node its current subdomain, and the array currentPoints associating with each
node its latest known point (used to understand how advanced a worker is in
its subdomain). These two arrays are initialized using the function initialSplit
that splits D into N subdomains (line 1). Then the master sends its subdomain
(line 2) to each node.

The algorithm then enters its main phase (line 3 to line 10). The master waits
for incoming messages received via the asynchronous, blocking function receive().
If a new point is received (line 5), the master updates the currentPoints array
(this is needed to perform splits using the most up-to-date data). If a result is
received (line 6), the master stores it. If a request for tiles is received (line 7),
the master sends all the tiles back so that n can update its local list. For
efficiency purposes, in our implementation, the master only sends the new tiles
since n’s latest request (which is ensured using additional queue data structures).
The local list is necessary to detect whether a point in the worker’s subdomain
is covered by a tile computed by another worker. If the master is notified
that a worker n has completed its subdomain, i. e. all of its points have been
covered (line 8), the master finds out which subdomain is the least covered,

60

Algorithm 5: Subdomain: Master
input : PTA A, domain D, number of processes N
output : Set of tiles T
// Initialization phase

1 T ← ∅ ; SD, currentPoints ← initialSplit(D,N)
2 foreach process n ∈ {1, . . . , N} do send(n, SUBDOMAIN(SD[n]))

// Main phase
3 while a subdomain in SD can be split do
4 switch receive() do
5 case n,NOTIFYPOINT(v): do currentPoints[n]← v
6 case n,RESULT(K): do T ← T ∪ {K}
7 case n,REQTILES: do send(n,TILES(T))
8 case n,COMPLETED: do
9 n′, sd1, sd2 ← split(SD, currentPoints, n)

10 send(n,SUBDOMAIN(sd1)) ; send(n′,SUBDOMAIN(sd2))

// Finalization phase
11 finished← 0;
12 while finished < n do
13 switch receive() do
14 case n,RESULT(K): do T ← T ∪ {K}
15 case n,COMPLETED: do send(n, STOP) ; finished+ +
16 case ∗: do do nothing

17 return T

i. e. which workers are the most in need for assistance. This is performed by
split(SD, currentPoints, n), that returns the node n′ needing help, and two new
subdomains sd1 and sd2 split from n′’s former subdomain, while updating SD
(line 9). The master then informs both nodes of the split (line 10).

Finally, when no subdomain can be split (i. e. all non-completed subdomains
contain only one point), the master stores the last tiles it receives (line 14) and
sends a STOP signal to the workers (line 15).

3.4.2 Worker algorithm
We give the Subdomain worker algorithm in Algorithm 6. Each worker waits
for messages from the master: whenever a STOP signal is received from m (m
stands for the master node id), the worker terminates (line 3). Otherwise, a
subdomain sd is received (line 4): the worker then covers sd with tiles (line 5
to line 12) by calling IM sequentially on consecutive integer points as in the
Sequential (master) algorithm. The worker selects a point, sends it to the master
for update purpose, calls IM on that point, sends the result to the master, asks for
an update of the list of tiles, and so on. When sd is covered, the worker notifies

61

the master (line 13), and then waits again for a new message from the master
until termination. Additionally, the worker checks whether the master has split
its subdomain, because some other worker completed its own subdomain. In our
implementation, this requires on the worker’s side frequent (but inexpensive)
checks whether the master has split the worker’s current subdomain and, if so, a
simple update of the subdomain.

Algorithm 6: Subdomain: Worker n
input : PTA A
variables : Set of tiles T , point vprev

1 while true do
2 switch receive() do
3 case m, STOP: do return
4 case m, SUBDOMAIN(sd): do
5 while there are uncovered points in sd do
6 v ← Sequential.choosePoint()
7 send(m,NOTIFYPOINT(v))
8 K ← IM(A, v)
9 send(m,RESULT(K))

10 send(m,REQTILES)
11 m,TILES(receivedTiles)← receive()
12 T ← T ∪ receivedTiles
13 send(m,COMPLETED)

3.4.3 An additional heuristic
It may happen that, while a node is calling IM on a point v, another node has
covered v with its own tile. For example, in Fig. 3.1a, node 2 calls IM on point v2,
while node 4 calls IM on point v4. Assume calling IM on point v2 yields K2, that
incidentally covers v4. It is more efficient to stop the computation of IM on v4, so
that node 4 moves to another point instead of computing a redundant tile. We
hence improve Subdomain by adding a heuristics that prevents this situation as
follows: the master keeps track of all the points currently processed by each node;
whenever a constraint computed by a node i covers the current node processed
by another node j, the master informs immediately node j, and this node stops
its computation to move to the next point. We refer to Subdomain augmented
with this heuristics as Subdomain+H. This heuristics might be expensive, both
on the master side and on the worker side (frequent checks to perform, and more
communication), hence we will study both Subdomain and Subdomain+H.

62

3.5 Experiments
Experimental testbed description We ran our experiments on two clus-
ters of Grid’5000: Pastel (located in Toulouse, France), and Griffon (located in
Nancy, France). Pastel is made of 140 nodes, each of which features two dual-core
AMD Opteron 2218 running at 2.6 GHz, 8 GiB of RAM and a GigaEthernet
interconnection network. Griffon is made of 92 nodes, each of which features
two quad-core Intel Xeon L5420 running at 2.5 GHz, 16 GiB of RAM and both
GigaEthernet and 20G InfiniBand network interconnection networks. On these
two clusters, the nodes were running a 64-bit Linux 3.2 kernel. The code was com-
piled using OCaml 4.01 and we used OpenMPI 1.8 with the OCamlMPI bindings.

We implemented our algorithms in IMITATOR [AFKS12] tool.1

Case studies We are presenting here results using seven case studies:

Flip-flop4 is a 4-parameter dimension asynchronous flip-flop circuit [CC04],
made of four complex logical gates, and constrained by a predefined
environment. Parameters are timing delays in the gate traversal delays,
as well as setup and hold values for the input signals in the environment.
Depending on the values of the parameters, the system can have a very
different behavior.

RCP is a parametric model of the IEEE 1394 root contention protocol, where
nodes must elect a leader. The model is inspired by the TReX [ABS01]
model from the literature.

Sched3-2, Sched3B-2, Sched3B-3 and Sched5 are parametric schedula-
bility problems, where the goal is to find tiles where the system is robustly
schedulable.

Sched3-2, Sched3B-2 and Sched3B-3 are the same model, with a different
number of parameters (2, 2 and 3 respectively), and a much larger D for
Sched3B-2 and Sched3B-3, so as to test the scalability of our algorithms.

SiMoP is a parametric networked automation system, where several compo-
nents communicate via a network bus [ACD+09].

We give in the “model” part of Table 3.2 the number of clocks, of parameters,
and of integer points in D for each case study. In the “cartography” part, we give
the number of tiles and the time (in seconds) to compute the non-distributed
cartography (“monolithic”). Note that the number of tiles gives an upper bound
on the number of nodes above which a perfect distribution algorithm cannot
become more efficient: if each node computes a different tile, then using more
than n nodes cannot be faster than n nodes. Hence, we bound the analysis to
the smallest power of 2 greater or equal to # Tiles (“Nmax”).

1Sources, models and results are available at www.imitator.fr/static/ICFEM15/.

63

www.imitator.fr/static/ICFEM15/

Case study Flip-flop4 RCP Sched3-2 Sched3B-2 Sched3B-3 Sched5 SiMoP Average
Model

Clocks 5 6 13 13 13 21 8
Parameters 4 2 2 2 3 2 2

|D| 386400 3050 286 14746 530856 1681 10201
Cartography

Tiles 190 19 59 71 378 177 48
Nmax 128 32 64 128 128 128 64

N for speedup 128 19 59 71 128 128 48
Monolithic 1341.0 1992.0 46.0 61.2 865.0 3593.0 111.6

Execution time at Nmax
Static 33.0 2108.0 4.0 26.6 181.0 213.0 21.4

Sequential 2059.0 653.0 4.6 11.0 810.0 219.0 36.1
Random 652.0 635.0 3.6 8.4 524.0 148.0 23.6
Shuffle 670.0 624.0 3.1 7.6 243.0 140.0 18.7

Subdomain 48.0 1286.0 7.2 15.8 217.0 273.0 32.4
Subdomain+H 24.0 622.0 4.0 11.0 81.0 199.0 23.2

Hybrid 24.0 624.0 3.1 7.6 81.0 140.0 18.7
Ratio at Nmax w.r.t. monolithic

Static 2 106 9 43 21 6 19 29
Sequential 154 33 10 18 94 6 32 49
Random 49 32 8 14 61 4 21 27
Shuffle 50 31 7 12 28 4 17 21

Subdomain 4 65 16 26 25 8 29 24
Subdomain+H 2 31 9 18 9 6 21 14

Hybrid 2 31 7 12 9 4 17 12
Ratio at Nmax w.r.t. slowest distr

Static 2 100 15 40 22 6 21 29
Sequential 100 31 17 16 100 6 36 44
Random 32 30 14 13 65 4 23 26
Shuffle 33 30 12 11 30 4 18 20

Subdomain 2 61 27 24 27 8 32 26
Subdomain+H 1 30 15 16 10 6 23 14

Hybrid 1 30 12 11 10 4 18 12
Ratio at Nmax w.r.t. slowest at Nmax

Static 2 100 56 100 22 78 59 60
Sequential 100 31 64 41 100 80 100 74
Random 32 30 50 32 65 54 65 47
Shuffle 33 30 43 29 30 51 52 38

Subdomain 2 61 100 59 27 100 90 63
Subdomain+H 1 30 56 41 10 73 64 39

Hybrid 1 30 43 29 10 51 52 31
Speedup at Nmax

Static 32 5 19 3 4 13 11 12
Sequential 1 16 17 8 1 13 6 9
Random 2 17 22 10 1 19 10 11
Shuffle 2 17 25 11 3 20 12 13

Subdomain 22 8 11 5 3 10 7 10
Subdomain+H 44 17 19 8 8 14 10 17

Hybrid 44 17 25 11 8 20 12 20

Table 3.2 – Complete summary of experiments

64

Methodology We compute BC for each algorithm, for a number of nodes from
4 to 128. For the sake of brevity, we study here the performances at n = Nmax .
The execution time (in seconds) is given in the third part (“Execution time”) of
Table 3.2. For the remaining parts of Table 3.2 and in the graphics of Figs. 3.8
to 3.10, we give also for each case study the execution time and the speedup the
same number of nodes. Obviously, a low execution time is considered as good.
The speedup is the execution time for an algorithm and a number of nodes N
divided by the time needed for a perfect algorithm (i. e. the monolithic time
divided by N). The speed-up is used to measure how the code scales, i. e. how
much faster it runs as the number of nodes used for the computation increases.
It is usually between 0 and 1. A high speedup (i. e. close to 1) is considered as
good, while a value close to 0 denotes an inefficient algorithm (i. e. that does
not scale). (The algorithm Hybrid will be explained later on.)

We use two metrics to evaluate our algorithms.

1. The first metric is the following ratio, that compares algorithms with each
other, independently of their absolute performances: for each algorithm
and each case study, we compute the time for this case study and this
algorithm for Nmax nodes divided by the maximum over all algorithms
for this case study for Nmax nodes, and multiplied by 100. A ratio equal
to 100 means that this algorithm is the slowest for this case study, and a
small ratio indicates a more efficient algorithm.

2. The second metrics is the speedup, that evaluates the scalability of each
algorithm: for each algorithm and each case study, we compute the time
for this case study and this algorithm for Nmax nodes divided by the time
needed for a perfect algorithm (i. e. the monolithic time divided by Nmax),
and multiplied by 100. Here, a number close to 100 means a very scalable
algorithm, whereas a number close to 0 indicates an algorithm that does
not scale well.

Finally, we explain here details of the remaining parts in table Table 3.2:

• the ratio at Nmax w.r.t. the monolithic time, i. e. the execution time for
an algorithm and a number of nodes N divided by the monolithic time
and multiplied by 100 (of course, the smaller the better); note that a ratio
greater than 100 means that the distributed algorithm is even slower than
the monolithic one (which is the worst possible situation);

• the ratio at Nmax w.r.t. the slowest distributed algorithm for any N , i. e.
the execution time for an algorithm and a number of nodes N divided by
the slowest distributed algorithm for any number of nodes and multiplied
by 100 (again, of course, the smaller the better).

Note that Random is parameterized by the maximum number of attempts
MAX before switching to a sequential enumeration. In all experiments, we used
MAX = 10 (larger values did not significantly change the performances).

65

(a) Flip-flop4: execution time (b) Flip-flop4: speedup

(c) RCP: execution time (d) RCP: speedup

(e) SiMoP: execution time (f) SiMoP: speedup

Figure 3.8 – Experiments: execution time and speedup (1/3)

In the following, we describe the performance of each algorithm according to
Table 3.2, before concluding which is the most efficient strategy.

66

(a) Sched3-2: execution time (b) Sched3-2: speedup

(c) Sched3B-2: execution time (d) Sched3B-2: speedup

(e) Sched3B-3: execution time (f) Sched3B-3: speedup

Figure 3.9 – Experiments: execution time and speedup (2/3)

Static This static domain decomposition algorithm is clearly not efficient, and
it shows that BC cannot be efficiently distributed using classical techniques for
regular data distribution. Static is the worst algorithm twice (for RCP and

67

(a) Sched5: execution time (b) Sched5: speedup

Figure 3.10 – Experiments: execution time and speedup (3/3)

Sched3B-2), and never the most efficient; a surprise is the very good performance
for Flip-flop4, which probably comes from the fact that the tiles are very
homogeneous geometrically for this case study, making a static distribution
efficient.

Sequential Although it is easy to implement, this algorithm is terribly ineffi-
cient: with 3 case studies for which it is the worst algorithm, it is also the worst
in average. This comes from the fact that Sequential is very likely to distribute
to different nodes points that are close to each other, leading to redundant
computations.

Random This algorithm behaves well for case studies with relatively few points
in D, but it is always behind Shuffle in that case. It does not perform as well on
case studies with large D, most likely because of the sequential enumeration of
all points in the second phase of Random.

Shuffle With four case studies for which it is the best one, Shuffle is very efficient
when D does not contain too many points. Shuffling the points guarantees a
good random repartition of the points, without entailing complex operations at
the master side. . . at the cost of being able to shuffle large quantities of points.
This latter aspect certainly explains the low performances for Flip-flop4 and
Sched3B-3.

Subdomain This algorithm is always outperformed by its variant Subdomain+H;
it

seems that the cost of checking which node is computing which point and
the additional necessary communications are largely compensated by the benefit
of preventing redundant computations brought by stopping ongoing executions.

68

Subdomain+H This algorithm has the best average speedup (17 %). Although
it clearly outperforms Shuffle for only two experiments (Flip-flop4 and Sched3B-
3), Subdomain+H is for no case study very far from the best algorithm. This
could make a good candidate for the best distribution algorithm – but we
advocate in the following for a better proposition.

Conclusion: Hybrid From the experiments, we notice that Subdomain+H is
always among the most efficient, but is outperformed by Shuffle for case studies
with relatively few points in D. Hence, we propose the following “algorithm”: if
D contains relatively few points (say, less than 100,000), use Shuffle, otherwise
use Subdomain+H. Note that the condition (number of points in D) only depends
on the input of the analysis, and can be checked very easily. This new algorithm
“Hybrid” is always the best one – except for RCP, for which it is very slightly
slower than Subdomain+H despite a small number of points (3,050). In addition,
Hybrid gets the smallest average ratio (31 %) and the highest speedup (20 %).

Discussion An average speedup of 20 % at Nmax for Hybrid can seem relatively
low; this means that a perfect distribution algorithm (that would always divide
the monolithic computation time by N) would be 5 times faster. Still, we
find it promising. First, all distributed algorithms suffer from the time spent
in communication, which always lowers the speedup. Second, this confirms
that distributing BC is far from trivial, due to the unknown shape of the
cartography, the unknown computation time for each tile, and the risk for
redundant computations. Third, and most importantly, a speedup of 20 % means
that, when using 128 nodes, the computation time is still divided by more than
25 – which leads to an impressive decrease of the verification time.

3.6 Conclusion
We proposed in this chapter distribution algorithms to compute the cartography
relying on the inverse method, along with presenting a heuristic approach to
improve performance in parallelizing the inverse method approach among clusters.

In the next chapter, we will present another algorithm than IM to obtain
different “cartographies”; this is the case of [ALNS15] where we use a reachability
preservation algorithm (“PRP”) instead of IM so as to obtain, not a behavioral
cartography, but a simple “good/bad” partition with respect to a reachability
property. We also reused the distribution schemes from this chapter for the PRP
algorithm along with showing that PRP and its distributed algorithms always
outperform IM algorithm.

69

4
C

h
a

p
t

e
r

Reachability preservation
based parameter synthesis for

timed automata

Contents
4.1 Introduction . 70
4.2 Solving the EF-emptiness problem using reacha-

bility preservation . 71
4.2.1 Undecidability of the preservation of reachability . . 71
4.2.2 Parameter synthesis preserving the reachability . . . 73
4.2.3 EF-synthesis using PRP 76

4.3 Towards distributed parameter synthesis 77
4.4 Experimental comparison 78
4.5 Conclusion . 81

4.1 Introduction
In this chapter, our main goal is to address the EF-synthesis problem. Instead
of attacking the state space exploration in a brute force manner (like [AHV93,
JLR15]), we propose to perform several explorations of smaller size, taking
advantage of reference valuations in the line of the inverse method.

70

Contributions In more details, our contributions are as follows:

1. We first address the following reachability preservation problem for PTA:
given a reference parameter valuation v and a control state, do there exist
other parameter valuations that reach this control state iff v does? We
show that this problem is undecidable, and we introduce a procedure PRP
(parametric reachability preservation) that gives a (possibly incomplete)
answer.

2. Then, we show that PRP can efficiently replace IM in the behavioral
cartography to partition a bounded parameter subspace into good and bad
subdomains, and give a solution to the EF-synthesis problem.

3. We then compare the PRP-based cartography with the classical parameter
synthesis semi-algorithm “EFsynth” [AHV93, JLR15] that solves the EF-
synthesis problem: not only does PRP give a more precise result, but it also
performs surprisingly well, despite its repeated analyses. Comparisons are
performed using parametric schedulability problems for real-time systems.

4. We finally briefly discuss a distributed version of PRP, that is faster and
almost always outperforms EFsynth.

Outline Section 4.2.1 defines the reachability preservation problem and proves
its undecidability; Section 4.2.2 introduces PRP and proves its correctness;
Section 4.2.3 shows that PRP can be used to solve the EF-synthesis problem.
Section 4.3 discusses a distributed version of PRP, and Section 4.4 describes
an experimental comparison with BC and EFsynth. Section 4.5 concludes the
chapter and gives perspectives.

4.2 Solving the EF-emptiness problem using
reachability preservation

4.2.1 Undecidability of the preservation of reachability
Parameter synthesis with respect to a bad location is known to be undecid-
able [AHV93]. Here, we take advantage of a reference parameter valuation v, for
which it is possible to decide whether lbad is reachable [AD94]. The assumption
of a known parameter valuation seems realistic to us: in system design, it is often
the case that one knows (from a previous design, of using empirical methods) a
first valuation; however, finding other valuations may be much more difficult,
and may require to restart the design phase from zero. Here, given a reference
parameter valuation, we are interested in the preservation of the reachability
of lbad by other parameter valuations. Given two TA A[v] and A[v′], we say
that A[v′] preserves the reachability of lbad in A[v] when lbad is reachable in A[v]
if and only if lbad is reachable in A[v′]. We call PREACH the problem of the
preservation of reachability. In the following, we show that, given v, deciding

71

whether at least one parameter valuation v′ 6= v preserves the reachability of lbad
in A[v] is undecidable.

PREACH-emptiness problem:
Input: A PTA A, and v a parameter valuation
Problem: Does there exist v′ 6= v such that A[v′] preserves the reachability
of lbad in A[v]?

PREACH-synthesis problem:
Input: A PTA A, and v a parameter valuation
Problem: Compute the set of parameter valuations v′ such that A[v′]
preserves the reachability of lbad in A[v].

We show below that the PREACH-emptiness problem is undecidable.
Theorem 4.2.1. PREACH-emptiness is undecidable.

l0 lhaltA2CM

a = b = 0

Figure 4.1 – Undecidability of PREACH-emptiness: PTA A

Proof. Given a parameter valuation reaching some location, we reduce the
existence of a different parameter valuation reaching the same location from the
halting problem of a 2-counter machine.

1. First, recall that [AHV93] defines the encoding of a 2-counter machine
(2CM) using a PTA A2CM that contains two parameters a and b.1 Then
[AHV93] shows that the 2CM halts iff there exists at least one non-null
parameter valuation such that a special location lhalt is reachable in A2CM .

2. Now, let us add a gadget to A2CM that adds a direct transition from the
initial location l0 to lhalt with a guard a = b = 0.2 Let A be this new PTA,
as depicted in Fig. 4.1. Now, we have:

(a) If the 2CM halts, then lhalt is still reachable in A for some non-
null parameter valuation since it was already reachable in A2CM .
Additionally, due to our gadget, lhalt is also reachable in A for a =
b = 0.

1Strictly speaking, their construction uses six parameters, but it is well-known (shown, e. g.
in [JLR15]) that they can be reduced to two.

2This guard is not allowed in PTA, but can be simulated using an extra clock x and an
urgent location followed by a transition with guard x = a ∧ x = b.

72

(b) If the 2CM does not halt, lhalt is again reachable in A for a = b = 0
due to our gadget, but no other parameter valuation can reach lhalt,
just as in item 1.

Hence, given v : a = b = 0, there exists a parameter valuation v′ 6= v such
that A[v′] preserves the reachability of lhalt in A[v] iff the 2CM halts.

4.2.2 Parameter synthesis preserving the reachability
To propose a solution to the PREACH-synthesis problem, we introduce here
PRP(A, v), that is inspired by two existing algorithms, viz., EFsynth and the
variant IMK of IM [AS11] (see Appendix B.1.1 for the IM algorithm). Let us
recall that in [AS11], the algorithm IMK is obtained from IM by returning only
the constraint K computed during the algorithm instead of the intersection of
the constraints associated with all the reachable states. Thus, the constraint
output by IMK is weaker than the one outputted by IM and termination is the
same for IMK and IM. IMK algorithm only prevents v-incompatible states to be
reached but, contrarily to IM, does not guarantee that any “good” state will
be reached. Therefore, this algorithm only preserves the non-reachability of
locations.

Proposition 4.2.2. Let K0 = IMK(A, v0). Then, for all v |= K0, every
trace of A[v] is equal to a trace of A[v0].

PRP (standing for parametric reachability preservation) is at first close to
IMK , and then switches to an algorithm that resembles EFsynth:

• As long as no bad location is reached, PRP generalizes the trace set of A[v]
by removing v-incompatible states; this is done by negating v-incompatible
inequalities, and returning the intersection of such negated inequalities, in
the line of IMK .

• When at least one bad location is met, PRP switches to an algorithm
close to EFsynth, i. e. it simply gathers the constraints associated with
the bad locations, and returns their union. However, a main difference
with EFsynth is that PRP does not explore v-incompatible states: although
this is not necessary to ensure correctness (in fact, this makes PRP not
complete), this is a key heuristics to keep the state space of reasonable
size.

We introduce PRP in Algorithm 7. It is a breadth-first exploration procedure that
maintains the following variables: S (resp. Snew) is the set of states computed
at the previous (resp. current) iterations; Bad is a Boolean flag that remembers
whether a bad location has been met; Kgood is the intersection of the negation
of all v-incompatible inequalities, that will be returned if no bad state is met;
Kbad is the union of the projection onto P of all bad states, that will be returned
otherwise; i remembers the current exploration depth.

73

The procedure consists in a (potentially infinite) while loop. First, lines 3–7
take care of the v-incompatible states and resembles IMK . These states are
discarded from the exploration, i. e. they are removed from the set of new
states (line 4). Then, if the exploration has not yet met any bad state, Kgood is
refined so as to prevent any such v-incompatible state (l, C) to be reached: a
v-incompatible inequality J is selected within the projection of C onto P , and
then its negation is added to Kgood . This mechanism is borrowed to IM (and its
variant IMK).

Second, lines 8–9 take care of the bad states. If any bad state is reached
(line 8), then the Bad flag is set to true, the union of the projection onto P of
the constraints associated with these bad states is added to Kbad, and these
states are discarded, i. e. their successor states will not be computed (line 9).

The third part is a classical fixpoint condition: if no new state has been met
at this iteration (line 10), then the result is returned, i. e. either Kbad if some
bad states have been met, or Kgood otherwise. If new states have been met, then
the procedure explores one step further in depth (line 12).

Algorithm 7: PRP(A, v)
input : PTA A of initial state s0, parameter valuation v
output : Constraint over the parameters

1 S ← ∅ ; Snew ← {s0} ; Bad ← false ; Kgood ← > ; Kbad ← ⊥ ;
2 while true do
3 foreach v-incompatible state (l, C) in Snew do
4 Snew ← Snew \ {(l, C)}
5 if Bad = false then
6 Select a v-incompatible inequality J in C↓P (i. e. s.t. v 6|= J)
7 Kgood ← Kgood ∧ ¬J

8 foreach bad state (lbad , C) in Snew do
9 Bad ← true ; Kbad ← Kbad ∨ C↓P ; Snew ← Snew \ {(lbad , C)}

10 if Snew ⊆ S then
11 if Bad = true then return Kbad else return Kgood ;
12 S ← S ∪ Snew ; Snew ← Succ(Snew) ; i← i+ 1

We will show in Theorem 4.2.4 that PRP outputs a sound (though possibly
incomplete) answer to the PREACH-synthesis problem. In fact, PRP verifies
a stronger property: if lbad is reachable in A[v], PRP outputs a constraint K
guaranteeing that lbad is reachable for any parameter valuation satisfying K.
However, if lbad is unreachable in A[v], the constraint K output by PRP satisfies
the same property as IMK , i. e. the trace set of A[v′] is a subset of the trace set
of A[v], for all v′ |= K. This is formalized in Proposition 4.2.3.

74

Proposition 4.2.3. Let A be a PTA, and v a parameter valuation. Suppose
PRP(A, v) terminates with result K. Then, v |= K and, for all v′ |= K:

• if lbad is reachable in A[v], then lbad is reachable in A[v′];

• if lbad is unreachable in A[v], then every trace of A[v′] is a trace of
A[v].

Proof. See Appendix C.2

Theorem 4.2.4. Let A be a PTA, and v a parameter valuation. Suppose
PRP(A, v) terminates with result K. Then, v |= K and, for all v′ |= K, lbad
is reachable in A[v] iff lbad is reachable in A[v′].

Proof. From Proposition 4.2.3.

Remark. PRP may not terminate, which is natural since PREACH-synthesis
problem in Section 4.2.1 is undecidable. Furthermore, even if it terminates, the
result output by PRP may not be complete; in fact, this is designed on purpose
(since we stop the exploration of v-incompatible states) so as to prevent a too
large exploration. Enlarging the output constraint can be done by repeatedly
calling PRP on other points than v, which will be done in Section 4.2.3.

Example 16. Let us apply PRP to the PTA A1 in Fig. 2.18. For point v1 : (a =
20, b = 10), PRP outputs constraint 20 > b∧ a > b∧ b ≥ 0, which guarantees the
unreachability of lbad. For point v2 : (a = 30, b = 20), PRP outputs constraint
b ≥ 20 ∧ a ≥ 0, which guarantees the reachability of lbad .

For point v3 : (a = 0, b = 40), PRP does not terminate.

We now state in Theorem 4.2.5 that, even when PRP is interrupted before
its termination, PRP outputs a sound (though possibly incomplete) answer
to the PREACH-synthesis problem, provided some bad states have already
been met. The result comes from the fact that the first item of the proof of
Proposition 4.2.3 holds even if PRP has not terminated. (Note that the converse
case, when Bad = false, does not hold if PRP has not terminated: although no
bad state has been met yet, there could be some in the future.)
Theorem 4.2.5. Let A be a PTA, and v a parameter valuation. Let be K
the value of Kbad at the end of iteration i of PRP(A, v), for some i ≥ 0, such
that Bad = true. Then: 1) lbad is reachable in A[v], and 2) for all v′ |= K,
lbad is reachable in A[v′].

Example 17. Let us again apply PRP to the PTA A1 in Fig. 2.18. For this
PTA and v3 : (a = 0, b = 40), PRP with a depth limit of 10 terminates with
Bad = true. From Theorem 4.2.5, the output constraint (b ≥ 20∧ a ≥ 0)∨ (∧ ≥
0 ∧ 9b ≥ 20 ∧ b ≥ a) is valid, i. e. guarantees the reachability of lbad .

75

4.2.3 EF-synthesis using PRP
Given a bounded parameter domain, IM can be iterated on integer points to
perform a behavioral cartography; then, the tiles can be partitioned in good and
bad sets according to a linear-time property. If the property of interest is simply
a (non-)reachability property, then PRP can be used in place of IM within BC,
giving birth to a procedure PRPC (see Algorithm 8). PRP is called repeatedly
with as an argument the first integer point not yet covered by any constraint
(line 2 in Algorithm 8).

The “cartography” output by PRPC is less precise than the one output by
the classical BC, because the constraints outputs by PRP are not tiles anymore:
Theorem 4.2.4 only guarantees the preservation of reachability, and hence different
parameter valuations within a constraint may correspond to different trace sets.
To output a set of parameter valuations solving EF-synthesis, it suffices to return
the union of the constraints for which lbad is reachable.

Algorithm 8: PRPC(A,D)
input : PTA A, bounded parameter domain D
output : Set C of constraints over the parameters (initially empty)

1 while there are integer points in D not covered by C do
2 Select an integer point v in D not covered by C
3 C ← C ∪ PRP(A, v)
4 return C

Now, a key feature of PRPC is to explore a relatively small part of the whole
parametric state space at a time, and to still output larger constraints than BC.
We will show in Section 4.4 that using PRP instead of IM in the cartography
indeed dramatically increases its efficiency.
Remark. In the general case, PRPC may not terminate, due to the non-termination
of PRP. However, it is possible to set up a maximum exploration depth for PRP:
when this depth is reached, the algorithm stops. If some bad states have been
met, the resulting constraint can be safely used (from Theorem 4.2.5); otherwise
the constraint is just discarded and the reference point on which PRP was called
will never be covered. In this case, termination of PRPC is always guaranteed,
with a partial result (some integer points may still be uncovered).

Let us now compare EFsynth and PRPC, that can both output (possibly
incomplete) solutions to the EF-synthesis problem. On the one hand, EFsynth
should be faster (although we will see in Section 4.4 that it is not even true
in general), because it performs only one exploration, whereas PRPC has to
launch PRP on many integer points. On the other hand, PRPC will use less
memory, since a smaller part of the state space is explored at a time (due to
the non-exploration of v-incompatible states). Furthermore, its main interest
is that it synthesizes a more valuable result: whereas EFsynth outputs only a
possibly under-approximated set of bad parameter valuations (reaching lbad) and

76

(a) PRPC (b) EFsynth

Figure 4.2 – EF-synthesis using PRPC and EFsynth for A1

leaves the whole rest of parameter valuations unknown, PRPC outputs possibly
under-approximated sets of both bad and good parameter valuations, giving
much more valuable information. Finally, just as BC, PRPC can possibly cover
parameter valuations beyond the limits of D, which is not possible for EFsynth.

Example 18. Consider again the PTA A1 in Fig. 2.18, and let us apply EFsynth
and PRPC with a bounded exploration depth of 10; recall that this is safe from
Proposition 2.9.1 and Theorem 4.2.5. We apply PRPC to an unconstrained
model with D : a, b ∈ [0, 50]. We apply EFsynth to a model where a and b are
constrained to be in [0, 50]. We give in a graphical manner in Fig. 4.2a (resp.
Fig. 4.2b) the results output by PRPC (resp. EFsynth). PRPC synthesizes all
the good parameter valuations (below, in green), i. e. that do not reach l2, and
all the bad parameter valuations (above, in red), i. e. that reach l2, with the
exception of a small area near (0, 0) (in white). All constraints output by PRPC
are infinite (which is not shown in the figure), and hence cover the whole part
outside D too. As of EFsynth, the same bad valuations as for PRPC are covered,
but only within D , and no information is given about the good valuations.
Hence, since EFsynth was stopped prematurely, no information can be given
for the non-covered part: in particular, the white part of D cannot be decided,
whereas PRPC covers everything except the small area near (0, 0). This is a
major advantage of PRPC over EFsynth in terms of precision of the result. Also
recall that EFsynth covers only (a part of) D whereas PRPC covers here the
whole parameter space beyond D .

4.3 Towards distributed parameter synthesis
In Chapter 3, we have shown that the Sequential and Random distribution
algorithms are less efficient than the Subdomain distribution algorithm. Therefore,
we will use Subdomain that dynamically splits the parametric domain D in
subdomains: when a worker completes the covering of its subdomain, the master

77

splits another subdomain into two parts, and assigns one of the two part to that
worker.
Remark (Fairness). Of course, comparing a distributed algorithm (PRPC) with a
monolithic one (EFsynth) is unfair. However, to the best of our knowledge, no dis-
tributed algorithm for parameter synthesis has been proposed (except [ACE14]).
One could argue that EFsynth could at least take advantage of multi-cores, e. g.
using one core to compute the successor states while another performs the (costly)
equality check, or by computing in parallel the successor states of several states –
but PRPC could take advantage of exactly the same enhancements.

4.4 Experimental comparison
Description of the experimental testbed We compare here several algo-
rithms to solve the EF-synthesis problem using IMITATOR [AFKS12]. IMITATOR
implements EFsynth, BC and PRPC, and can run PRPC in a distributed fashion.
Experiments were run on a Linux-based cluster. The nodes of this cluster feature
two 6-core Intel Xeon X5670 running at 2.93 GHz CPUs (therefore, 12 cores in a
NUMA fashion). Each node has 24 GiB of memory and runs a 64-bit Linux 3.2
kernel. The code was compiled using OCaml 3.12.1. The message-passing library
we used is Bull’s OpenMPI variant for Bullx, and the nodes are interconnected
by a 40 Gb/s InfiniBand network.3

Case studies The case studies which we use in the experiment are described
below.

Figure 4.3 – Cartography output by PRPC for Sched1

3Sources, binaries, models and results are available at www.lipn.fr/˜andre/PRP/.

78

www.lipn.fr/~andre/PRP/

(a) Sched2.50.0 (b) Sched2.50.2

Figure 4.4 – Cartography output by PRPC for Sched2 with a = 50

• Dummy example: At first, let us first study an example from [JLR15],
shown in Figure 2.18. There are two clocks x and y, two parameters
a, b ∈ [0, 50] and l2 is the bad location. The EFsynth method fails to
terminate when synthesizing parameters in this example. By applying
PRPC with at most 10 steps, we get the result in Figure 4.2. As can be
seen, except for a small region being labeled as unknown, all other values
of a and b are distinguished by PRPC as good (green) and bad (red).

• Sched1 and Sched2 are two parametric schedulability problems on a
single processor. The goal is to synthesize task parameter valuations
guaranteeing that every task meets its relative deadline.
A real-time task τi is characterized by a tuple (Ci, Di, Ti), where Ci is the
execution, Ti is the period and Di is the relative deadline. Every Ti time
units the task releases a job, which must complete its execution Ci within
Di time units. Since Di could be larger than Ti, a task may release a new
job before the prior job finishes its execution, in which case the latter job
is not able to execute till its precedence completes. Each task is assigned
a unique and fixed priority. By convention, a lower task index corresponds
to a higher priority.

– Sched1: We consider two parameters D2 and T2 that correspond
to the relative deadline and the period of task 2 respectively. A
task set T with three tasks τ1 = (5, 40, 40), τ2 = (20, D2, T2) and
τ3 = (30, 100, 100), where T2, D2 ∈ [20, 100] are parameters and other
values are constants. We want to investigate the parameter space
of T2 and D2 that guarantees all tasks meet their deadlines. The
graphical cartography output by PRP for Sched1 is given in Fig. 4.3.

79

– Sched2: We consider here a scheduling example, adapted from the
example studied in [BFSV04, JLR15]. There are three tasks τ1, τ2 and
τ3: D1 = T1 = a and C1 ∈ [10, b]; D2 = T2 = 2a and C2 ∈ [18, 28];
D3 = T3 = 3a and C3 ∈ [20, z]. Moreover, task τ2 has a release
jitter J2 ∈ {0, 2}. Jitter reflects the uncertainty of task activation.
For example, the time interval between two successive job releases
of task τ2 can be any value in [T2, T2 + J2]. When modeling the
scheduling, for each task there is a clock to track the time passed
since its latest job release and to trigger the next task activation. We
suppose such clocks are initialized to 0. In the following experiments,
we will consider b and z as parameters. The graphical cartographies
output by PRP for Sched2.50.0 and Sched2.50.2 are given in Fig. 4.4.
We will study Sched2 with two different D. First, we valuate a = 50,
we set D : b ∈ [10, 50], z ∈ [20, 100] and we synthesize parameters for
both J2 = 0 (“Sched2.50.0”) and J2 = 2 (“Sched2.50.2”). Second,
we valuate a = 100, we set D : b ∈ [10, 1000], z ∈ [20, 1000] and we
consider J2 = 0 (“Sched2.100.0”) and J2 = 2 (“Sched2.100.2”).

• Sched5: It models the schedulability of 5 fixed-priority tasks in a sin-
gle processor. SPSMALL is a model of an asynchronous memory cir-
cuit [CETFX09].

Methodology Table 4.1 gives from left to right the case study, the number of
clocks, the number of integer points in D and the computation time in seconds for
EFsynth, BC, PRPC, and the distributed version of PRPC using the part-splitting
point distribution running on 12 nodes. “TO” indicates a timeout (> 5, 000 s).

Case study |H| |V | EFsynth BC PRPC PRPC distr(12)
A1 2 2,601 0.401* TO 0.078* 0.050*

Sched1 13 6,561 TO TO 1595 219
Sched2.50.0 6 3,321 9.25 990 14.55 4.77
Sched2.50.2 6 3,321 662 TO 213 84
Sched2.100.0 6 972,971 21.4 2093 116 10.1
Sched2.100.2 6 972,971 3757 TO 4557 1543

Sched5 21 1,681 352 TO TO 917
SPSMALL 11 3,082 7.49 587 118 11.2

Table 4.1 – Comparison of algorithms to solve the EF-synthesis problem

For A1, none of the algorithms terminate; hence, termination is ensured
by bounding the exploration depth to 10 (marked with * in Table 4.1). From
Proposition 2.9.1 and Theorem 4.2.5, the result is still correct; however, this does
not hold for BC. For the other case studies, all algorithms terminate (except
in case of timeouts), and always cover entirely D. To allow a fair comparison,
parameters for EFsynth are bounded in the model as in D ; without these bounds,
EFsynth never terminates for these case studies.

First, we see that PRPC dramatically outperforms BC for all case studies.
This is due to the fact that the constraints output by PRP (that preserve only

80

non-reachability) are much weaker than those output by IM (that preserve trace
set equality). Second, we see that PRPC compares rather well with EFsynth,
and is faster on three case studies; PRPC furthermore outputs a more valuable
constraint for A1 (see Example 18). PRPC can even verify case studies that
EFsynth cannot (Sched1).

Conclusion The distributed version of PRPC is faster than PRPC for all case
studies. Most importantly, the distributed PRPC outperforms EFsynth for all
case studies but two. The good timing efficiency of PRPC is somehow surprising,
since it was devised to output a more precise result and to use less memory, but
not necessarily to be faster. We believe that PRPC allows to explore small state
spaces at a time and, despite the repeated executions, this is less costly than
handling a large state space (as in EFsynth), especially when performing equality
checks when a new state is computed.

4.5 Conclusion
In this chapter, we addressed the synthesis of timing parameters for reachability
properties. We introduced PRP that outputs an answer to the parameter
synthesis problem of the preservation of the reachability of some bad control
state lbad, which we showed to be undecidable. By repeatedly iterating PRP
on some (integer) points, one can cover a bounded parameter domain with
constraints guaranteeing either the reachability or the non-reachability of lbad.
This approach competes well in terms of efficiency with the classical bad state
synthesis EFsynth, and gives a more precise result than EFsynth while using less
memory. Finally, our distributed version almost always outperforms EFsynth and
distributing PRP using Subdomain often outperforms the monolithic bad-state
reachability synthesis (e. g. [AHV93, JLR15]). Hence, we believe that our point
distribution algorithms can be reused for different purposes than just BC.

Unfortunately, even though these parameter synthesis algorithms are dis-
tributed on clusters, they still suffer from the state space explosion. In order to
go further, in Chapter 5, we present first the parametric zone inclusion algorithm,
an extension of the well-known zone inclusion algorithm of timed automata. It
is not optimal and this causes exploring unnecessary locations. Indeed, the zone
inclusion algorithm is very sensitive to the state exploration order. Therefore,
we will show how we can improve efficiency of the parametric zone inclusion
algorithm by using our variety state exploration order strategies.

81

5
C

h
a

p
t

e
r

Efficient parameter synthesis
using optimized state
exploration strategies

Contents
5.1 Introduction . 82
5.2 Parametric zone inclusion algorithm 84
5.3 Parametric ranking strategy 86
5.4 Parametric priority strategy 90
5.5 Experimental evaluation 93

5.5.1 Symbolic state merging 94
5.5.2 Comparison . 95
5.5.3 Final interpretation 96

5.6 Conclusion . 96

5.1 Introduction
Parameter synthesis algorithms usually rely on the parametric zone graph (a
parametric extension of the zone graph of TAs [BY03] which is recalled in
Section 2.5.4) where states are pairs consisting of a discrete location and a
parametric zone describing the set of possible parameter and clock valuations

82

in this state (see e. g. [HRSV02, AS13, JLR15]). The parametric zone graph is
not only subject to the well-known state space explosion problem, but is usually
even infinite. Indeed, Section 2.8.2 shows that most problems for PTAs are
undecidable, including the emptiness of the parameter valuation set for which a
given location is reachable (“EF-emptiness problem”) [AHV93].

Depth-first search (DFS) and breadth-first search (BFS) are popular explo-
ration orders of model checking algorithms. By observation in practice, many
authors (e. g. [BHV00, Beh05]) showed that using BFS is much more efficient
than DFS for checking reachability properties in TAs.

In [HT15], the authors show that in some cases, BFS can explore an ex-
ponential number of unnecessary states in TAs: this happens when a zone is
found after another state with a strictly smaller zone (and the same discrete
location) is found. We call this state with smaller zone a redundant state and
this phenomenon an inefficient phenomenon.

Contribution We study here various exploration orders to address efficient
parameter synthesis for PTAs. By taking a different exploration to reach the
larger zone first, we propose two main exploration strategies to reduce the
inefficient phenomenon and increase the efficiency of parameter synthesis in
PTAs. Our contributions are as follows:

1. The first exploration order we propose is a parametric ranking strategy,
inspired by the ranking system of [HT15], based on the ranking of each
explored parametric zone, then to stop the exploration of a small zone and
its subtree when a larger zone of the same location is explored later.

2. The second is a parametric priority strategy, which explores the biggest
zone first in order to avoid the inefficient phenomenon and then stop the
exploration from a small zone by correcting the inefficient phenomenon
automatically.

3. We also compare these exploration orders with the classical BFS strat-
egy, and the layer BFS LayerBFS, which is a variant of BFS historically
implemented in IMITATOR. We perform extensive experiments using the
IMITATOR software [AFKS12] that takes as input parametric timed au-
tomata. First, we show that our new strategies always outperform the BFS
strategy. Second, when using an additional existing state space optimiza-
tion called “convex state merging” [AFS13a] (that can be used only for
reachability properties), BFS becomes best again. However, for counter-
example synthesis (i. e. try to find some parameter valuations instead
of all), our exploration strategies significantly outperform BFS, with an
average speed-up of 5.

Note that, in the worst case, these our two strategies explore unnecessary
visited parametric zones exponentially.

83

Related works As noted in [HT15], the exploration order problem was ad-
dressed in the context of state caching focusing on limiting the number of
stored nodes at nodes exploring cost [GHP92, BLP03, EK10], and state space
fragmentation [DT98, BHV00, BOS02, Beh05]. In [BF01], a value has been
added to guide the exploration in priced timed automata, which has been reused
in [HT15], and that we reuse in our second exploration strategy. Also note
that the exploration order was considered in several works in the framework
of distributed model checking for TAs [BHV00, BOS02, Beh05], where it seems
that BFS is the most optimal exploration order. Zone inclusion was also con-
sidered in [LOD+13] in multi-core model checking of TAs. To the best of our
knowledge, comparing exploration strategies was never considered for PTAs or
more generally for parametric timed formalisms. While we partially rely on
exploration strategies for TAs, the differences of data structures (DBMs [BY03]
cannot be used in PTAs but some extensions of it can, such as PDBM [HRSV02]
and CPDBM [BBBC16]) and the specificities of the symbolic zones for PTAs
(that include not only clock valuations but also parameter valuations) make it
important to study these strategies for PTAs.

Outline We first recall the parametric zone inclusion algorithm for parametric
timed automata in Section 5.2. Then, we introduce in Sections 5.3 and 5.4,
parametric ranking strategy and parametric priority strategy respectively to limit
the inefficient phenomenon during exploration. Section 5.5 provides experimental
results of our approaches. Finally, we conclude in Section 5.6.

5.2 Parametric zone inclusion algorithm
Similar to timed automata’s zone inclusion, parametric zone inclusion is an
optimization technique relying on the parametric zone graph. That is, for
some properties (including reachability and safety), given two reachable states
s1 = (l1, C1) and s2 = (l2, C2), whenever l1 = l2 and C1 ⊆ C2, it is safe to
replace s1 with s2 in the analysis. This inclusion check is even more costly
in PTAs than its counterparts in TAs, but it is usually compensated by the
performance improvement obtained by the decrease of the number of symbolic
states to consider.

Algorithm 9 describes the standard state exploration algorithm with zone
inclusion for PTA. It explores the infinite abstract parametric zone graph of
PTA A from its initial location. The intuition of parametric zone inclusion is
to stop the exploration of a small zone whenever a larger zone with the same
location is explored. Therefore, in order to look up information of visited states
having smaller zones at a certain location and do the zone inclusion, Algorithm 9
maintains a set of waiting states W and a graph G containing both visited states
and transitions between them. In Algorithm 9, two situations can lead to zone
inclusion.

The first is the classical one, at line 14: if a large zone has already been
explored earlier, it subsumes the smaller zone being explored, which will be

84

Algorithm 9: State exploration with parametric zone inclusion
Input: PTA A = (Σ, L, l0, X, P,K0, I, E)
Output: parametric zone graph Z associated with the PTA A

1 W ← {(l0, C0)}
2 G ← {(l0, C0)}
3 while W 6= ∅ do
4 pick a state (l, C) from W
5 foreach outgoing state (l ′,C ′) from (l, C) do
6 if there is no (l ′,CLarger) ∈ G such that C ′ ⊆ CLarger then
7 add (l ′,C ′) to W and G
8 add transition (l,C)→ (l ′,C ′) to G
9 foreach (l′, CSmaller) ∈ G such that CSmaller ⊆ C ′ do

10 add transitions to G:
11 parent states of (l ′,CSmaller)→ (l′, C ′) and
12 (l′, C ′)→ children states of

(l ′,CSmaller) remove (l′, CSmaller) from W and G
13 else
14 foreach (l′, CLarger) ∈ G such that C ′ ⊆ CLarger do add

transition (l,C)→ (l ′,CLarger) to G

15 return G

included by the larger zone with same location. Thus, only a transition from
(l, C) to the larger zone (l′, CLarger) is added to G, and not the newly computed
state with a smaller zone (l′, C ′).

The second situation where the inefficient phenomenon happens is when a
larger zone is explored after exploring smaller zones. At line 9, the algorithm
looks for the previous smaller parametric zones in the set of visited states G, then
removes states with smaller zones with its incoming and outgoing transitions.
Also, transitions from parents of the smaller zones to the bigger zone and from
the bigger zone to the children of the smaller zones are added at lines 11 and 12.

Note that, by exploring the bigger zones, the smaller zones and their suc-
cessors or subtrees will eventually be pruned. Within the second situation, the
parametric zone inclusion algorithm stores fewer nodes (i. e. symbolic states of
the parametric zone graph) but this overhead of smaller zone removal procedure
slightly influences the performance of the parametric zone inclusion algorithm.

Experiments will be reported in Section 5.5, where the performances of the
different inclusions will be compared.

Note that Algorithm 9 does not mention any exploration order for any specific
property checking. Choosing the exploration order will affect the performance
of the algorithm, inefficient phenomenon and number of nodes visited by the
algorithm and stored in the sets W and G.

Example 19. We reuse in Fig. 5.1a a part of a parameterized version of the

85

l0

l1

l2

l3

y ≤ p2

y > 2p1

(a) A PTA example

l0

l1

l2

l3

y > p1

y ≤ p2

y > 2p1

(b) Modified version

Figure 5.1 – Examples

FDDI case study of [HT15]. Fig. 5.1a depicts an example of PTA with two clocks
x and y (x does not appear on any guard nor invariant) and two parameters p1
and p2. Action labels are not shown. The transition from l0 to l2 is guarded by
y > 2p1 while the transition from l2 to l3 is guarded by y ≤ p2. Let us consider
two different exploration strategies. The first parametric zone graph in Fig. 5.2a
is explored by the standard BFS exploration order and the one in Fig. 5.2c
by BFS with the parametric zone inclusion. Here we can see that by using
parametric zone inclusion, the number of states to be explored is often reduced.
Let us explain how Algorithm 9 works on the example in Fig. 5.1a using Fig. 5.2c.
The algorithm starts at state s0 : (l0, true), the location is l0 and the parametric
zone is true (i. e. the set of all clock and parameter valuations). Assume that the
transition to l2 is taken first. The algorithm reaches states s1 : (l2, y > 2p1) and
s2 : (l1, true). Later on, the algorithm reaches states s3 : (l3, 2p1 < y ≤ p2) and
s4 : (l2, true). At that stage, it happens that the parametric zone in s4 : (l2, true)
is larger than the parametric zone in s1 : (l2, y > 2p1) which has been visited
previously. This previous exploration turns out to be useless, hence state s1 is
removed and a transition from s0 to s4 is added. Finally, the algorithm does the
same with states s5 and s3.

The ideal exploration is depicted in Fig. 5.2d. If the algorithm takes first the
transition to location l1 and then to l2, the result is optimal. The goal of the
remaining of this this chapter will be to get as close as possible to this optimal
exploration order so as to avoid redundant states.

5.3 Parametric ranking strategy
In this section, we propose a novel exploration strategy for PTAs, inspired by
the “ranking system” strategy that proved efficient for reducing the inefficient
phenomenon in TAs [HT15]. As in [HT15], our parametric ranking strategy

86

s0
l0
true

s1
l2
y > 2p1

s2
l1
true

s3

l3
y > 2p1
∧ 2p1 < p2

s4
l2
true

s5
l3
true

(a) Without parametric zone inclusion

s0
l0
true

s1
l2
y > 2p1

s2
l1
true

s3

l3
y > 2p1
∧ 2p1 < p2

s4
l2
true

s5
l3
true

⊆

⊆

(b) With parametric zone inclusion

s0
l0
true

s2
l1
true

s4
l2
true

s5
l3
true

(c) With parametric zone inclusion - result

s0
l0
true

s1
l1
true

s2
l2
true

s3
l3
true

(d) Ideal exploration order

Figure 5.2 – Parametric zone graphs of Fig. 5.1a where the number n in a state
label sn reflects the exploration order

uses a priority value for each state. Then the algorithm explores the state with
highest priority first. In case the inefficient phenomenon happens, the larger zone
is assigned a higher priority than the smaller parametric zone and its previously
explored subtrees.

The parametric ranking strategy in Algorithm 10 is an extension of the
parametric zone inclusion of Algorithm 9 (differences are highlighted). Each
newly explored state starts with being ranked with infinity (if its constraint is
true) or zero (otherwise) by Algorithm 11. Note that, different from TAs, the
initial constraint in PTAs is often not true but a constraint over X ∪P that also
contains parameter constraints (for example p1 ≤ p2). We assume w.l.o.g. that
true denotes this initial constraint (for example p1 ≤ p2).

At lines 9 and 10, in order to stop the exploration of small parametric zones
and their subtrees, the rank of the larger parametric zone is set higher than the
highest rank of the small parametric zone and those in its subtree. This procedure
is described in Algorithm 12: at line 3 it traverses all visited descendants of

87

Algorithm 10: Ranking by parametric zone size
Input: PTA A = (Σ, L, l0, X, PK0,K0, I, E)
Output: parametric zone graph Z associated with the PTA A

1 r0 ← init rank(l0 ,C0)
2 W ← {((l0, C0), r0)}
3 G ← {(l0, C0)}
4 while W 6= ∅ do
5 pick a state ((l, C), r) with highest rank r from W
6 foreach outgoing state (l ′,C ′) from (l, C) do
7 r′ ← init rank(l ′,C ′)
8 if there is no ((l ′,CLarger), rL) ∈ G such that C ′ ⊆ CLarger then
9 foreach ((l ′,CSmaller), rS) ∈ G such that CSmaller ⊆ C ′ do

10 r ′ ← max(r ′,max rank((l ′,CSmaller), rS) + 1)
11 add ((l ′,C ′), r ′) to W and G
12 add transition ((l,C), r)→ ((l ′,C ′), r ′) to G
13 foreach ((l′, CSmaller), rS) ∈ G such that CSmaller ⊆ C ′ do
14 add transitions to G:
15 parent nodes of ((l ′,CSmaller), rS)→ ((l′, C ′), r′) and
16 ((l′, C ′), r′)→ children states of

((l ′,CSmaller), rS)
17 remove ((l′, CSmaller), rS) from W and G
18 else
19 foreach ((l′, CLarger), rL) ∈ G such that C ′ ⊆ CLarger do
20 add transition ((l, C), r)→ ((l′, CLarger), rL) to G

21 return G (without rank values)

88

Algorithm 11: init rank(l, C)
1 if C = true then return ∞ else return 0

Algorithm 12: max rank((l, C), r)
Output: rank value

1 rank ← r
2 if ((l, C), r) 6∈ W then
3 foreach ((l,C), r)→ ((l ′,C ′), r ′) in G do
4 rank ← max(rank,max rank((l ′,C ′), r ′))

5 return rank

(l ′,CSmaller) to get their highest rank. Since the larger zone has a higher rank,
it will be explored before the smaller ones and their subtrees.

s0
l0
true
rank: ∞

s1
l2
y > 2p1
rank: 0

s2
l1
true
rank: ∞

s3
l2
true
rank: ∞

s4
l3
true
rank: ∞

⊆

Figure 5.3 – PZG with parametric ranking strategy

Example 20. Let us apply the parametric ranking strategy of Algorithm 10
to the example in Fig. 5.1a. The resulting parametric zone graph is shown in
Fig. 5.3. Starting at state (l0, true), the algorithm ranks it with ∞. Then, states
s1 : (l2, y > 2p1) and s2 : (l1, true) are explored and added in the waiting set W
with rank 0 and ∞ respectively. Hence, s2 with rank ∞ is explored first and
leads to state s3 : (l2, true). At that stage, the algorithm detects that the zone
of s1 = (l2, y > 2p1) is smaller than that of s3 = (l2, true). The rank of s3 is ∞.
The predecessor of s1 (i. e. s0) is connected to s3 and s1 is deleted. Finally, s4

89

(the successor of s3) is added with rank 0.

5.4 Parametric priority strategy
In [HT15], the authors indicate that with the “ranking system”, there is no
improvement if there are no true zones in a model, compared to using the BFS
exploration order. The same holds for our “parametric ranking” strategy. Indeed,
first assigning the highest and lowest priority to each state, and then looking for
visited states in order to find the highest rank in the subtrees (in large models
where the subtrees become big) might be not efficient. Consider the example
in Fig. 5.1a, where the guard of the transition from l0 to l1 is modified as in
Fig. 5.1b. Its parametric zone graph is given in Fig. 5.4a.

In Fig. 5.4a, the parametric ranking algorithm ranks states from s0 to s3 with
0 continuously. The inefficient phenomenon is encountered as the parametric
zone of s4 is larger than the one of s1 with the same location l2. In this case, s3
is explored unnecessarily, similar to using the BFS exploration order.

However, after reaching states s1 and s2, if the algorithm explores the largest
parametric zone first, i. e. s2, then s4 is reached earlier.

s0
l0
True
rank: ∞

s1

l2
y > 2p1

rank: 0

s2

l1
y > p1

rank: 0

s3

l3
y > 2p1
∧ 2p1 < p2

rank: 0

s4

l2
y > p1

rank: 0 + 1

s5

l3
y > p1
∧ p1 < p2

rank: 0 + 1

⊆

⊆

(a) Parametric ranking strategy

s0
l0
True

s1
l2
y > 2p1

s2
l1
y > p1

s3
l2
y > p1

s4

l3
y > p1
∧ p1 < p2

W: s0

W: s2, s1

W: s3, s1

W: s4

⊆

(b) Parametric priority strategy

Figure 5.4 – Comparing our two strategies

Hence, to avoid this inefficient phenomenon, we introduce a new strategy
that explores the largest zone first in the sorted waiting list W . Furthermore, in
order to avoid traversing big subtrees to find the highest rank, we explore the
largest zones until there is no inefficient phenomenon anymore. To do so, we use
a simple inserting mechanism.

Before getting into the details of Algorithm 13, we explain the structure of
the waiting list W. First, W is ordered with decreasing zones. Hence there are

90

two main parts in W, the first (at the head) is the true zones part where all
true zones are located. The other is the non-true zone part. Finally, since some
non-true zones are incomparable, the true zones part can be seen as being itself
composed of several parts each containing ordered comparable zones.

In Algorithm 13, the waiting list W described above, is sorted from largest
to smallest zone by the inserting instructions from line 14 to line 19.

There are three possibilities. First, if C ′ is the true zone (which has the
highest priority), (l′, C ′) is inserted at the beginning of list W . Next, if C ′ is not
a true zone, (l′, C ′) is inserted before the first smaller zone found in W . Finally,
in case all zones in W are incomparable with C ′, (l′, C ′) is added at the end of
list W.

For better performances, the implementation uses an additional index (not
described in Algorithm 13) storing information on the sets of comparable zones,
for faster state insertion and comparison by avoiding repeated zone constraint
computation.

Example 21. Let us apply Algorithm 13 to the example in Fig. 5.1b. Fig. 5.4b
shows both its parametric zone graph and the waiting list W. The algorithm
starts with state s0 in waiting list W and reaches the states s1 and s2 which are
inserted into W decreasingly. Because the zone (y > 2p1) in s1 is smaller than
the zone (y > p1) in s2 then s2 appears before s1 in W. Then, the algorithm
picks s2 from the head of list W and generates s3. It detects that s3 and s1 have
the same location, and the parametric zone in s3 : (l2; y > p1) is larger than the
zone in s1 : (l2; y > 2p1) . Consequently, the state s1 is removed from W and G
and state s3 is inserted at the beginning of W. Finally, the exploration of s1 is
stopped and s4 is reached.

Example 22. Consider the inefficient phenomenon in Fig. 5.1b repeated n times
as in Fig. 5.5 with parameter p > 0. Then it is inefficient for the ranking strategy,
BFS. The performance of each algorithm with this model is given in Section 5.5.

l0

l1

l2

l3

l4 · · · ln−2

ln−1

ln lf

y > p

y > 2p

y > p

y > 2p

y > p

y > 2p

Figure 5.5 – Blowup example

However, our approaches still have some drawbacks. First, our algorithms
base on the BFS so that before ranking, from a state, it has to reach all its
descendants. This blind exploration might cause the inefficient phenomenon
to happen, as illustrated in the previous example. Second, there might exist
many paths between a pair of states that have equal parametric zones at start
and different at the end, or some paths having small parametric zones in the

91

Algorithm 13: Parametric priority strategy algorithm
Input: PTA A = (Σ, L, l0, X, P,K0, I, E)
Output: parametric zone graph Z associated with the PTA A

1 W ← {(l0, C0)}
2 G ← {(l0, C0)}
3 while W 6= ∅ do
4 pick the first state (l, C) from W
5 foreach outgoing state (l ′,C ′) from (l, C) do
6 if there is no (l ′,CLarger) ∈ G such that C ′ ⊆ CLarger then
7 add (l ′,C ′) to G
8 add transition (l,C)→ (l ′,C ′) to G
9 foreach (l′, CSmaller) ∈ G such that CSmaller ⊆ C ′ do

10 add transitions to G:
11 parent states of (l ′,CSmaller)→ (l′, C ′) and
12 (l′, C ′)→ children states of

(l ′,CSmaller)
13 remove (l′, CSmaller) from W and G
14 if C ′ = true then insert (l ′,C ′) before the head of W
15 else if C ′ 6= true then
16 insert (l ′,C ′) before the first state (lS , CS) with a smaller
17 zone CS ⊆ C ′ found in W
18 else
19 insert (l ′,C ′) at the end of W
20 else
21 foreach (l′, CLarger) ∈ G such that C ′ ⊆ CLarger do add

transition (l, C)→ (l′, CLarger) to G

22 return G

92

l0

l1 l′1 · · ·

l2

l4

y ≤ 2p1

y ≤ np1

y ≤ p1

y ≤ p2

(a)

l0

l1 l′1 l′′1 · · ·

l2

l4

y ≤ p1

y ≤ 2p1
y ≤ 3p1

y ≤ np1

y := 0

y ≤ p2

(b)

Figure 5.6 – Inefficiency in largest zone first like algorithms

beginning of the path that become larger after taking reset transitions as in
Fig. 5.6a and Fig. 5.6b respectively. In Fig. 5.6a, the parametric zones of l1,
l′1, l′′1 . . . ln1 are equal. Thus, the algorithms explore from l1 to ln1 , but at the
first state l1, the parametric zone of l2 reached has the smallest parametric zone.
Hence, it causes the inefficient phenomenon repeatedly. In Fig. 5.6b, after all
descendants of l0 are reached, the parametric zone in l1 is the smallest, then
the path from l1 is explored last. But it should be explored first, because the
parametric zone at l2 is reached from l1 and is the biggest one due to resetting
the clock y on the transition. Thus it causes the inefficient phenomenon.

5.5 Experimental evaluation
To evaluate the performances of the proposed exploration orders experimentally,
we compare them with one another, as well as with the standard BFS exploration
strategy.

We implemented our algorithms in IMITATOR [AFKS12]1, and ran our
experiments on an Intel core 2 duo P8600 processor at 2.4 GHz with 4 GiB of
RAM. The machine was running Ubuntu 16.04 LTS 64-bit and the code was
compiled using OCaml 4.02.3. Polyhedra operations are performed using the
PPL 1.2 library [BHZ08].

Our benchmarks come from the IMITATOR benchmarks library and in-
clude hardware circuits (AndOr, flipflop, spsmall), network or software proto-
cols (BRP, FDDI-2, FDDI-4, Fischer-2, Fischer-3, F3, F4, Lynch-2, Lynch-5,
critical-region, RCP), real-time systems (Thales-1, Thales-3, Sched2.i.j),
variants of a producer-consumer (Pipeline [KP12]), and the additional blowup
example from Fig. 5.5 with 1001 locations.

We mainly focus on reachability synthesis, recall the EF-synthesis problem:
“find all parameter valuations for which a given location is reachable”. A semi-

1Working version 2.9.2 (build 2363 – explorder/5c40e39). Sources, binaries, models, logs
are available at www.imitator.fr/static/ICECCS17/.

93

www.imitator.fr/static/ICECCS17/

algorithm was proposed in [AHV93, JLR15], which we call EFsynth.
Additionally, we also focus on the counter-example synthesis: “find at least

some parameter valuations for which a given location is reachable”. Counter-
example synthesis is of high practical importance, as it is often desirable to
find at least some valuations for which a property holds (or is violated), not
necessarily all of them. We implemented a procedure EFc-ex that stops as soon as
some valuations are synthesized. Due to the undecidability of the EF-emptiness
problem, neither EFsynth nor EFc-ex are guaranteed to terminate; note that
they do for most of our experiments but not always. An advantage is that EFc-ex
has a better termination than EFsynth (and in fact terminates in all our case
studies) as a smaller part of the state space needs to be explored.

We will compare our new exploration strategies, i. e. parametric ranking
strategy (RS) and parametric priority strategy (PRIOR), with the classical
breadth-first search (BFS) strategy. In addition, we also consider a layer-based
BFS strategy (LayerBFS), which is the historical strategy in IMITATOR, that
computes all successor states of a given depth before computing all their suc-
cessors at once. Although this is very close to the classical BFS strategy, some
subtle implementation differences make its performances slightly different from
BFS and significantly when the merging heuristics (see Section 5.5.1 below) is
used. Both BFS and LayerBFS come with two flavors: the bidirectional inclusion
incl2 (which is as in Algorithm 9) and the mono-directional inclusion incl, where
we only test whether the new state is included into an existing state, but not
the other way round (i. e. lines 9–12 are discarded).

5.5.1 Symbolic state merging
Our comparison is not entirely fair, as we did not use in our experiments another
efficient optimization implemented in IMITATOR, i. e. state merging [AFS13a].
Given two states s1 = (l1, C1) and s2 = (l2, C2), it is possible to try to merge these
states: s1 and s2 are mergeable if l1 = l2 and the polyhedron C1 ∪ C2 is convex.
The merging of s1 and s2 is then (l1, C1 ∪C2). In [AFS13a], the authors showed
that merging states while computing the symbolic states keeps the soundness of
the EFsynth algorithm; however, other algorithms usually lose their soundness
when using state merging (this is the case of trace preservation synthesis, also
called inverse method [AFS13a]). For example, parametric deadlock freeness
checking [And16] resembles EFsynth, but merging was not proved to be sound.
Despite the very high cost of the mergeability test (up to 1000 times slower than
other operations on polyehdra), state merging is often efficient because it can
dramatically reduce the state space, especially for the verification of parametric
schedulability problems.

We compare in Tables 5.2a and 5.2b our exploration strategies with state
merging. This time, our strategies are less efficient for exact synthesis using
EFsynth (Table 5.2a); overall, the historical exploration strategy LayerBFS
implemented in IMITATOR behaves about 2 times better than all other strategies.
A reason comes from the cost of the merging: testing mergeability is very
expensive, and LayerBFS iteratively tries to merge states once every state space

94

depth (“layer”) is completed, while other strategies try to merge states for each
newly computed symbolic state, which is much more expensive. However, even
when merging is used, our new strategies RS and PRIOR preserve a dramatic
decrease of the computation time of more than 75 % for EFc-ex (Table 5.2b).

5.5.2 Comparison
We compare in Tables 5.1a and 5.1b our exploration strategies. From left to
right in each table are the model’s name followed by the computation times in
seconds for each of the four strategies. Note that the green and yellow cells are
the fastest and the second-fastest approaches respectively, and “TO” stands for
time-out after 15 minutes.

In order to compare all algorithms, in the last line, we compute an average
of the normalized computation times. However, due to the variety of the
computation times (a same algorithm can use 0.014 s for a benchmark and 628 s
for another one), performing the actual average wouldn’t be fair: the behavior
of the algorithms for the slowest benchmarks would have a much larger impact
on the average than the fast benchmarks.

As a consequence, we normalize all computation times as follows: for each
benchmark, we replace each computation time t with the division of this compu-
tation time t by the fastest algorithm for this benchmark i. e.

normalized = t

minalgorithm talgorithm

That is, the fastest algorithm becomes 1 (which is the smallest possible value),
and other timings give an idea of how slow they are w.r.t. the fastest. For
example, a normalized value of 5.4 denotes that the algorithm is 5.4 times slower
than the fastest algorithm for this benchmark.

In addition, to avoid that an algorithm gets a huge penalty for being, e. g.
200 times slower for one case study, we cap this normalized timing by 10. That
is, the final formula becomes:

normalized = min
(t

minalgorithm talgorithm
, 10
)

Similarly, a timeout becomes 10 as well. Finally, the average given in the
tables is the average of all normalized times of an algorithm.

From Table 5.1a, our two strategies RS and PRIOR behave almost the same
for EFsynth, with a normalized average of 2.8. They both improve BFS by
about 20 %, which shows the efficiency of our strategies.

From Table 5.1b, our strategies RS and PRIOR behave again almost the same
for EFc-ex, but improve this time dramatically the computation time w.r.t. BFS,
with a decrease of about 80 %. This shows the high efficiency of our strategies
for counter-example synthesis.

A reason for the much better efficiency of our strategies for EFc-ex than
EFsynth is that our strategies try to explore the largest zones first, and

95

intuitively may lead much faster to a goal state. Then, once a goal state is
found, EFc-ex stops and returns the associated parameter valuations, whereas
EFsynth must explore the rest of the state space, for which the benefit of our
strategies is milder.

5.5.3 Final interpretation
Let us summarize the outcomes of our experiments.

Exact synthesis When one is interested in the exact synthesis (i. e. find all
parameter valuations using EFsynth) for only reachability properties, then
merging can be used, and the results are presented in Table 5.2a: the fastest
strategy is clearly LayerBFS. Mono or bi-directional state inclusion do not
fundamentally change the computation times, but in most cases (and in average),
the bi-directional state inclusion is most efficient.

When one is interested in the exact synthesis for non-necessarily reachability
properties, then merging cannot be used, and the results are tabulated in
Table 5.1a: our two strategies RS and PRIOR perform best, 20 % faster than
existing strategies.

Partial synthesis When one is interested in finding some valuations only
(i. e. EFc-ex), our two strategies RS and PRIOR perform significantly better than
existing strategies, with a division of the computation time by 5 in average, when
comparing with existing strategies.

As most computation times are below 1 s (and often below 0.1 s), the differ-
ences between RS and PRIOR, or with or without merging, are not significant.
Only Lynch-5 may suggest to use PRIOR without merging (Table 5.1b); the
normalized average time (for PRIOR) also suggests this.

Overall, PRIOR is 5.7 times faster than LayerBFS and 5.0 times faster than
BFS using the normalized averages; for some case studies, the improvement
w.r.t. BFS grows to 33 (blowup), 41 (spsmall), 72 (Thales-3), or even 522
(pipeline-KP12-3-3). Also note that, with the exception of blowup, the afore-
mentioned three case studies are all industrial case studies.

5.6 Conclusion
In this chapter, we have proposed two exploration order strategies to mitigate
the inefficient phenomenon for the parameter synthesis problem: the parametric
ranking strategy, and the parametric priority strategy. The intuition behind our
strategies is to explore the large parametric zone first before reaching smaller
zones. And to the best of our knowledge, the inefficient phenomenon is inevitable
for PTA and TA.

Overall, our new strategies are reasonably faster than existing approaches
for EFsynth, except when the merging heuristics is used (in which case BFS
is more efficient). Our strategies become much faster than in the literature for

96

EFsynth (without merging)
Benchmark
Models

LayerBFS
incl

LayerBFS
incl2

BFS
incl

BFS
incl2 RS PRIOR

AndOr 2.512 2.386 2.41 2.38 1.708 1.714
flipflop 121.108 121.026 102.42 109.412 139.822 140.193
BRP 377.913 322.67 370.74 304.277 174.038 160.079
Thales-1 30.802 37.75 44.114 37.593 41.575 40.476
Thales-3 627.956 TO 759.987 TO 636.823 597.57
Sched2.100.0 2.066 2.185 1.924 1.976 1.886 1.899
Sched2.100.2 148.169 93.138 TO 90.158 249.373 259.895
Sched2.50.0 1.649 1.779 1.6 1.602 1.57 1.607
Sched2.50.2 28.137 27.119 217.399 23.344 36.81 35.26
FDDI-2 0.014 0.018 0.009 0.009 0.009 0.01
FDDI-4 1.315 1.252 1.1 1.092 1.455 1.285
Fischer-2 0.052 0.048 0.041 0.04 0.04 0.041
Fischer-3 0.521 0.538 0.48 0.497 1.172 1.316
Lynch-2 0.047 0.04 0.03 0.029 0.03 0.027
Lynch-5 7.359 7.429 7.817 7.346 8.859 7.867
F3 0.289 0.285 0.289 0.288 0.093 0.088
F4 21.813 22.573 37.558 20.626 108.629 96.983
Pipeline-KP12-2-3 21.975 31.642 18.516 29.735 19.489 19.07
Pipeline-KP12-2-5 TO TO TO TO TO TO
Pipeline-KP12-3-3 TO TO TO TO TO TO
RCP 1.105 1.147 1.099 1.088 0.093 0.095
spsmall 10.132 10.99 9.595 9.883 11.114 10.232
critical-region TO TO TO TO TO TO
critical-region-4 TO TO TO TO TO TO
blowup 31.635 31.758 1.345 1.32 1.493 1.134
Average 3.47236 3.82884 3.7417 3.36366 2.85594 2.81208

(a) EFsynth (without merging)
EFsynth (with merging)

Benchmark
Models

LayerBFS
incl

LayerBFS
incl2

BFS
incl

BFS
incl2 RS PRIOR

AndOr 1.635 1.618 1.734 1.758 5.365 5.305
flipflop 91.89 87.626 80.264 83.156 243.631 244.531
BRP 304.798 313.73 TO TO 501.384 515.021
Thales-1 10.479 10.62 63.062 66.343 60.893 65.504
Thales-3 130.026 104.372 TO TO TO TO
Sched2.100.0 2.55 2.771 7.996 8.302 17.352 17.327
Sched2.100.2 131.457 98.716 456.22 375.883 TO TO
Sched2.50.0 2.078 2.213 6.185 6.405 14.45 14.231
Sched2.50.2 41.648 35.196 121.428 110.747 224.544 229.708
FDDI-2 0.015 0.01 0.009 0.008 0.011 0.008
FDDI-4 1.476 1.225 1.316 1.307 2.063 2.01
Fischer-2 0.048 0.046 0.046 0.039 0.042 0.042
Fischer-3 0.418 0.419 0.454 0.466 2.058 2.082
Lynch-2 0.031 0.036 0.028 0.026 0.044 0.037
Lynch-5 3.852 4.101 12.928 13.457 14.901 14.339
F3 0.244 0.245 0.409 0.412 0.143 0.137
F4 19.219 18.197 TO TO 622.301 546.115
Pipeline-KP12-2-3 0.586 0.589 0.557 0.565 30.234 75.238
Pipeline-KP12-2-5 2.796 2.793 7.31 7.348 TO TO
Pipeline-KP12-3-3 96.509 87.764 TO TO TO TO
RCP 1.094 1.144 7.805 7.326 0.086 0.09
spsmall 1.893 1.591 2.623 2.547 12.498 13.677
critical-region TO TO TO TO TO TO
critical-region-4 TO TO TO TO TO TO
blowup 313.649 33.018 345.481 1.365 1.709 1.343
Average 2.58396 2.52052 4.77691 4.38764 5.58949 5.59692

(b) EFc-ex (with merging)

Table 5.1 – Experiments

97

EFc-ex (without merging)
Benchmark
Models

LayerBFS
incl

LayerBFS
incl2

BFS
incl

BFS
incl2 RS PRIOR

AndOr 0.012 0.009 0.011 0.009 0.008 0.008
flipflop 0.061 0.064 0.059 0.055 0.029 0.028
BRP 2.874 2.476 2.944 2.863 0.198 0.188
Thales-1 4.854 4.753 6.189 5.748 0.126 0.119
Thales-3 16.638 16.397 19.968 20.247 0.237 0.232
Sched2.100.0 0.018 0.007 0.01 0.004 0.004 0.005
Sched2.100.2 0.008 0.007 0.004 0.004 0.005 0.004
Sched2.50.0 0.028 0.031 0.025 0.02 0.022 0.016
Sched2.50.2 0.028 0.036 0.023 0.024 0.016 0.015
FDDI-2 0.008 0.008 0.005 0.01 0.005 0.008
FDDI-4 0.377 0.329 0.291 0.287 0.091 0.078
Fischer-2 0.03 0.026 0.025 0.022 0.02 0.016
Fischer-3 0.097 0.097 0.097 0.092 0.057 0.059
Lynch-2 0.033 0.034 0.034 0.031 0.032 0.029
Lynch-5 7.408 7.619 7.912 7.329 8.847 7.829
F3 0.249 0.245 0.252 0.253 0.059 0.055
F4 4.086 3.786 6.543 4.16 0.364 0.311
Pipeline-KP12-2-3 0.313 0.344 0.245 0.27 0.031 0.025
Pipeline-KP12-2-5 3.825 4.83 2.988 4.526 0.049 0.037
Pipeline-KP12-3-3 21.927 33.184 18.229 31.204 0.042 0.042
RCP 0.51 0.506 0.454 0.453 0.024 0.02
spsmall 5.862 6.207 6.242 5.989 0.143 0.143
critical-region 0.148 0.121 0.081 0.073 0.016 0.018
critical-region-4 1.008 0.95 0.821 0.844 0.044 0.043
blowup 32.893 32.828 1.346 1.35 1.337 1.003
Average 6.03173 5.84164 5.28516 5.20335 1.13675 1.06026

(a) EFsynth (without merging)
EFc-ex (with merging)

Benchmark
Models

LayerBFS
incl

LayerBFS
incl2

BFS
incl

BFS
incl2 RS PRIOR

AndOr 0.011 0.011 0.009 0.009 0.012 0.008
flipflop 0.074 0.065 0.061 0.060 0.031 0.028
BRP 1.906 2.215 3.950 4.112 0.198 0.197
Thales-1 3.191 3.182 8.461 9.068 0.126 0.123
Thales-3 10.826 11.233 55.746 58.321 0.244 0.234
Sched2.100.0 0.006 0.007 0.008 0.006 0.005 0.005
Sched2.100.2 0.009 0.01 0.006 0.006 0.004 0.01
Sched2.50.0 0.026 0.032 0.023 0.023 0.016 0.016
Sched2.50.2 0.036 0.037 0.024 0.024 0.017 0.017
FDDI-2 0.013 0.007 0.007 0.007 0.011 0.006
FDDI-4 0.364 0.365 0.35 0.349 0.088 0.08
Fischer-2 0.028 0.024 0.021 0.022 0.016 0.017
Fischer-3 0.085 0.093 0.084 0.09 0.072 0.069
Lynch-2 0.034 0.03 0.033 0.029 0.032 0.034
Lynch-5 3.893 4.182 13.038 13.533 14.778 14.344
F3 0.199 0.209 0.34 0.333 0.131 0.12
F4 3.048 3.151 45.059 53.607 0.948 0.867
Pipeline-KP12-2-3 0.096 0.086 0.075 0.082 0.029 0.028
Pipeline-KP12-2-5 0.278 0.267 0.247 0.273 0.038 0.04
Pipeline-KP12-3-3 0.639 0.639 0.825 0.841 0.043 0.041
RCP 0.532 0.575 3.117 3.154 0.022 0.024
spsmall 1.227 1.119 1.752 1.835 0.266 0.14
critical-region 0.111 0.112 0.082 0.072 0.025 0.015
critical-region-4 1.092 0.78 1.109 1.212 0.043 0.044
blowup 320.011 32.81 348.86 1.356 1.417 1.093
Average 5.05095 4.98319 5.21204 4.86171 1.29771 1.20662

(b) EFc-ex (with merging)

Table 5.2 – Experiments

98

the counter-example synthesis using EFc-ex, up to 522 times faster for some
industrial case studies. This suggests to use our new strategies as default for
counter-example synthesis.

Furthermore, in order to verify liveness properties efficiently, the parametric
priority strategy is then reused in the next chapter for our new Depth-First
Search based algorithms. We will show how this strategy can help our algorithms
to avoid infinite runs and return complete results.

99

6
C

h
a

p
t

e
r

Layered and Collecting NDFS
with Subsumption for

Parametric Timed Automata

Contents
6.1 Introduction . 100
6.2 Preserving accepting runs with subsumption 102
6.3 Parametric timed nested depth-first search with

subsumption . 103
6.3.1 NDFS with subsumption for PTA 103
6.3.2 Early pruning of the red search 106
6.3.3 Starting the red search early: A layered NDFS . . . 106

6.4 Collecting NDFS for parameter synthesis 108
6.5 Experiments . 108

6.5.1 Implementation . 110
6.5.2 Experimental results 110

6.6 Conclusion . 113

6.1 Introduction
In Chapter 5, several strategies were studied to exhibit efficient exploration
orders for Breadth-First Search (BFS), that address parameter synthesis for

100

reachability properties.
However, reachability properties are often insufficient, and it is necessary

to model-check liveness properties. These are generally described as a Linear
Temporal Logic (LTL) formula. The LTL model-checking approach boils down
to a Büchi emptiness problem. This is achieved by the search of accepting cycles
in the state space, typically in a Depth-First Search fashion.

Contribution This work presents DFS exploration to find accepting cycles
for Parametric Time Automata, using several reductions of the state space and
smart exploration orders.

1. First, the subsumption of [LOD+13] for Timed Automata, that reduces
the explored state space while preserving cycle detection, is extended to
the parametric case.

2. Second, PTAs enjoy properties of the projection of zones on the parameters
which can be used to stop the exploration of a branch at an early stage or
check for cycles in layers of the graph. Note that such a layered approach
could also be used for other types of models which exhibit some progress
measure, as is done with the sweep-line exploration [EK14].

3. Finally, DFS for LTL model-checking usually exits as soon as an accepting
cycle is found. However, in the case of parameter synthesis, it is desirable
to obtain all parameters for which such a cycle exists. As they may lie in
different branches, the exploration must be continued and the parameters
zones collected all along the process. This results in a collecting algorithm.

Related work LTL parameter synthesis for PTA was addressed in [BBBC16],
where parameter valuations are restricted to bounded integers. We make no
such restriction, giving up decidability of the problem. Nevertheless, our semi-
algorithm either gives an exact result or does not terminate. Although ex-
trapolation is used in the model checking algorithm of [BBBC16] as a form of
abstraction, there was no early pruning, subsumption, or layered verification.
Therefore branches had to be explored in depth, which was feasible only due to
the fact that the system is finite after extrapolation. The pruning and layering
introduced in our algorithm sometimes avoids infinite branches, and provides
speedup for the finite case, as demonstrated in the experiments.

Our basic algorithm extends NDFS with subsumption from [LOD+13] from
the setting of TA to Parametric TA. Due to the nature of the parametric zones
we identified additional pruning opportunities. Another extension of NDFS
with subsumption for TA was studied in [HSTW16]. These authors proved that
LTL model checking for TA is inherently harder than reachability checking for
TA. They also proposed to search accepting cycles in the subsumed state space
first. If there are no such cycles, the original system is correct. Otherwise, the
Strongly Connected Components that contain accepting cycles must be further
refined, since subsumption may introduce accepting cycles. Our layered approach

101

also tends to find abstract cycles first, but it is fully integrated in the NDFS
procedure.

Outline We first give preserving accepting runs with subsumption for PTBA in
Section 6.2. Then we provide an extension of the ndfs algorithm with subsumption
for PTBA in Section 6.3. The parameter synthesis requires obtaining of all
possible contraints on accepting cycles, as described by the collecting algorithm
in Section 6.4 together with some pruning optimisations. The experimental
evaluation of these algorithms is detailed in Section 6.5. Finally, Section 6.6
concludes and provides insight on future work.

6.2 Preserving accepting runs with subsumption
Recall that an accepting run from s is an infinite run s = s0⇒s1⇒· · · that hits
an accepting location infinitely often.

Proposition 6.2.1. If there exists an accepting run from s and s v s′, then
there exists an accepting run from s′.

Proof. By Proposition 2.5.1 an infinite run from s, s1⇒s2⇒· · · , can be simulated
by an abstract infinite run from s′, s′1⇒s′2⇒· · · , where each si v s′i. By
Definition 2.5.5, the new run passes through the exact same locations, so it is
still accepting.

Proposition 6.2.1 shows that a subsumption abstraction preserves Büchi
emptiness in one direction. Unfortunately, PZGα(B) may introduce accepting
runs which were not present in PZG(B). This is already the case for (plain)
timed automata [LOD+13]. This can be illustrated by their example which is
prensented in Fig. 6.1. The figure visualises PZGα(B) by drawing subsumed
states inside subsuming states (e. g. s3 v s1).

s0 s1

s2 s3

s0

s2

s3

s1

y

x0
1
2
3

0 1 2 3 4 5

Figure 6.1 – The symbolic state space PZG(B) of the model in Fig. 2.7b without
information on contraints

Taken from [LOD+13]. Consider the TA obtained from the PBTA in Fig. 2.7b,
by setting p = q = r = 2. The symbolic state space PZG(B) of this TA, with
`1 ∈ F , contains 4 states (shown on the left): s0, s1 = (`1, C1), s2 = (`2, C2) and
s3 = (`1, C3). Note that there is no accepting cycle. The graphical representation
of the zones C1–C3 (right) reveals that C3 ⊆ C1 and hence s3 v s1. As s3 v s1

102

and both are reachable, the subsumption abstraction might map α(s3) = s1,
introducing a cycle s1⇒s2⇒s1 in PZGα(B).

Still, subsumption implies a property on paths that we can use. We adapt the
results from [LOD+13] to a setting where PZG might be infinite. In subsequent
sections, we exploit these properties to improve algorithms that implement the
PTBA emptiness check.

Proposition 6.2.2. If s⇒∗s′, s v s′ and s ∈ F , then PZG(B) has an
accepting run.

Proof. Let s v s′ and s ∈ F , then by Definition 2.5.5, s′ ∈ F . Let s⇒∗s′, then
by Proposition 2.5.1 we can simulate this same trace from s′, leading to some s′′
s.t. s′⇒∗s′′ and s′ v s′′ and s′′ ∈ F . This process can be repeated to obtain an
infinite accepting run.

We finish this section with an observation for the special case of a finite
abstraction PZGα(B):

Proposition 6.2.3. If PZGα(B) is finite and does not contain an accepting
cycle, then PZG(B) does not contain an accepting run, hence L(B) = ∅.

Proof. Let PZG(B) contain an accepting run from s0. Then PZGα(B) contains
an accepting run as well from its initial state α(s0), by Proposition 6.2.1. Since
PZGα(B) is finite and the accepting run visits infinitely many accepting states,
some accepting state, say s ∈ F is visited infinitely often. Then we can construct
an accepting cycle α(s0)⇒∗s⇒∗s.

6.3 Parametric timed nested depth-first search
with subsumption

This section extends the ndfs algorithm with subsumption for TA [LOD+13] to
PTA and introduces early checks and cuts to optimise the search. The algorithm
detects accepting cycles, the absence of which implies Büchi emptiness. It is
correct for finite graphs.

6.3.1 NDFS with subsumption for PTA
In the following, with soundness, we mean that when ndfs reports a cycle,
indeed an accepting cycle exists in the graph, while completeness indicates that
ndfs always reports an accepting cycle if the graph contains one.

The classical ndfs algorithm shown in Algorithm 14 consists of an outer
DFS (dfsBlue) that sorts accepting states s in DFS post-order and an inner
DFS (dfsRed) that searches for cycles over each s, called the seed. States are
maintained in 3 colour sets:

1. Blue, states explored by dfsBlue ,

103

Algorithm 14: Classical ndfs
1 procedure ndfs
2 foreach Cyan := Blue := Red := ∅ do
3 dfsBlue(s0)
4 report no cycle

5 procedure dfsBlue(s)
6 Cyan := Cyan ∪ {s}
7 foreach t in next-state(s) do
8 if t 6∈ Blue ∧ t 6∈ Cyan then
9 dfsBlue(t)

10 if s ∈ F then
11 dfsRed (s)
12 Blue := Blue ∪ {s}
13 Cyan := Cyan \ {s}
14 procedure dfsRed (s)
15 Red := Red ∪ {s}
16 foreach t in next-state(s) do
17 if t ∈ Cyan then
18 report cycle
19 if t 6∈ Red then
20 dfsRed (t)

2. Cyan, states on the stack of dfsBlue (visited but not yet explored), and

3. Red, visited by dfsRed .

The goal of the blue search is to visit all states, and launch a red search on all
accepting states in post-order. The goal of the red search is to detect cycles on
these accepting states, by finding edges to cyan states. These would close cycles
early, at line 17 [SE05].

The ndfs-algorithm with subsumption from [LOD+13] for TA is presented
in Algorithm 15. Here the parts introduced by subsumption are highlighted in
light blue. We now show why the same algorithm is valid for PTA as well.

As for TA, subsumption can be used to prune both searches, but we should
be careful, since PZGv(B) may introduce additional cycles (Fig. 6.1). To express
subsumption checks on sets we write s v S, meaning ∃s′ ∈ S : s v s′. And S v s,
meaning ∃s′ ∈ S : s′ v s.

According to Proposition 6.2.2, a state that subsumes a state on the cyan
stack leads to a cycle. This explains the cycle detection in line 18. According
to Proposition 6.2.1, if there is a cycle from t, then there is a cycle from all t′
with t v t′. So, if t v Red, it cannot be on an accepting cycle, which explains
subsumption in line 20. By definition (Definition 2.5.7), PZGv(B) contains a

104

Algorithm 15: ndfs with subsumption checks and red prune of dfsBlue
(in light-blue) and early pruning (in yellow).
1 procedure ndfs
2 Cyan := Blue := Red := ∅
3 dfsBlue(s0)
4 report no cycle
5 procedure dfsBlue(s)
6 Cyan := Cyan ∪ {s}
7 forall t in next-state(s) do
8 if t 6∈ Blue ∪ Cyan ∧ t 6v Red then
9 dfsBlue(t)

10 if s ∈ F then
11 dfsRed(s)
12 Blue := Blue ∪ {s}
13 Cyan := Cyan \ {s}
14 procedure dfsRed (s)
15 Red := Red ∪ {s}
16 foreach t in next-state(s)
17 s.t. t =p s do
18 if Cyan v t then
19 report cycle
20 if t 6v Red then
21 dfsRed (t)

“larger” state for all reachable states in PZG(B), so this is sufficient to find all
accepting cycles.

Since red states do not lead to accepting cycles, red states can even prune
the blue search. We can strengthen the condition on line 8 to t 6∈ Blue ∪
Cyan ∪ Red. However, this is by itself of no use since, Red ⊆ Blue. Luckily,
even states subsumed by red do not lead to accepting cycles (contraposition of
Proposition 6.2.1), so we can use subsumption again: t 6∈ Blue ∪ Cyan ∧ t 6v
Red, as in line 8. The benefit of this can be illustrated using Fig. 6.1. Once
dfsBlue backtracks over s1, we have s1, s2, s3 ∈ Red by dfsRed at line 11. Any
hypothetical other path from s0 to a state subsumed by these red states can be
ignored.

Finally, if the algorithm reaches line 4, the algorithm has completely traversed
the subsumed state space PZGv(B), which was apparently finite. Since no
accepting cycle was detected, by Proposition 6.2.3 the algorithm may conclude
that B is empty.

Algorithm 15 shows a version of ndfs with all correct improvements. The
part highlighted in yellow is specific for PTA, and will be explained in the next

105

subsection.

6.3.2 Early pruning of the red search
Some simple observation allows for avoiding unnecessary explorations: the
projection of a zone C onto the parameter set P , C↓P , decreases along a path.
Notation 1. Let s = (l, C) and s′ = (l′, C ′). By s =p s′ we denote that
C↓P = C ′↓P , i. e. they have the same parametric zone. Similarly, by s ⊆p s′ we
denote that C↓P ⊆ C ′↓P .

Note that in both notations, the locations l and l′ may be different, as
opposed to the requirement for v.

Proposition 6.3.1. Let s, s′ be two states, s.t. s⇒s′. Then s′ ⊆p s.

Proof. Let s = (l, C) and s′ = (l′, C ′). By Definition 2.5.4: (l, C) e⇒ (l′, C ′) if
e = (l, g, a,R, l′) and C ′ =

(
[(C ∧ g)]R ∧ I(l′)

)↗ ∧ I(l′).
Since the projection onto P does not contain clocks, it is not affected by

resets nor time elapsing. Hence, we have:

C ′↓P =
[(

[(C ∧ g)]R ∧ I(l′)
)↗ ∧ I(l′)

]
↓P

=
[(

(C ∧ g)↓P ∧ I(l′)
)
↓P ∧ I(l′)

]
↓P

=
(
(C ∧ g)↓P ∧ I(l′)

)
↓P

⊆
(
C↓P ∧ I(l′)

)
↓P

⊆ C↓P

Proposition 6.3.1 allows for an early pruning of the red search, as highlighted
in yellow in Algorithm 15. Indeed, the red search aims at finding a cycle, which
necessarily has the same parametric zone Cs↓P for all its states. Thus, if a
successor has a smaller parametric zone Ct↓P ⊂ Cs↓P , it cannot be part of the
cycle, so should not be considered by the red search.

6.3.3 Starting the red search early: A layered NDFS
As seen in Section 6.3.2, all symbolic states in an accepting cycle have the
same parametric zone C↓P . From this property, we can organise our search
by considering layers of states with the same parametric zone. Contrary to
standard ndfs (for automata or timed automata), a red search in a layer of the
PZG cannot interfere with a red search in another layer of the same path, since
they concern different parametric zones.

Thus the new layered ndfs shown in Algorithm 16 works layer by layer,
looking at the larger parametric zones first. The changes from Algorithm 15 are
highlighted in yellow.
Notation 2. With t v=p

X we denote that ∃t′ ∈ X.t v t′ ∧ t′ =p t. That is, t is
subsumed by some element of X in the same parametric layer.

106

Algorithm 16: Layered ndfs
1 procedure layered ndfs
2 Cyan := Blue := Red := ∅
3 Pending := {s0}
4 while Pending 6= ∅ do
5 Pick s from Pending
6 if s 6∈ Blue then
7 dfsBlue(s)
8 Pending := Pending \ {s}
9 report no cycle

10 procedure dfsBlue(s)
11 Cyan := Cyan ∪ {s}
12 foreach t in next-state(s) do
13 if t 6∈ Blue ∪ Cyan ∧t 6v=p

Red then
14 if t ⊂p s then
15 Pending := Pending ∪ {t}
16 else
17 dfsBlue(t)

18 if s ∈ F then
19 dfsRed (s)
20 Blue := Blue ∪ {s}
21 Cyan := Cyan \ {s}
22 procedure dfsRed (s)
23 Red := Red ∪ {s}
24 foreach t in next-state(s) do
25 s.t. t =p s
26 if Cyan v t then
27 report cycle
28 if t 6v=p

Red then
29 dfsRed (t)

In order to obtain a result as fast as possible, and with the largest parametric
zone as possible, we run the blue search until the parametric zone changes
(line 14–line 17). The last state thus constructed is kept as Pending (line 15),
i. e. its successors are not generated yet, and we continue the ndfs algorithm on
other branches if any. When backtracking, the deepest accepting state in the
layer will be encountered first, thus preserving the post-order for the red search
in the layer.

If an accepting cycle is found it is reported by the algorithm, otherwise
the exploration continues in the current layer. When the layer is finished, the

107

algorithm is applied to the pending states (line 4–line 8).
In the red search, the comparison with cyan states at line 27 is still valid.

Indeed, all cyan states are on the path leading to the state examined; if one of
them is subsumed by the current state t, its parametric zone is smaller than or
equal to the one of t, but it is also larger than or equal to it as it is on the path.
Hence they have the same parametric zone, and only the subsumption on clocks

The comparison with red states at line 29, however, needs to be limited to
the current layer, so as not to interfere with a previous red search on another
layer. This is sufficient since any red state encountered on the same layer should
have led, during its red search, to a cycle. A similar argument applies to the
comparison with red states of the same layer only in the blue search at line 13.
Remark. Such a layered ndfs can also be applied to automata or TA, provided
the model exhibits some progress measure that allows for determining layers.
This is similar to the sweepline approach [EK14].

6.4 Collecting NDFS for parameter synthesis
This section addresses the use of ndfs to synthesize parameter values that lead
to an accepting cycle, i. e. to find all possible valuations of the parameters such
that there exists an accepting run.

To achieve synthesis, finding one accepting cycle is not sufficient anymore:
they should all be found. Therefore, the ndfs algorithm of Section 6.3 is extended
to a collecting ndfs that continues the exploration.

The reporting of a cycle in Algorithm 17 does no longer exit: it just collects
in Constraints (line 28) the constraint Ct↓P that was just found. Moreover, in
order to avoid exploring smaller parametric zones, we will only process states
that are not contained in Constraints (line 12).

6.5 Experiments
To evaluate the performances of our algorithms, we ran our experiments on a
Dell Precision 3620 i7-7700 3.60 GHz with 64 GiB memory running Linux Mint
19 beta 64 bits.

108

Algorithm 17: Layered collecting ndfs
1 procedure layered ndfs
2 Cyan := Blue := Red := ∅
3 Constraints := ∅
4 Pending := {s0}
5 while Pending 6= ∅ do
6 Pick s from Pending
7 if s 6∈ Blue then
8 dfsBlue(s)
9 Pending := Pending \ {s}

10 return Constraints

11 procedure dfsBlue(s = (ls, Cs))
12 if s↓P 6v Constraints then
13 Cyan := Cyan ∪ {s}
14 foreach t in next-state(s) do
15 if t 6∈ Blue ∪ Cyan ∧ t 6v=p

Red then
16 if t ⊂p s then
17 Pending := Pending ∪ {t}
18 else
19 dfsBlue(t)

20 if s ∈ F then
21 dfsRed (s)
22 Blue := Blue ∪ {s}
23 Cyan := Cyan \ {s}

24 procedure dfsRed (s)
25 foreach t = (lt, Ct) in next-state(s)
26 s.t. t =p s do
27 if Cyan v t then
28 Constraints := Constraints ∪ Ct↓P
29 else if t 6v=p Red then
30 dfsRed (t)

109

6.5.1 Implementation
We implemented our algorithms in IMITATOR [AFKS12]1 with Ocaml 4.02.3
and PPL 1.2 library [BHZ08]. For better performance, in Algorithm 16 and
Algorithm 17, we reuse the idea from the PRIOR strategy in Chapter 5 for
implementing the Pending list: each explored state is inserted in a decreasing
zone fashion into Pending, and thus the state having largest zone or the state
at the beginning of Pending is popped out first. Besides, we use an additional
index, storing information on the sets of comparable zones, to speed up the state
insertion.

6.5.2 Experimental results
In our experiments, we used 26 benchmarks from the IMITATOR benchmarks
library that include hardware circuits (flipflop, spsmall), network or software
protocols (BRP, FDDI-4, Fischer, F3, F4, Lynch-2, Lynch-5, critical-region,
critical-region-4, RCP, simop, WFAS), real-time systems (Thales-1, Thales-3,
Sched2.i.j), variants of a producer-consumer (Pipeline [KP12]), and few ad-
ditional case studies coffee, train-gate, JLR13.

In the experiments, we mainly focused on two parameter synthesis problems.
The first problem, called ECc-ex, is the counter-example synthesis: “find at
least some parameter valuations for which an accepting cycle is found”. Counter-
example synthesis is of high practical importance, as it is often desirable to find
at least some valuations for which an accepting cycle is found, not necessarily all
existing ones. We implemented a procedure ECc-ex that stops as soon as some
parameter valuations allowing for reaching an accepting cycle are synthesized.

Instead of finding some parameter valuations for a single accepting cycle as
in ECc-ex, the second problem addressed, ECcycles, synthesizes all possible
valuations: “find all parameter valuations for which an accepting cycle exists”.

Note that, due to the undecidability of the EF-emptiness problem [AHV93],
algorithms for ECcycles or ECc-ex are not guaranteed to terminate.

In order to show the performance of our algorithm LayerCollectNDFSsub
(Algorithm 17) is compared with the breadth first search Statespace synthesis
with the inclusion reduction [ANP17] which explores all possible states of the
system. Evidently, it is not entirely fair that ECcycles only explores a part
of the whole state space while Statespace generates it all w.r.t. the inclusion.
Nevertheless, it makes sense since the reduction criterion is similar, and State-
space analyses reachability of accepting locations.

From left to right in Table 6.1 are the models’ names followed by some
information on each model (number of clocks, parameters, and locations) and
computation times in seconds for each of the five algorithms. Additionally, the
number of different zones of accepting cycles by found LayerCollectNDFSsub
is indicated next to it. Note that the green and yellow cells are the fastest and
the second-fastest approaches respectively, for each of the two categories of
algorithms, and “TO” stands for a time-out after 30 minutes.

1Working version 2.9.2 (Build 2389 – NestedDFS/543ca62).

110

EC Algorithms Statespace Algorithms
ECc-ex ECcycles StatespaceBenchmark

Models
#
X

#
P

#
L NDFS (s) NDFSsub (s) LayerNDFSsub (s) LayerCollectNDFSsub (s) #Zones BFS PRIORincl (s)

BRP 7 2 22 0.231 0.237 0.035 0.043 4 176.535
coffee 2 3 4 TO TO 0.008 TO 2 0.006
critical-region 2 2 20 TO TO TO TO 0 TO
F3 3 0 18 0.026 0.026 0.006 0.003 1 0.255
F4 4 2 23 TO TO 0.007 0.006 1 TO
FDDI4 13 2 34 0.305 0.235 1.260 7.004 136 1.319
FischerAHV93 2 4 13 0.010 0.009 0.013 0.013 1 0.040
flipflop 5 2 52 0.010 0.010 0.010 0.012 1 0.015
fmtv1A1-v2 3 3 15 0.060 0.057 46.723 68.223 29 14.040
fmtv1A3-v2 3 3 15 0.063 0.062 302.061 1129.284 67 215.020
JLR13 2 2 2 TO TO TO TO 0 TO
lynch 2 1 18 0.007 0.007 0.010 0.010 5 0.016
lynch5 5 1 45 0.012 0.012 0.016 0.019 9 3.126
Pipeline-KP12-2-3 4 6 14 0.510 0.508 7.738 492.995 369 TO
Pipeline-KP12-2-5 4 6 18 0.791 0.787 TO TO 0 TO
Pipeline-KP12-3-3 5 6 19 1.960 1.962 TO TO 0 TO
RCP 6 5 48 0.024 0.013 0.023 0.034 7 10.095
Sched2.50.0 6 2 17 0.011 0.011 0.539 4.168 71 1.940
Sched2.50.2 6 2 17 0.011 0.011 TO TO 0 TO
Sched2.100.0 6 2 17 0.008 0.008 0.417 3.769 31 2.425
Sched2.100.2 6 2 17 0.008 0.008 TO TO 0 TO
simop 8 2 46 TO TO TO TO 0 TO
spsmall 11 2 51 0.244 0.053 0.310 36.549 1026 5.650
train-gate 5 9 11 0.016 0.015 0.047 0.268 15 0.018
WFAS 4 2 10 0.023 0.021 0.056 TO 13 TO

Table 6.1 – Experimental comparison of Nested DFS algorithms

111

The table is divided into two parts by a grey vertical line so as to reflect the
two distinct comparisons. The first part comprises NDFS (Algorithm 14) and
its variants NDFSsub (Algorithm 15) and LayerNDFSsub (Algorithm 16).
The other is a comparison between LayerCollectNDFSsub (Algorithm 17)
and PRIOR with inclusion in Chapter 5, which is a BFS (breadth first search)
based algorithm with optimised search order for parametric zone inclusion. The
PRIOR with inclusion is also our most efficient BFS algorithm for reducing state
space explosion and improving termination.

In the first part of the table, NDFSsub dominates other algorithms, since it
is the fastest on more than half of benchmarks (17/25 cases). However, in 4 cases,
LayerNDFSsub is even faster. It is interesting that this layered algorithm
terminates very quickly in two cases where the non-layered versions do not
terminate. Clearly, layering can prevent the algorithm to diverge. Note however,
that in 4 other cases, the layering algorithm times out, while the non-layered
algorithms provide an answer quickly. In these cases the zone graph is broad
already in the top layers, so apparently the strict NDFS versions find an accepting
cycle more efficiently.

NDFS and NDFSsub suffer from the undecidability and cannot terminate
and reach the time-out in some benchmarks. Algorithm LayerNDFSsub was
proposed to cope with the termination problem. We observe that this works in
two cases: coffee and F4. By exploring the state having the largest zone first
(especially true zone states), the layered algorithm can avoid exploring infinite
paths having smaller zones in the beginning and thus they can also prune these
paths later. The timeout in 4 other cases is not caused by infinite behaviour, but
by exploring many branches in the top-layers. Here a result would have been
produced with larger timeout value.

Let us interpret the second part of the table, where we compare the ter-
mination of LayerCollectNDFSsub with PRIOR. We can see that the re-
sults of LayerCollectNDFSsub are similar to those of LayerNDFSsub:
only 2 more cases hit the timeout limit. Note that, for efficiency purpose,
all algorithms explore states on-the-fly so that in LayerNDFSsub, we re-
ceive a zone result when some cycle containing an accepting location is found,
while LayerCollectNDFSsub would continue the search. PRIOR exhibits
some complimentary unterminated cases. In the terminating benchmarks,
LayerCollectNDFSsub is the fastest in 9/26 cases, where PRIOR is the
fastest in 8/26 cases. The reason is probably that PRIOR uses full parametric
zone inclusion, which is sound for reachability but not for liveness. We conclude
that both the efficiency and the termination behaviour of these algorithms are
quite complementary. However, note that these algorithms address a different
problem.

Finally, we note that the number of symbolic zones collected during the
exploration is widely different across the benchmarks (ranging from 1-1026).
Even in two of the timed-out runs, LayerCollectNDFSsub collected 2, resp.
13, parametric zones that lead to an accepting cycle (coffee and WFAS).

112

6.6 Conclusion
In this chapter, we have proposed a new nested depth-first search (NDFS)
algorithm and its variants for model-checking LTL properties of Parametric
Timed Automata.

In the next chapter, we will show that Zeno phenomenon is unrealistic and
should be removed from our final results. Therefore, to have more reliable results,
in the next chapter, we will introduce an approach called clock upper bound
PTA (CUB-PTA) approach to avoid the Zeno phenomenon in parametric timed
automata.

113

7
C

h
a

p
t

e
r

Parametric model checking
timed automata under

non-Zenoness assumption

Contents
7.1 Introduction . 115
7.2 Undecidability of the non-Zeno emptiness problem 116
7.3 CUB-parametric timed automata 117

7.3.1 CUB timed automata 117
7.3.2 Parametric clock upper bounds 118
7.3.3 CUB parametric timed automata 119
7.3.4 CUB PTA detection 120
7.3.5 Transforming a PTA into a disjunctive CUB-PTA . 123

7.4 Zeno-free cycle synthesis in CUB-PTAs 125
7.5 Distributing non-Zeno parametric model checking 133

7.5.1 Master algorithms 133
7.5.2 Worker algorithm . 134
7.5.3 Handling the case of a network of PTAs 136

7.6 Experiments . 137
7.6.1 Evaluation of the non-distributed version 137
7.6.2 Evaluation of the distributed version 140

7.7 Conclusion . 141

114

7.1 Introduction
Model checking TAs consists of checking whether there exists an accepting cycle
(i. e. a cycle that visits infinitely often a given set of locations) in the automaton
made of the product of the TA modeling the system with the TA representing
a violation of the desired property (often the negation of a property expressed,
e. g. in CTL). However, such an accepting cycle does not necessarily mean that
the property is violated: indeed, a known problem of TAs is that they allow
Zeno behaviors. An infinite run is non-Zeno if it takes an unbounded amount
of time; otherwise it is Zeno. Zeno runs are infeasible in reality and thus must
be pruned during system verification. That is, it is necessary to check whether
a run is Zeno or not so as to avoid presenting Zeno runs as counterexamples.
For instance, liveness properties are usually meaningless unless non-Zenoness is
assumed; and safety properties cannot be trusted since Zeno runs may conceal
deadlocks, etc. The problem of checking whether a timed automaton accepts at
least one non-Zeno run, i. e. the emptiness checking problem, has been tackled
previously (e. g. [Tri99, TYB05, BG06, GB07, HSW12, WSW+15]).

We address here the synthesis of parameter valuations for which there exists
a non-Zeno cycle in a PTA; this is highly desirable when performing parametric
model-checking for which the parameter valuations violating the property should
not allow only Zeno-runs. At the time of writing this thesis, this is the first
work on parametric model checking of timed automata with the non-Zenoness
assumption. Just as for TAs, the parametric zone graph of PTAs (used in
e. g. [HRSV02, ACEF09, JLR15]) cannot be used to check whether a cycle is
non-Zeno. Therefore, we propose here a technique based on clock upper bound
PTAs (CUB-PTAs), a subclass of PTAs satisfying some syntactic restriction,
and originating in CUB-TAs for which the non-Zeno checking problem is most
efficient [WSW+15]. In contrast to regular PTAs, we show that synthesizing
valuations for CUB-PTAs such that there exists an infinite non-Zeno cycle can
be done based on (a light extension of) the parametric zone graph.

Contributions We make the following technical contributions in this chapter:

1. We show that the parameter synthesis problem for PTAs with non-Zenoness
assumption is undecidable.

2. We show that any PTA can be transformed into a finite list of CUB-PTAs;

3. We develop a semi-algorithm to solve the non-Zeno synthesis problem using
CUB-PTAs.

4. We also develop a distributed algorithm for our non-Zeno synthesis ap-
proach.

5. Finally, we implemented all our algorithms in IMITATOR and validated
using benchmarks.

115

Outline The chapter is organized as follows. Section 7.2 shows the undecid-
ability of non-Zeno-Büchi emptiness. We then present the concept of CUB-PTAs
(Section 7.3), and show how to transform a PTA into a list of CUB-PTAs.
Zeno-free parametric model-checking of CUB-PTA is addressed in Section 7.4,
and experiments reported in Section 7.6. Then in Section 7.5, we distribute
our CUB-PTA approach on clusters. Finally, Section 7.7 concludes and gives
perspectives for future work.

7.2 Undecidability of the non-Zeno emptiness
problem

In this chapter, we aim at addressing the following two problems. They both
concern the existence of an infinite non-Zeno run. The first one aims at checking
whether the set of parameter valuations leading to such a run is empty, while
the second synthesizes such a set of valuations.

non-Zeno emptiness problem:
Input: A PTA A
Problem: Is the set of parameter valuations v for which there exists a
non-Zeno infinite run in A[v] empty?

non-Zeno synthesis problem:
Input: A PTA A
Problem: Synthesize the set of parameter valuations v for which there
exists an infinite non-Zeno run in A[v].

As reachability is undecidable for PTAs [AHV93], it is unsurprising that the
existence of at least a parameter valuation for which there exists a non-Zeno
infinite run is undecidable too. The result holds with as few as one parameter,
even bounded (typically in [0, 1]). Let us formalize this result below.
Theorem 7.2.1. The non-Zeno emptiness problem is undecidable for PTAs
with at least four clocks and one (bounded) parameter.

Proof. By reduction from the halting problem of a deterministic 2-counter-
machine, which is undecidable [Min67]. Let us encode a 2-counter machine
(2CM) using PTAs. Several encodings were proposed in the literature. We rely
here on an encoding proposed in [AM15], that requires one single (bounded)
parameter p and four clocks. The proof of Theorem 7.2.1 does not require to
modify the 2CM encoding of [AM15]. Basically, that encoding is such that a
special location lhalt in the PTA is reachable iff the 2-counter machine halts.
This encoding has the specificity that the unique parameter p is used not only
to denote the maximum possible value of the 2 counters (which is often the case
in PTA-based encodings in the literature), but also to bound the number of
operations of the 2CM that the PTA can simulate. That is, for any valuation v
of p, the encoding of the 2CM will stop after v(p) steps.

116

lhalt lfA2CM
x := 0

x = 1
x := 0

Figure 7.1 – Undecidability of the non-Zeno emptiness problem

Let A2CM denote the PTA encoding a given 2-counter machine using the
encoding of [AM15]. We extend A2CM as shown in Fig. 7.1: from the location
encoding the halting location (i. e. lhalt), we add a transition to a new location
lf . Then, this location has a self-loop guarded with x = 1 and resetting x, where
x is any of the four clocks used in the encoding in [AM15].

First, recall from [AM15] that lhalt is reachable iff the 2-counter-machine
halts, and for parameter valuations v such that v(p) is larger than or equal to
the maximum value of the counters along the (unique) run of the machine. Then,
once lhalt is reached, lf is reachable without condition. Then, once lf is reached,
it can be visited infinitely often every 1 time unit, thanks to the guard and the
reset of x. Hence, once lf is reached, there exists an infinite non-Zeno run for
any parameter valuation for which lf is reachable. However, if the 2CM does not
halt, lf is not reachable; furthermore, thanks to the encoding of [AM15], for any
valuation, any run stops after at most v(p) discrete steps, and therefore there is
no infinite non-Zeno run for any valuation. Finally, any path in the encoding
of [AM15] is necessarily non-Zeno as p time units elapse for each instruction of
the 2-counter-machine, and p is bound to be greater than or equal to 1. Hence,
there exists an infinite non-Zeno run iff the 2-counter-machine halts.

Since the emptiness problem is undecidable, the synthesis problem becomes
intractable. In the remainder of this chapter, we will devise a semi-algorithm
to address the non-Zeno synthesis problem, i. e. an algorithm that computes
the exact solution if it terminates. Otherwise, we will compute an under-
approximation of the result.

7.3 CUB-parametric timed automata
7.3.1 CUB timed automata
It has been shown (e. g. [BG06, Tri99]) that checking whether a run of TA is
infeasible based on the symbolic semantics alone. In [WSW+15], the authors
identified a subclass of TAs called CUB-TAs for which non-Zenoness checking
based on the symbolic semantics is feasible. Furthermore, they show that not
only CUB-TAs are expressive enough to model most of the benchmark timed
systems, but more importantly, an arbitrary TA can be transformed into a CUB-
TA. Based on their work, we first show that arbitrary PTAs can be transformed

117

into a parametric version of CUB-TAs, and then solve the non-Zeno synthesis
problem based on parametric CUB-TAs.

As defined in [WSW+15], a clock upper bound is either ∞ or a pair (n,C)
where n ∈ Q (recall that C is either < or ≤). We write (n1,C1) = (n2,C2)
to denote n1 = n2 and C1 = C2; (n1,C1) ≤ (n2,C2) to denote n1 < n2, or
if n1 = n2, then either C2 is ≤ or both C1 and C2 are <. Further, we write
(n,C) > d where d is a constant to denote n > d. We define min((n,C1), (m,C2))
to be (n,C1) if (n,C1) ≤ (m,C2), and (m,C2) otherwise. Given a clock x and a
non-parametric guard g, we write ub(g, x) to denote the upper bound of x given
g. Formally,

ub(g, x) =

(n,C) if g is xC n
∞ if g is x > n or x ≥ n
∞ if g is x′ ./ n and x′ 6= x
∞ if g is true
min(ub(g1, x), ub(g2, x)) if g is g1 ∧ g2

Let us now introduce CUB-TAs.1

Definition 7.3.1. A TA is a CUB-TA if for each edge (l, g, a,R, l′), for all
clocks x ∈ X, we have

1. ub(I(l), x) ≤ ub(g, x), and

2. if x /∈ R, then ub(I(l), x) ≤ ub(I(l′), x).

Intuitively, every clock in a CUB-TA has a non-decreasing upper bound along
any path until it is reset.

7.3.2 Parametric clock upper bounds
Let us define clock upper bounds in a parametric setting. A parametric clock
upper bound is either ∞ or a pair (plt,C).

Given a clock x and a guard g, we denote by pub(g, x) the parametric upper
bound of x given g. This upper bound is a parametric linear term. Formally,

pub(g, x) =

(plt,C) if g is xC plt
∞ if g is x > plt or x ≥ plt
∞ if g is x′ ./ plt and x′ 6= x
∞ if g is true
min(pub(g1, x), pub(g2, x)) if g is g1 ∧ g2

Recall that, in each guard, given a clock x, at most one inequality is in the form
xC plt. In that case, at most one of the two terms is not ∞ and therefore the
minimum (last case) is well-defined (with the usual definition that min(plt,∞) =

1Note that, our definition is slightly more liberal than that in [WSW+15].

118

plt). Note that, if a clock has more than a single upper bound in a guard, then
the minimum can be encoded as a disjunction of constraints, and our results
would still apply with non-convex constraints (that can be implemented using a
finite list of convex constraints).

We write (plt1,C1) ≤ (plt2,C2) to denote the constraint{
plt1 < plt2 if C1 = ≤ and C2 = <
plt1 ≤ plt2 otherwise.

That is, we constrain the first parametric clock upper bound to be smaller
than or equal to the second one, depending on the comparison operator.

Given two parametric clock upper bounds pcub1 and pcub2, we write pcub1 ≤
pcub2 to denote the constraint (plt1,C1) ≤ (plt2,C2) if pcub1 = (plt1,C1) and pcub2 = (plt2,C2)

> if pcub2 =∞
⊥ otherwise.

This yields an inequality constraining the first parametric clock upper bound
to be smaller than or equal to the second one.

7.3.3 CUB parametric timed automata
We extend the definition of CUB-TAs to parameters as follows:

Definition 7.3.2. A PTA is a CUB-PTA if for each edge (l, g, a,R, l′), for
all clocks x ∈ X, the following conditions hold:

1. A.K0 ⊆
(
pub(I(l), x) ≤ pub(g, x)

)
, and

2. if x /∈ R, then A.K0 ⊆
(
pub(I(l), x) ≤ pub(I(l′), x)

)
.

Hence, a PTA is a CUB-PTA iff every clock has a non-decreasing upper
bound along any path before it is reset, for all parameter valuations satisfying
the initial constraint A.K0 .

Note that, as in [WSW+15], we do not define accepting locations. In our
work in this chapter, we are simply interested in computing valuations for which
there is a non-Zeno cycle. A more realistic parametric model checking approach
would require additionally that the cycle is accepting, it contains at least one
accepting location. However, this has no specific theoretical interest, and would
impact the readability of our exposé. Interestingly enough, the class of hardware
circuits modeled using a bi-bounded inertial delay fits into CUB-PTAs (for all
parameter valuations). This model assumes that, after the change of a signal in
the input of a gate, the output changes after a delay which is modeled using a
parametric closed interval.

Example 23. Consider the PTA A in Fig. 7.4a s.t. A.K0 = >. Then A is not
CUB: for x, the upper bound in l0 is x ≤ 1 whereas that of the guard on the
transition outgoing l0 is x ≤ p. (1,≤) ≤ (p,≤) yields 1 ≤ p. Then, > 6⊆

(
1 ≤ p

)
;

for example, p = 0 does not satisfy 1 ≤ p.

119

Example 24. Consider again the PTA A in Fig. 7.4a, this time assuming that
A.K0 = (p = 1 ∧ 1 ≤ p′ ∧ p′ ≤ p′′). This PTA is a CUB-PTA. (The largest
constraint K0 making this PTA a CUB will be computed in Example 26.)

Example 25. The four examples of Fig. 7.2 introduce all possible cases encoun-
tered in Algorithm 18. Fig. 7.2a features a self-loop on the initial location l0.
The CUB-PTA conditions enforce a constraint p1 ≤ p2. Therefore, the model is
CUB-PTA for all valuations of p1 and p2 such that p1 ≤ p2.

Contrarily, in Fig. 7.2d, the edge from the initial location l0 to location l1 (or
location l2) induces a constraint ∞ ≤ p2 (respectively ∞ < p1, which is always
false. Therefore, the model is not a CUB-PTA, whatever the valuation.

Finally, the example of Fig. 7.2b is CUB-PTA for all valuations of p.

Lemma 7.3.1. Let A be a CUB-PTA. Let v |= A.K0 be a parameter
valuation. Then A[v] is a CUB-TA.

Proof. Let v |= A.K0. Let e = (l, g, a,R, l′) be an edge. Given a clock x ∈ X,
from Definition 7.3.2, we have that v |=

(
pub(I(l), x) ≤ pub(g, x)

)
, and therefore

pub(I(l), x)[v] ≤ pub(g, x)[v]. This matches the first case of Definition 7.3.1. The
second case (x /∈ R) is similar.

7.3.4 CUB PTA detection
Given an arbitrary PTA, our approach works as follows. Firstly, we check
whether it is a CUB-PTA for some valuations. If it is, we proceed to the
synthesis problem, using the cycle detection synthesis algorithm (Section 7.4);
however, the result may be partial, as it will only be valid for the valuations for
which the PTA is CUB. This incompleteness may come at the benefit of a more
efficient synthesis. If it is CUB for no valuation, it has to be transformed into
an equivalent CUB-PTA (which will be considered in Section 7.3.5).

Algorithm 18: CUBdetect(A)
Input: PTA A = (Σ, L, l0, F,X, P,K0, I, E)
Output: A constraint K ensuring the PTA is a CUB-PTA

1 K ← K0
2 foreach edge (l, g, a,R, l′) do
3 foreach clock x ∈ X do
4 K ← K ∧

(
pub(I(l), x) ≤ pub(g, x)

)
5 if x /∈ R then K ← K ∧

(
pub(I(l), x) ≤ pub(I(l′), x)

)
6 return K

120

l1

x ≤ p1

x ≤ p2

(a) Example 1

l0

x ≤ p

x ≤ p
x := 0

(b) Example 2

l1

x ≤ p1

l2

x ≤ p3

x ≤ p2 x := 0

(c) Example 3

l1

l2 l3

x ≤ p1

x ≤ p2
x := 0 x ≤ p1

p1 ≤ x ≤ p2 p1 > x > p2

(d) Example 4

l0

l21

x ≤ p1

l11

x ≤ p1

l21
′

x ≤ p1
∧ x ≤ p2

x ≤ p2 x ≤ p2

p1 ≤ p2

p1 > p2

p1 > p2

x ≤ p2

(e) Transformed version of Fig. 7.2a

l0

l21
x ≤ p1

l23

x ≤ p1

l11
x ≤ p2

l12l12
′

x ≤ p2

p1 > p2p1 ≤ p2

x ≥ p1
∧ x ≤ p2

x ≥ p1
∧ x ≤ p2

x ≤ p2
∧ x := 0x ≤ p2

∧ x := 0

p1 > x > p2

x ≤ p1

(f) Transformed version of Fig. 7.2d

Figure 7.2 – Examples: detection of and transformation into CUB-PTAs

121

l0

l11 x ≤ p1

l12

x ≤ p3

l31 x ≤ p1

l3
′

1

x ≤ p1 ∧ x ≤ p3

l3”
1

x ≤ p1 ∧ x ≤ p2

∧x ≤ p3

l32

x ≤ p1

Have no loop

l21

x ≤ p1

l2
′

1

x ≤ p1 ∧ x ≤ p2

l....

....

p1 ≤ p2 ∧ p1 ≤ p3

p1 ≤ p2 ∧ p1 > p3

p1 > p2

x ≤ p2

x := 0

x ≤ p2

x ≤ p2 x ≤ p2

x ≤ p2

x ≤ p2 x ≤ p2

x ≤ p2

x ≤ p2
x ≤ p2

Figure 7.3 – Transformed version of Fig. 7.2c

122

l0

x ≤ 1 ∧ y ≤ 1

l1

x ≤ p′ ∧ y ≤ p

l2

x ≤ p ∧ y ≤ 2
y := 0

x ≤ p′′
∧ y ≤ p

(a) CUB for some valuations

l0

x ≤ p

l1

x < p

x ≤ 1

(b) CUB for no valuations

Figure 7.4 – Examples of PTAs to illustrate the CUB concept

Our procedure to detect whether a PTA is CUB for some valuations is given
in Algorithm 18. For each edge in the PTA, we enforce the CUB condition
on each clock by constraining the upper bound in the invariant of the source
location to be smaller than or equal to the upper bound of the edge guard
(line 4). Additionally, if the clock is not reset along this edge, then the upper
bound of the source location invariant should be smaller than or equal to that of
the target location (line 5). If the resulting set of constraints accepts parameter
valuations (i. e. is not empty), then the PTA is a CUB-PTA for these valuations.

Example 26. Consider again the PTA A in Fig. 7.4a, assuming that A.K0 = >.
This PTA is CUB for 1 ≤ p ∧ 1 ≤ p′ ∧ p′ ≤ p′′.

Example 27. Consider the PTAA in Fig. 7.4b, withA.K0 = >. When handling
location l0 and clock x, line 4 yields A.K = > ∧ [(p,≤) ≤ (1,≤)] = p ≤ 1 and
then, from line 5, A.K = p ≤ 1 ∧ [(p,≤) ≤ (p,<)] = p ≤ 1 ∧ p < p = ⊥. Hence,
there is no valuation for which this PTA is CUB.

Proposition 7.3.2. Let A be a PTA. Let K = CUBdetect(A). Then A(K)
is a CUB-PTA.

Proof. From the fact that Algorithm 18 gathers constraints to match Defini-
tion 7.3.2.

7.3.5 Transforming a PTA into a disjunctive CUB-PTA
In this section, we show that an arbitrary PTA can be transformed into an
extension of CUB-PTAs (namely disjunctive CUB-PTA), while preserving the
symbolic runs.

For non-parametric TAs, it is shown in [WSW+15] that any TA can be
transformed into an equivalent CUB-TA. This does not lift to CUB-PTAs.

Example 28. No equivalent CUB-PTA exists for the PTA in Fig. 7.2d where
K0 = >. Indeed, the edge from l1 to l2 (resp. l3) requires p1 ≤ p2 (resp. p1 > p2).
It is impossible to transform this PTA into a PTA where K0 (which is >) is
included in both p1 ≤ p2 and p1 > p2.

Therefore, in order to overcome this limitation, we propose an alternative
definition of disjunctive CUB-PTAs. They can be seen as a union (as defined in
the timed automata patterns of, e. g. [DHQ+08]) of CUB-PTAs.

123

Definition 7.3.3. A disjunctive CUB-PTA is a list of CUB-PTAs. Given a
disjunctive CUB-PTA A1, . . . ,An, with Ai = (Σi, Li, li0, FiXi, Pi,K

i
0, Ii, Ei),

the PTA associated with this disjunctive PTA is
A = (

⋃
i Σi,

⋃
i Li ∪ {l0}, l0,

⋃
i Fi,

⋃
iXi,

⋃
i Pi,

⋃
iK

i
0,
⋃
i Ii, E), where E =⋃

iEi ∪ E′ with E′ =
⋃
i(l0,Ki

0, ε,X, l
i
0).

Basically, the PTA associated with a disjunctive CUB-PTA is just an addi-
tional initial location that connects to each of the CUB-PTAs initial locations,
with its initial constraint on the guard.2

Example 29. In Fig. 7.2e (without the dotted, blue elements), two CUB-PTAs
are depicted, one (say A1) on the left with locations superscripted by 1, and
one (say A2) on the right superscripted with 2. Assume A1.K0 is p1 ≤ p2 and
A2.K0 is p1 > p2. Then the full Fig. 7.2e (including dotted elements) is the PTA
associated with the disjunctive CUB-PTA made of A1 and A2.

Technically, the key idea behind the transformation from a TA into a CUB-TA
in [WSW+15] is as follows: whenever a location l is followed by an edge e and a
location l′ for which ub(g, x) < ub(l, x) or ub(l′, x) < ub(l, x) for some x if x /∈ R,
otherwise ub(g, x) < ub(l, x), location l is split into two locations: one (say l1)
with a “decreased upper bound”, i. e. xC ub(l′, x), that is then connected to l′;
and one (say l2) with the same invariant as in l, and with no transition to l′.
Therefore, the original behavior is maintained. Note that, this transformation
induces some non-determinism (one must non-deterministically choose whether
one enters l1 or l2, which will impact the future ability to enter l′) but this has
no impact on the existence of a non-Zeno cycle.

Here, we extend this principle to CUB-PTAs. A major difference is that, in the
parametric setting, comparing two clock upper bounds does not give a Boolean
answer but a parametric answer. For example, in a TA, (2,≤) ≤ (3, <) holds
(this is true), whereas in a PTA (p1,≤) ≤ (p2, <) denotes the constraint p1 < p2.
Therefore, the principle of our transformation is that, whenever we have to
compare two parametric clock upper bounds, we consider both cases: here either
p1 < p2 (in which case the first location does not need to be split) or p1 ≥ p2 (in
which case the first location shall be split). This yields a finite list of CUB-PTAs:
each of these CUB-PTAs consists in one particular ordering of all parametric
linear terms used as upper bounds in guards and invariants. (In practice, in
order to reduce the complexity, we only define an order on the parametric linear
terms the comparison of which is needed during the transformation process.)

Example 30. Let us transform the PTA in Fig. 7.2a: if p1 ≤ p2 then the PTA
is already CUB, and l1 does not need to be split. This yields a first CUB-PTA,
depicted on the left-hand side of Fig. 7.2e. However, if p1 > p2, then l1 needs to
be split into l21

′ (where time cannot go beyond p2) and into l21 (where time can
go beyond p2, until p1), but the self-loop cannot be taken anymore (otherwise

2A purely parametric constraint (e. g. p1 > p2 ∧ p3 = 3) is generally not allowed by the
PTA syntax, but can be simulated using appropriate clocks (e. g. p1 > x > p2 ∧ p3 = x′ = 3).
Such parametric constraints are allowed in the input syntax of IMITATOR.

124

the associated guard makes the PTA not CUB). This yields a second CUB-PTA,
depicted on the right-hand side of Fig. 7.2e. Both make a disjunctive CUB-PTA
equivalent to Fig. 7.2a.

Similarly, we give the transformation of Fig. 7.2d in Fig. 7.2f, and Fig. 7.2c
in Fig. 7.3.

Let us now show that any PTA can be transformed into a disjunctive CUB-
PTA. A PTA is not a CUB-PTA if there exists an edge entailing a decreasing
upper bound for some clock: this is a “problematic” edge. A problematic edge
e = (l, g, a,R, l′) is detected by comparing the upper bounds of location l, guard
g and location l′. Unfortunately, when these upper bounds contain parameters,
their comparison might be impossible, so all cases have to be considered. Since
all problematic edges can be detected, any PTA can easily be transformed into
a disjunctive CUB-PTA by splitting locations and enforcing their invariants to
cater for all possible cases. A new initial location is created, that is connected
to these copies. Thus, all problematic edges are removed, and the transformed
model is a disjunctive CUB-PTA.

Algorithm 19 presents the transformation of a PTA into a disjunctive CUB-
PTA. It comprises five parts preceded by an initialization phase. Note that, in
order to reduce the state space explosion and to improve efficiency, the algorithm
generates only the necessary parameter relations and operates on-the-fly:

0. Initially, the automaton considered is the input one, and an empty set of
constraints is associated with each location, that will be modified by the
algorithm. The pair composed of automaton and constraints is added to a
queue of elements to be handled until all of them have been considered;

1. The first part (lines 4–33) splits the different constraints cases for the
problematic edges. For each of these, K (resp. θ) gathers the parametric
(resp. timed) constraint w.r.t. the edge.

2. In lines 35–38, a location is created for each constraint in constraintsq(l).
Its associated invariant is a conjunction of K and I(l) in L′ and cub ls(l).

3. Then, new edges are created to connect these new locations (lines 39–42) ;

4. Finally, in lines 43–47, all problematic edges are deleted.

5. At the end of the loop (line 48), Aq is a CUB-PTA that is added to the
disjunctive CUB-PTA D. When exiting the loop, the initial state l0 is
linked to all initial states of CUB-PTAs before D is returned.

7.4 Zeno-free cycle synthesis in CUB-PTAs
Taking a disjunctive CUB-PTA as input, we show in this section that synthesizing
the parameter valuations for which there exists at least one non-Zeno cycle
(and therefore an infinite non-Zeno run) reduces to a SCC (strongly connected
component) synthesis problem.

125

Algorithm 19: CUBtrans(A): Transformation into a CUB-PTA
Input: PTA A = (Σ, L, l0, X, P,K0, I, E)
Output: PTA D associated with a disjunctive CUB-PTA

1 A0 ← A; ∀l ∈ L, constraints0(l)← ∅;
2 queue Q ← 〈A0, constraints0〉;
3 while Q 6= ∅ do
4 〈Aq(Σ,L′, l′0 ,X,P,K

′
0 , I ,E

′), constraintsq〉 ← dequeue(Q);
5 Kadding ← >;
6 while Kadding = > do
7 Kadding ← ⊥;
8 foreach edge (l, g, a, R, l′) ∈ E′ do
9 K ←

∧
x∈X

[
pub(I(l), x) ≤ pub(g, x) ∧

10 if x /∈ R then pub(I(l), x) ≤ pub(I(l′), x) else >
]
;

11 θ ←
∧

x∈X

[
(I(l), x) ∧ (g, x) ∧ if x /∈ R then (I(l′), x) else >

]
;

12 if θ /∈ constraintsq(l) then
13 if K is ⊥ then
14 constraintsq(l)← constraintsq(l) ∪ {θ};
15 if K is a parameter constraint and K ∧K′0 6= ∅ then
16 if (¬ K ∧K′0) 6= ∅ then
17 A′ ← (Σ,L′, l′0 ,X,P, (¬ K ∧K ′0), I ,E′);
18 Q ← 〈A′, constraintsq(l) ∪ {θ}〉;
19 K ′0 ← K ′0 ∧K ;

20 foreach constraint K in constraintsq(l) do
21 K ′ ←

∧
x∈X

[
pubI(l), x) ≤ pub(g, x) ∧

22 if x /∈ R then pub(I(l), x) ≤ pub(k, x) else >
]
;

23 θ′ ←
∧

x∈X

[
(I(l), x) ∧ (g, x) ∧ if x /∈ R then (K, x) else >

]
;

24 if θ′ /∈ constraintsq(l) then
25 if K′ is ⊥ then
26 constraintsq(l)← constraintsq(l) ∪ {θ′};
27 if K′ is a parameter constraint and K′ ∧K′0 6= ∅ then
28 if (¬ K′ ∧K′0) 6= ∅ then
29 A′ ← (Σ,L′, l′0 ,X,P, (¬ K ′ ∧K ′0), I ,E′);
30 Q ← 〈A′, constraintsq(l) ∪ {θ′}〉;
31 K ′0 ← K ′0 ∧K ′;

32 if constraintsq(l) is increased then
33 Kadding ← >;

34 cub ls← ∅;
35 foreach constraint K in constraintsq(l) do
36 create a new location cub l;
37 I(cub l)← K ∧ I(l); L′ ← L′ ∪ {cub l};
38 cub ls← cub ls ∪ {cub l};
39 foreach location cub l in cub ls do
40 foreach edge (l′, g, a, R, l) or (l, g, a, R, l′) respectively with l′ ∈ L′ do
41 E′ ← (l′, g, a, R, cub l) or (cub l, g, a, R, l′);
42 E′ ← (cub l′, g, a, R, cub l) or (cub l, g, a, R, cub l′) with cub l′ ∈ cub ls;

43 foreach edge e(l, g, a, R, l′) ∈ E′ do
44 K ←

∧
x∈X

[
pub(I(l), x) ≤ pub(g, x) ∧

45 if x /∈ R then pub(I(l), x) ≤ pub(I(l′), x) else >
]
;

46 if K = ⊥ or (K is a parameter constraint and K ∧K′0 = ∅) then
47 E′ ← E′ \ {e}

48 D ∪Aq ;
49 foreach Aq(Σ, L′, l′0, X, P,K

′
0, I, E

′) ∈ D do
50 add edge from l0 of D to set of cub ls ∈ l′0 ∪ l

′
0 with K′0 as guard;

51 return D;

126

First, we define a light extension of the parametric zone graph as follows.
The extended parametric zone graph of a PTA A is identical to its parametric
zone graph, except that any transition (s, e, s′) is replaced with (s, (e, b), s′),
where b is a Boolean flag which is true if time can potentially elapse between s
and s′. In practice, b can be computed as follows, given s = (l, C) and edge e:

1. add a fresh extra clock x0 to the constraint C, i. e. compute C ∧ x0 = 0

2. compute the successor s′ = (l′, C ′) of (l, C ∧ x0 = 0) via edge e

3. check whether C ′ ⇒ x0 = 0: if so, then b = false; otherwise b = true.

Introducing such a clock is cheap: the check is not expensive, and the extra clock
does not impact the size of the parametric zone graph:

As mentioned in [WSW+15], introducing the clock x0 here is different from
the approach of introducing an extra clock for non-Zenoness detection [Tri99]
as x0 is 0 in all nodes of the zone graph and can be eliminated from the memory,
therefore not requiring more space nor extra states.

In contrast to non-parametric TAs, the flag b does not necessarily mean that
time can necessarily elapse for all parameter valuations. Consider the example
in Fig. 7.2b. After taking one loop, we have that x0 ≤ p: therefore, x0 is not
necessarily 0, and b is true. But consider v such that v(p) = 0: then in l1 time
can never elapse.

However, we show in the following lemma that the flag b does denote time
elapsing for strictly positive parameters. But let us first recall a lemma used in
it, relating concrete and symbolic runs.

Lemma 7.4.1. Let A be a PTA, and let r be a symbolic run of A reaching
(l, C). Let v |= A.K0 be a parameter valuation. There exists an equivalent
concrete run in A[v] iff v |= C↓P .

‘

Proof. From [HRSV02, Propositions 3.17 and 3.18].

Given a symbolic run r reaching (l, C), we call the concrete runs associated
with r the concrete runs equivalent to r in A[v], for all v |= C↓P .

Lemma 7.4.2. Let (l, C) e,b⇒ (l′, C ′) be a transition of the extended para-
metric zone graph of a PTA A. Then, for any strictly positive parameter
valuation in C ′↓P , there exists an equivalent transition in A[v] in which time
can elapse.

Proof. First note that, for any v |= C ′↓P , an equivalent concrete transition exists
in A[v], from Lemma 7.4.1. Now, since b is true, the extra clock x0 in the state of
the extended parametric zone graph corresponding to (l, C ′) is either unbounded,
or bounded by some parametric linear term plt. If it is unbounded, then time
can elapse for any valuation, and the lemma holds trivially. Assume x0 ≤ plt for
some plt. As our parameters are strictly positive, then for any valuation v, plt[v]

127

evaluates to a strictly positive rational, and therefore time can elapse along this
transition in A[v].

Definition 7.4.1. An infinite symbolic run r is non-Zeno if all its associated
concrete runs are non-Zeno.

In the remainder of this section, given an edge e = (l, g, a,R, l′), e.R denotes
that the clocks in R reset along e.

The following theorem states that an infinite symbolic run is non-Zeno iff the
time can (potentially) elapse along infinitely many edges and, whenever a clock
is bounded from above, then eventually either this clock is reset or it becomes
unbounded.

Theorem 7.4.3. Let r = s0
(e0,b0)⇒ s1

(e1,b1)⇒ · · · be an infinite symbolic run
of the extended parametric zone graph of a CUB-PTA A. r is non-Zeno if
and only if

∗ there exist infinitely many k such that bk = true; and

? for all x ∈ X, for all i ≥ 0, given si = (li, Ci), if pub(li, x) 6=∞, there
exists j such that j ≥ i and x ∈ ej .R or pub(lj , x) =∞.

Proof. ⇒ If r is non-Zeno, ∗ is trivially true. Consider the case when a clock x
is bounded from above (i. e. with a parametric upper bound other than∞):
for any parameter valuation, x is bounded from above (even for arbitrarily
large valuations). Therefore the clock x must be reset later, or the upper
bound becomes infinity since by definition its value goes unbounded along
the run; otherwise, we have an empty symbolic state and thus an infeasible
run. Hence, ? holds.

⇐ In the following, we show that if ∗ and ? are true, then r is non-Zeno. Let
the following be a segment of r according to ∗ and ?:

(li, Ci)
(ei,bi)⇒ (li+1, Ci+1) (ei+1,bi+1)⇒ · · · (lj , Cj)

(ej ,bj)⇒ · · · (lk, Ck) (ek,bk)⇒ · · ·

where i ≤ j ≤ k and bj = true. Furthermore, for all x ∈ X, if pub(lj , x) 6=
∞, there exists m,n such that i − 1 ≤ m < j ≤ n ≤ k − 1 such that
x ∈ em.R (or m = −1, i. e. x is “reset” before the initial state as all
clocks are initially 0) and, x ∈ en.R or pub(ln, x) =∞ (from condition ?).
That is, the segment contains a transition which can be delayed locally.
Furthermore, the segment covers the “life-span” (between two resets) of
all clocks in lj which have an upper bound other than ∞.
The infinite symbolic run r is progressive if and only if it takes an unbounded
amount of time for any parameter valuation. Since there are infinitely
many segments as above in r, if any such segment can take a positive
amount of time for all its valuations, then the run r is progressive and thus
non-Zeno, and then non-Zeno for any valuation (from Definition 7.4.1).
Next, we show that the segment can take a positive amount of time.

128

Note that, because bj is true, then from Lemma 7.4.2, for any strictly
positive valuation in Cn↓P , the time than can elapse from lj to lj+1 is
strictly positive. Furthermore, since A is a CUB-PTA, therefore for any
strictly positive valuation v |= Cn↓P , from Lemma 7.3.1 A[v] is a CUB-TA.
From the syntax of CUB-TAs, a run cannot be blocked in the future
due to a too small clock upper bound, as clock upper bounds are always
non-decreasing. Therefore, for any strictly positive valuation in Cn↓P ,
the parametric time than can elapse from lm to ln is strictly positive.
Therefore, for any strictly positive valuation v |= Cn↓P , there exists an
equivalent concrete run in A[v] that is progressive. Hence r is progressive.
With the arguments above, we conclude that the theorem holds.

We now show in the following that synthesizing parameter valuations for
which there exists a non-Zeno infinite run reduces to a SCC search problem.

First, given a SCC scc, we denote by scc.K the parameter constraint associ-
ated with scc, i. e. C↓P , where (l, C) is any state of the SCC.3

Theorem 7.4.4. Let A be a CUB-PTA of finite extended parametric zone
graph G. Let v be a strictly positive parameter valuation. A[v] contains a
non-Zeno infinite run if and only if G contains a reachable SCC scc such
that v |= scc.K and

† scc contains a transition s (e,b)⇒ s′ such that b = true; and

‡ for every clock x in X, given s = (l, C), if pub(l, x) 6= ∞ for some
state s in scc, there exists a transition in scc with label (e, b) such that
x ∈ e.R.

Proof. ⇒ Assume A[v] contains a non-Zeno infinite run. From Lemma 7.4.1,
there exists an equivalent symbolic run r in G. Since G is finite-state, r
must visit a set of states and transitions, denoted as Inf , infinitely often.
There must be a SCC, say scc, which contains Inf . Inf must contain a
transition with a label b being true (by contradiction) and therefore † is
trivially true.
Next, we prove ‡ by contradiction. Assume there is a state s in scc where
a clock x has an upper bound plt which is not ∞ and there is no transition
in scc which resets x. Because the upper bound of x never decreases (by
definition of CUB-PTAs), the upper bound of x at every state in scc must
be equal to plt. Since scc contains Inf , this implies that r is Zeno as
x is always bounded from above and never reset, which contradicts our
assumption that r is non-Zeno. Thus, scc must satisfy ‡.

⇐ Assume there is a SCC in G satisfying † and ‡. Let r be a symbolic run
which visits every state/transition in the SCC infinitely often. It is easy to

3Following a well-known result for PTAs, all symbolic states belonging to a same cycle in a
parametric zone graph have the same parameter constraint.

129

see that r satisfies ∗ of Theorem 7.4.3 because of †. By ‡, we conclude that
every clock which has an upper bound other than ∞ at a state is reset
later. Therefore, r is non-Zeno by Theorem 7.4.3. From Definition 7.4.1,
any concrete run associated with r is non-Zeno; from Lemma 7.4.1, the
parameter valuations having such an equivalent run are exactly scc.K.
Therefore, we conclude that the theorem holds.

Therefore, from Theorem 7.4.4, synthesizing valuations yielding an infinite
symbolic run reduces to a SCC search problem in the extended parametric zone
graph. Then, we need to test each SCC against two conditions: whether it
contains a transition which can be locally delayed (i. e. whether it contains a
transition where b = true); and whether every clock having an upper bound
other than ∞ at some state is reset along some transition in the SCC. Then,
for all SCCs matching these two conditions, we return the associated parameter
constraint.

Algorithm 20, synthNZ, solves the non-Zeno synthesis problem for CUB-PTAs.
synthNZ simply iterates on the SCCs, and gathers their associated parameter
constraints whenever they satisfy the conditions in Theorem 7.4.4.

Algorithm 20: CUB-PTA non-Zeno synthesis algorithm synthNZ(A)
Input: CUB-PTA A and its extended parametric zone graph G
Output: constraint KNZ gathering valuations for which there is a

non-Zeno infinite run
1 KNZ ← ⊥ while there are unvisited states in G do
2 find a new SCC scc
3 mark all states in scc as visited
4 if scc satisfies † and ‡ then
5 KNZ ← KNZ ∨ scc.K

6 return KNZ

If the extended parametric zone graph G is finite, then the correctness and
completeness of synthNZ immediately follow from Theorem 7.4.4. If only an
incomplete part of G is computed (e. g. by bounding the exploration depth, or
the number of explored states, or the execution time) then only the ⇐ direction
of Theorem 7.4.4 holds: in that case, the result of synthNZ is correct but non-
complete, i. e. it is a valid under-approximation. In the context of parametric
model checking, knowing which parameter valuations violate the property is
already very helpful to the designer, as it helps to discard unsafe valuations, and
to refine the model.

Example 31. The parametric zone graph example in Figure 7.6a is generated
after detecting Figure 7.2a as a partial CUB-PTA, which is CUB-PTA for only
parameter valuations such that p1 ≤ p2 (missing parameter valuations p1 > p2
will be checked with the disjunctive CUB-PTA). After taking one loop, we have

130

x ≤ p1: therefore, x is bounded and b is false. Consequently, the result returned
is false which means that this loop contains a Zeno run for all valuations such
that p1 ≤ p2. Otherwise, in Figure 7.2b (already CUB-PTA for all parameter
valuations), x is reset on the loop and then b is true. Note that x is not
necessarily 0 but consider v such that v(p) = 0: then in l1 time can never elapse.

Similarly, we give the parametric zone graph of disjunctive CUB-PTA of
Fig. 7.3 in Fig. 7.6b, where non-Zeno runs locate in constraints p1 ≤ p2 ∧ p1 ≤ p3
and p1 ≤ p2 ∧ p1 > p3 (or p1 ≤ p2).

Finally, the flowchart in Fig. 7.5 gives an overview how the non-Zeno synthesis
process works.

Figure 7.5 – Non-Zeno synthesis process flowchart

131

s0 :
l1
x ≤ p1 ∧ p2 ≥ p1
∧p1 ≥ 0

K0 = p1 ≤ p2

b = False

Emptiness non-Zeno check: False
(a) Parametric zone graph of the partial CUB-PTA of Figure 7.2a

s0 l0

s1
l1
x ≤ p1 ∧ p1 ≤ p2
∧p1 ≤ p3 ∧ p1 ≥ 0

s2
l2
x ≤ p1 ∧ p1 ≤ p2
∧p1 ≤ p3 ∧ p1 ≥ 0

Contains non-Zeno runs

Contains non-Zeno runs Does not contain non-Zeno runs

(Boolean value b: check whether time can elapse in SCC)

K0 = p1 ≤ p2 ∧ p1 ≤ p3

K0 = p1 ≤ p2 ∧ p1 > p3

K0 = p1 > p2

b = False

b = True

Emptiness non-Zeno check: True for p1 ≤ p2

(b) Parametric zone graph of the disjunctive CUB-PTA of Figure 7.3

Figure 7.6 – Parametric zone graph examples of the disjunctive CUB-PTAs

132

7.5 Distributing non-Zeno parametric model
checking

A problem of the CUB-PTA approach is the number of CUB-PTAs in a disjunctive
CUB-PTA might increase when the number of constants and parameters of
PTA increases. Although the transforming of disjunctive CUB-PTA is quite
fast with such PTAs, the size of the transformed disjunctive CUB-PTA can
be costly for our non-Zeno parameter synthesis algorithm. In order to verify
more complex and larger case studies, especially for PTAs containing many
constants and parameters, we will therefore distribute our non-Zeno parameter
synthesis algorithm on clusters. By splitting a disjunctive CUB-PTA into a set
of CUB-PTAs, each node can call the non-Zeno parameter synthesis algorithm
in Algorithm 20 on each CUB-PTA independently, thanks to the splittable
structure of disjunctive CUB-PTA. After calling the algorithm, the node will
return a constraint as a result. In the end, to have a final resulting constraint, a
node will have the responsibility to gather and conjoin all constraints received
from all nodes to where the CUB-PTAs are distributed.

In this work, we reuse the master-worker scheme from Section 3.3: the
workers ask the master for CUB-PTAs on which they call non-Zeno parameter
synthesis algorithm in Algorithm 20. Finally, the workers send the corresponding
result parameter constraints back to the master. Moreover, the master does not
synthesize by itself, but only distributes the work.

In the following sections, we formalize the abstract algorithms for the master
and workers. The experimental validation for this distributed algorithm will be
reported later in Section 7.6.2.

7.5.1 Master algorithms
The master algorithm is given in Algorithm 21. Three variables are maintained
throughout the master’s algorithm: the set L of CUB-PTAs at line 1, the final
constraint K containing non-Zeno runs at line 5 and the counter variable at
line 6 used for terminating the master node.

At line 1, the input disjunctive CUB-PTA A is split into a set of CUB-PTAs
As, which are stored in set L. Depending on the number of CUB-PTAs (NPTA)
in L, the master can determine maximum required nodes Nproc at line 3, which
is equal to NPTA + 1 (the number of workers plus the master node). After that,
at line 4, the master sends to each worker n a CUB-PTA in L, thanks to the
sub-function sendPTA(n) from line 16. In the sub-function, the master simply
picks a CUB-PTA from the set L, and then sends it to worker n using the tagged
message PTA(a) with a is a CUB-PTA in L. Note that, the number of nodes
Nproc can be smaller than the number of PTAs NPTA so that the master cannot
send all PTAs in L to all workers at once. Therefore, the master will wait for
some workers finishing synthesizing on their CUB-PTAs, in order to continue
sending the remaining CUB-PTAs in L. At lines 5 and 6, the final constraint K
is initialized to false constraint denoted ⊥, and the variable counter is initialized

133

to the number of workers which equals Nproc − 1. After sending a CUB-PTA to
workers at line 16, in the while loop at line 7, the blocking function receive() is
used to receive back a constraint KNZ from the worker n. The constraint KNZ
received by the master, will then be conjoined with the current constraint K to
have the new final constraint. At line 10, in case there still remains CUB-PTAs
in L, the master again sends a remaining CUB-PTA to the worker n until L
becomes empty, thanks to the while loop at line 7. Otherwise from line 12, when
L is empty, the master sends a STOP() tagged message to terminate the worker
n along with counting down the counter variable by one unit. When the counter
variable counts to zero which means all workers are terminated, the master will
exit the loop at line 7, and the final constraint K containing non-Zeno runs will
be returned.

For simplicity purposes, the set L is described as a set of CUB-PTAs and
sendPTA(n) function allows sending a CUB-PTA. In our implementation, sending
a whole CUB-PTA is costly. Thus L stores only hash keys of CUB-PTAs and
sendPTA(n) function only sends an integer value.

7.5.2 Worker algorithm
The main responsibility of the workers is to call the non-Zeno synthesis algorithm
in Algorithm 20. As a consequence, the worker cannot guarantee its termination
due to the proof in Section 7.2. If one of the workers cannot terminate, it makes
the master cannot terminate as well. This problem will be discussed later in this
section but first, let us assume that all workers will terminate eventually.

The worker algorithm is given in Algorithm 22 which is made of a simple
loop within the blocking function receive() inside, which is a conditional switch
statement to determine what to do with each specific tagged message from the
master. In the switch statement, there are two cases for two specific tagged
messages. The first tag at line 3 asks the worker to terminate immediately. The
second one at line 4, indicates the worker receives a tagged message PTA(a)
containing a CUB-PTA a. After that, the worker will call Algorithm 20 on the
CUB-PTA a, and then send back a parametric constraint KNZ to the master m
by using the RESULT(KNZ) tagged message at line 6.

In case one of worker does not terminate, at line 5, the worker will be stuck
in calling Algorithm 20 and then cannot terminate. To solve this problem, a
depth limit of state exploration is set to guarantee the termination of the worker
at a predefined depth. Note that, if the depth limit is reached, the return result
of the worker will be an under-approximation. This interception technique will
not be mentioned in our algorithms to avoid unnecessary complications.

Example 32. Consider again the disjunctive CUB-PTA example in Fig. 7.2e.
Assume this example is distributed on 4 processes (nodes). In the beginning,
the master splits the disjunctive CUB-PTA into 3 CUB-PTAs corresponding to
3 orange rectangles as depicted on the figure. The number of required processes
for this example is 4 (one for master, and three others for workers to work
on these CUB-PTAs). After that, the master sends these CUB-PTAs which

134

Algorithm 21: distSynthNZ(A): Master
Input: Disjunctive CUB-PTA A, a number of available processes N
Output: constraint K gathering valuations for which there is a

non-Zeno infinite run
// Initialization phase

1 L ← split disjunctive CUB-PTA A into a set of CUB-PTA As
2 NPTA ← |L|

// Master index is 1
3 Nproc ← if N > NPTA then NPTA + 1 else N
4 foreach process n ∈ {2, . . . , Nproc} do sendPTA(n)
5 K ← ⊥

// counter is equal to the number of workers
6 counter ← Nproc − 1

// Main phase
7 while counter > 0 do
8 n,RESULT(KNZ)← receive
9 K ← K ∪ {KNZ}

10 if L 6= ∅ then
11 sendPTA(n)
12 else
13 counter ← counter − 1
14 send(n,STOP())

// Finalization phase
15 return K

16 function sendPTA(n) begin
17 pick a ∈ L
18 L ← L \ {a}
19 send(n,PTA(a))

have initial constraints K0 = p1 ≤ p2 ∧ p1 ≤ p3, K0 = p1 ≤ p2 ∧ p1 ≥ p3 and
K0 = p1 ≥ p2 to worker 1, worker 2 and worker 3 respectively. In the CUB-PTA
having the constraint K0 = p1 ≥ p2, which has not any infinite run. Then
the worker 3 sends back a false constraint to the master. Otherwise, non-Zeno
runs are detected in the other CUB-PTAs and the worker 1 and worker 2 send
back their constraints p1 ≤ p2 ∧ p1 ≤ p3 and p1 ≤ p2 ∧ p1 ≥ p3 to the master
respectively. At the master side, all constraints of workers are gathered and
conjoined. After that, the master checks for a remaining CUB-PTA to send to
the worker, but in this case, there is no remaining CUB-PTA left. Thus, the
master sends stop tagged message to terminate each worker. Finally, the master
returns the final constraint p1 ≤ p2.

135

Algorithm 22: distSynthNZ(A): worker n
Input: Disjunctive CUB-PTA A, a number of available processes N
Output: constraint KNZ gathering valuations for which there is a

non-Zeno infinite run
1 while true do
2 switch receive do
3 case m, STOP: do return false
4 case m,PTA(a): do
5 KNZ ← synthNZ(a) (Algorithm 20)
6 send(m,RESULT(KNZ))

7.5.3 Handling the case of a network of PTAs
We briefly discuss in the following how we handle synchronization of PTAs in
our distributed algorithms. Given a network of PTAs,

1. Each PTA will first be transformed into a disjunctive CUB-PTA. Then a
network of PTAs becomes a network of disjunctive CUB-PTAs.

2. Normally, to synthesize parameter valuations on a network of several
disjunctive CUB-PTAs with a single process, all disjunctive CUB-PTAs in
the network must be synchronized (on-the-fly) to be a large single PTA.
Unfortunately, this large PTA might cause some problems such as high
memory consumption, time consuming etc.
In our distribution scheme, to able distribute and avoid synthesizing on
the large synchronized PTA, all disjunctive CUB-PTAs should not be
synchronized at the same time, but some of them. In fact, each different
split CUB-PTA in each disjunctive CUB-PTAs can be synchronized to
have several partial synchronized PTAs.
More precisely, assume each disjunctive CUB-PTA is a set of split CUB-
PTAs. Then the number of partial synchronized PTAs is equal to the
number of elements of the Cartesian product of all split CUB-PTA sets.

3. Since, a large synchronized PTA can be split into several partial synchro-
nized PTAs. Then many processes can work on these partial synchronized
PTAs.

Note that, the partial synchronized PTA will be called setup in Section 7.6.

Example 33. Suppose a network consists of 2 disjunctive CUB-PTAs in Fig. 7.2f
and Fig. 7.3. The disjunctive CUB-PTA in Fig. 7.2f contains a set of 2 CUB-
PTAs having initial constraints p1 ≤ p2 and p1 > p2 called CUB-PTA1 and
CUB-PTA2 respectively. The disjunctive CUB-PTA in Fig. 7.3 contains a set of
3 CUB-PTAs having initial constraints p1 ≤ p2 ∧ p1 ≤ p3, p1 ≤ p2 ∧ p1 ≥ p3 and

136

p1 ≥ p2 called CUB-PTA1’, CUB-PTA2’ and CUB-PTA3’ respectively. Then
the Cartesian product of these two sets is a set including: (CUB-PTA1; CUB-
PTA1’),..., (CUB-PTA2; CUB-PTA1’),..., (CUB-PTA2; CUB-PTA3’). Each
element has 2 CUB-PTAs, which are synchronized to be a partial synchronized
PTA. In the end, the master can distribute 6 partial synchronized PTAs to the
workers.

7.6 Experiments
We implemented our algorithms in IMITATOR [AFKS12]4 with OCaml 4.02.3.
The Parma Polyhedra Library (PPL v1.2) [BHZ08] is integrated inside the core
of IMITATOR in order to solve mainly linear inequalities systems problems.

We consider various benchmarks to compare our techniques: protocols (CS-
MA/CD, Fischer [AHV93], RCP, WFAS), hardware circuits (And-Or, flip-flop),
scheduling problems (Sched5), a networked automation system (simop) and
various academic benchmarks.

7.6.1 Evaluation of the non-distributed version
Experiments were run on an Intel Core 2 Duo P8600 at 2.4 GHz with 4 GiB of
memory, running Ubuntu 16.04 LTS 64-bit.

We compare three approaches: 1) A cycle detection synthesis without the
non-Zenoness assumption (called synthCycle). The result may be an over-approxi-
mation of the actual result, as some of the parameters synthesized may yield only
Zeno cycles. If synthCycle does not terminate, its result is an under-approximation
of an over-approximation, therefore considered as potentially invalid; that is,
there is no guarantee of correctness for the synthesized constraint.

2) Our CUB-detection (Algorithm 18) followed by synthesis (Algorithm 20):
the result may be under-approximated, as only the valuations for which the PTA
is CUB are considered. 3) Our CUB-transformation (CUBtrans in Algorithm 19)
followed by synthesis (Algorithm 20) on the resulting disjunctive CUB-PTA. If
the algorithm terminates, then the result is exact, otherwise it may be under-
approximated. We use a modified version of the Tarjan algorithm for detecting
SCCs.

We give from left to right in Table 7.1 the case study name and its number
of clocks, parameters and locations. For synthCycle, we give the computation
time (TO denotes a time-out at 3600 s), the constraint type (⊥, > or another
constraint) and the validity of the result: if synthCycle terminates, the result is
an over-approximation, otherwise it is potentially invalid. For CUBdetect (resp.
CUBtrans) we give the detection (resp. transformation) time, the total time
(including synthNZ), the result, and whether it is an under-approximation or
an exact result. We also mention whether CUBdetect outputs that all, none or
some valuations make the PTA CUB; and we give the number of locations in the

4Working version 2.9.2 (Build 2402 – distNZ/966d584). For experimental data including
source and binary, see imitator.fr/static/NFM17

137

imitator.fr/static/NFM17

transformed disjunctive CUB-PTA output by CUBtrans. The percentage is used
to compare the number of valuations (comparison obtained by discretization)
output by the three algorithms, with CUBtrans as the basis (as the result is
exact).

The toy benchmark CUBPTA1 is a good illustration: CUBtrans terminates
after 0.073 s (and therefore its result is exact) with some constraint. CUBdetect
is faster (0.015 s) but infers that only some valuations are CUB and analyzes
only these valuations; the synthesized result is only 69 % of the expected result.
In contrast, synthCycle is much faster (0.006 s) but obtains too many valuations
(208 % of the expected result) as it infers many Zeno valuations.

Interpretation of the experiments Let us discuss the results in Table 7.1.
First, synthCycle almost always outputs a possibly invalid result (neither an under-
nor an over-approximation), which justifies the need for techniques handling
non-Zeno assumptions. In only one case (CUBPTA1), it outputs a non-trivial
over-approximation. In two cases, it happens to give an exact answer, as the
over-approximation of ⊥ necessarily means that ⊥ is the exact result. In contrast,
CUBtrans gives an exact result in five cases, a non-trivial under-approximation
in two cases; the five remaining cases are a disappointing result in which ⊥ is
output as an under-approximation. By studying the model manually, we realized
that some non-Zeno cycles actually exist for some valuations, but our synthesis
algorithm was not able to derive them. Only in one of these cases (Sched5),
synthCycle outputs a more interesting result than CUBtrans.

The transformation is relatively reasonable both in terms of added locations
(in the worst case, there are 40 instead of 10 locations, hence four times more, for
WFAS) and in terms of transformation time (the worst case is 1.2 s for Sched5).
Our experiments do not allow us to fairly compare the time of synthCycle (without
non-Zenoness) and synthNZ (with non-Zenoness assumption) as, without surprise
due to the undecidability of synthesis, most analyses do not terminate. Only
two benchmarks terminate for both algorithms, but are not significant (< 1 s).

Note that, flip-flop is a hardware circuit modeled using a bi-bounded inertial
delay, and is therefore CUB for all valuations.

An interesting benchmark is WFAS, for which our transformation procedure
terminates whereas synthCycle does not. Therefore, we get an exact result while
the traditional procedure cannot produce any valuable output.

Conclusion As a conclusion, CUBdetect seems to be faster but less complete
than CUBtrans. As for CUBtrans, its result is almost always more valuable than
synthCycle, and therefore is the most interesting algorithm.

138

Model synthCycle CUBdetect CUBtrans

Name #
X

#
P

#
L

time (s) Result Appr. Detec
time (s)

Total
time (s)

CUB
for Result Appr. Trans

time (s)
Total

time (s)
#L

CUB Result Appr.

CSMA/CD 3 3 28 TO > invalid? 0.013 0.013 ⊥ - - 0.300 TO 74 > exact
Fischer 2 4 13 TO > invalid? 0.003 0.003 ⊥ - - 0.012 TO 20 > exact
RCP 6 5 48 TO Some invalid? 0.013 0.013 ⊥ - - 0.348 TO 71 ⊥ under

WFAS 4 2 10 TO Some
102% invalid? 0.009 0.009 ⊥ - - 0.246 1848 40 Some

100% exact

AndOr 4 4 27 TO Some
166% invalid? 0.012 0.012 ⊥ - - 0.059 TO 34 Some

100% under

Flip-flop 5 2 52 0.058 ⊥ exact 0.002 0.086 > ⊥ exact 0.010 0.972 58 ⊥ exact
Sched5 21 2 153 190 ⊥ exact 0.051 0.051 ⊥ - - 1.180 TO 180 ⊥ under
simop 8 2 46 TO ⊥ invalid? 0.012 0.012 ⊥ - - 0.219 TO 81 ⊥ under

train-gate 5 9 11 TO ⊥ invalid? 0.000 TO Some ⊥ under 0.059 TO 23 ⊥ under

coffee 2 3 4 TO Some
100% invalid? 0.000 TO Some Some

100% under 0.012 TO 10 Some
100% under

CUBPTA1 1 3 2 0.006 >
208% over 0.000 0.015 Some Some

69% under 0.006 0.073 6 Some
100% exact

JLR13 2 2 2 TO ⊥ invalid? 0.000 TO > ⊥ under 0.000 TO 3 ⊥ under

Table 7.1 – Experimental comparison of the three algorithms

139

7.6.2 Evaluation of the distributed version
Experiments were conducted on two Intel Xeon Silver 4114 at 2.2 GHz, and
96 GiB of memory, running under Ubuntu 16.04 LTS 64-bit.

In this section, we compare the performance of two algorithms, the CUB-
transformation CUBtrans given in Algorithm 20, is re-named to synthNZ and
its distributed version called distSynthNZ executed by the master node given in
Algorithm 21.

The previous benchmarks from Table 7.1 are reused in this Table 7.2. Note
that, due to the undecidability of non-Zeno emptiness in Section 7.2, our algo-
rithms are not guaranteed to terminate.

From the left to right in Table 7.2, are the case study names, its number
of clocks, parameters and locations. Because the number of split PTAs in the
disjunctive CUB-PTA of original models is quite small for distSynthNZ, the
number of parameters is increased to increase the number of CUB-PTAs in each
disjunctive CUB-PTA. The next 2 columns indicate the number of disjunctive
CUB-PTAs and the total number of CUB-PTAs are split in the benchmark. To
compute a number of partial synchronized PTAs or setups in the next setup
column, the number of CUB-PTAs in each disjunctive CUB-PTA is given in the
parentheses (e. g. at CSMA/CD benchmark, the numbers in the parentheses (1-2-
2) shows that CSMA/CD benchmark is a network of 3 disjunctive CUB-PTAs (or
PTAs), the first one contains 1 CUB-PTA, the others contain 2 CUB-PTAs). For
synthNZ, we give only the computation time for a single node. For distSynthNZ,
we give the number of setups in the first column. Consider again the parentheses
in the previous column, assume each number in the parentheses indicates a
number of elements in a set. Then one can take the Cartesian product of
these sets in the parentheses to have the number of setups (e. g. at CSMA/CD
benchmark, the Cartesian product of the set (1-2-2) is 5). The next column
indicates the maximum number of nodes can be used for a benchmark, computed
by adding one to the number of setups (master and workers nodes). The last
three columns are the computation time of distSynthNZ for 4, 6 and 8 nodes. In
order to maximize the chances of our algorithm termination, a depth limit is
set for all benchmarks, the algorithm will stop exploring at the depth of 200
and then returns an under-approximation constraint. We denote the algorithm
reaches the depth limit of 200 by RD.

Interpretation of the experiments Let us discuss the result in Table 7.2.
In our cases studies, RCP, Flip-flop, and train-gate are three large interesting
cases since they are the only ones that our distributed algorithm can terminate
and return exact results. Therefore, these cases will give a precise evaluation of
the performance of distSynthNZ algorithm.

The table shows that distSynthNZ terminates 0.03, 1.47 and at least 11.45
times faster than synthNZ in RCP, Flip-flop and train-gate benchmark respec-
tively. However, the disjunctive CUB-PTAs in RCP does not have many split
CUB-PTAs, and requires only 2 setups or at most 3 nodes (2 for the workers
and 1 for the master). Therefore, it makes sense that distSynthNZ does not gain

140

much performance in such situation. In the Flip-flop, the number of setups
is increased to 24 and then the runtime of distSynthNZ is slightly improved
in this case. Furthermore, in the train-gate benchmark, the number of setups
is increased dramatically to 180. The state space explosion in this case is ex-
tremely huge and makes the synthNZ reaches time-out (3600s) while distSynthNZ
needs 314s to terminate and return exact result. The 2 benchmarks at the
bottom of the table can all terminate but they are quite small, and thus are
not efficient with distSynthNZ. For the benchmarks reaching depth limit such
as CSMA/CD, WFAS, coffee, their results are not so interesting since at the
same depth, synthNZ and distSynthNZ give different numbers of explored states.
Indeed, it is not entirely fair to compare the two algorithms with different state
spaces. Finally, the remaining benchmarks suffer from the undecidable problem
then cannot terminate.

Conclusion To summarize, our distributed algorithm distSynthNZ is useful
for synthesizing non-Zeno runs on a large network of PTAs containing many
constants and parameters. The experiment went as we expected, distSynthNZ
dominates synthNZ in large benchmarks.

7.7 Conclusion
We proposed a technique to synthesize valuations for which there exists a
non-Zeno infinite run in a PTA. By adding accepting states, this allows for
parametric model checking with non-Zenoness assumption. Our techniques rely
on a transformation to a disjunctive CUB-PTA (or in some cases on a simple
detection of the valuation for which the PTA is already CUB), and then on
a dedicated cycle synthesis algorithm. To cope with the state space explosion
of large models, we proposed a distributed version of our synthesis algorithm
on clusters. We implemented our techniques and its distributed version in
IMITATOR and compared our algorithms on a set of benchmarks.

This is also the last contribution of the thesis, the next chapter will be
dedicated to our final conclusion and future works.

141

Model Single Node
synthNZ

Multi-Node
distSynthNZ

Name #
X

#
P

#
L

#
DCUB
-PTA

#
CUB-PTA

Total
t (s) Appr. #

Setup

#
Node
Limit

4 Nodes
Total
t (s)

6 Nodes
Total
t (s)

8 Nodes
Total
t (s)

Appr.

CSMA/CD 4 3 79 3 5
(1-2-2)

536.388
RD under 4 5 991.670

RD
990.064

RD - under

Fischer 3 9 127 3 7
(1-5-1) TO under 5 6 TO TO - under

RCP 7 7 89 5 6
(2-1-1-1-1) 948.819 exact 2 3 915.717 - - exact

WFAS 5 7 155 2 147
(7-7-3)

848.198
RD under 147 148 644.748

RD
643.903

RD
645.675

RD under

AndOr 4 14 71 4 4
(1-2-2-1) TO under 4 5 TO TO - under

Flip-flop 6 15 165 5 11
(4-2-1-1-3) 686.555 exact 24 25 552.303 473.669 465.785 exact

Sched5 21 16 328 12
20

(5-1-2-1-2-1-
2-1-2-1-1-1)

TO under 80 81 TO TO TO under

simop 9 7 254 5 48
(2-2-12-1-1) TO under 48 49 TO TO TO under

train-gate 4 12 207 3 29
(18-10-1) TO under 180 181 441.322 353.966 314.320 exact

coffee 3 7 36 1 5 346.305
RD under 5 6 473.347

RD
475.259

RD - under

CUBPTA1 3 9 101 1 80 0.983 exact 80 81 2.359 1.627 1.539 exact
JLR13 3 8 24 1 5 0.532 exact 5 6 1.106 1.123 - exact

Table 7.2 – Experimental comparison of the non-distributed and distributed algorithms

142

8
C

h
a

p
t

e
r

Conclusion and perspectives

8.1 Summary of the thesis
The first contribution is in Chapter 3, where we designed distributed parameter
synthesis algorithms to compute the cartography relying on the inverse method,
and one of them, called dynamic domain decomposition Subdomain+H, is proved
the most efficient for IM a parameter synthesis approach up-to-date.

Later on, in Chapter 4 we use a reachability preservation algorithm (PRP) in-
stead of IM so as to obtain not a behavioral cartography but a simple “good/bad”
partition with respect to a reachability property. We also bring the Subdomain+H
distributed scheme to the PRP approach and again the distributed PRPC out-
performs the monolithic bad-state reachability synthesis (e.g. [AHV93, JLR15]).
It therefore makes sense that our Subdomain+H is highly reusable for other
different purposes in the future than behavioral cartography BC based parameter
synthesis approaches.

Zone inclusion is the well-known approach for the TA in term of state space
reduction. It is also true with parametric zone inclusion for PTA, but in PTA
computing the zone with parameters is more complicated and time-consuming
than with TA. Furthermore, in Chapter 5 we showed that the parametric
zone inclusion is not optimal and could explore unnecessary states, we called
this problem the inefficient phenomenon. Thus, to alleviate the inefficient
phenomenon, we optimize the parametric zone inclusion algorithm by proposing
suitable exploration order strategies for it. We compared our new parametric
ranking strategy RS (which comes from the idea of ranking strategy in [HT15]),
and parametric priority strategy PRIOR with other traditional exploration orders
for two main parameter synthesis problems. The result showed that the PRIOR
strategy always gives better performance in most case studies. One weakness

143

of this algorithm is that it needs to store previously explored states to perform
zone inclusion. Hence, to achieve better performance, this algorithm will be
further changed to support parallel verification in a distributed setting with
shared memory.

In Chapter 6, we proposed a new nested depth-first search (NDFS) algorithm
and its variants for model-checking LTL properties of Parametric Timed Au-
tomata. This algorithm features several reduction mechanisms: subsumption,
as in [LOD+13], early pruning, and a layered approach. It addresses both the
problem of existence of an accepting cycle, and the synthesis of parameters that
allow for a such a cycle in a collecting version. Our approach has the advantage
of performing verification as early as possible, instead of fully exploring a branch
of the parametric zone graph, which may be infinite. Experimental results show
the efficiency of the layered approach. Subsumption and/or layering improves
the efficiency of the algorithm, and also the chance of termination. We noted
that the behaviour of subsumption with pure NDFS or with layered NDFS are
quite complementary. Moreover, we have shown that such an approach can be
used not only for Parametric Timed Automata but also for models featuring a
progress measure which can be used to determine layers. Another nice feature is
that the absence of cycles in the subsumed graph guarantees that no cycle exists
in the PZG either, thus providing a quick answer when the formula holds.

As a first attempt to detect non-Zeno accepting run in PTA, in Chapter 7, we
proposed an approach called CUB-PTA for non-Zeno parametric synthesis, which
is derived from a clock upper-bound approach [WSW+15] for TA. Then, we
proved that the problem of the valuations emptiness for which there exists at least
non-Zeno accepting run is undecidable, and thus proposed a semi-algorithm for
this CUB-PTA approach. Technically, we cannot synthesize valuations for which
there exists at least one non-Zeno accepting run on the parametric zone graph of
a PTA directly. To make it feasible, the key idea of this approach is to transform
an input PTA into a disjunctive CUB-PTA, for which we can synthesize non-Zeno
parameter valuations on its parametric zone graph. Additionally, to improve the
performance of our approach on a large scale PTA containing many parameters
and constants (resp. a network of PTAs), we distribute this semi-algorithm
on a cluster by splitting a disjunctive CUB-PTA into multiple CUB-PTAs as
in Section 7.5 (resp. a network of disjunctive CUB-PTAs into several partial
synthesized PTAs as in Section 7.5.3), then we can distribute them easily on
a cluster. Moreover, this is the first work of non-Zeno parameter synthesis for
PTA: this said, there are still other techniques for non-Zeno model checking TA.
They could be extended to PTAs, and could turn to be more efficient than our
technique, and should therefore be investigated.

Finally, in order to valuate all approaches in the thesis, I have implemented
most of the algorithms and distributed algorithms. The reader can find them
with the benchmarks that we used in the IMITATOR repository 1.

1 https://github.com/imitator-model-checker/imitator

144

https://github.com/imitator-model-checker/imitator

8.2 Perspectives
In this section, we discuss some on-going and future works for parametric timed
model checking and for the IMITATOR tool.

Distributed verification In addition to using powerful computing resources
as in Chapter 3, our further aim is to design multi-core algorithms for parameter
synthesis, in the line of [ELPvdP12, LOD+13] — then compare them and combine
both approaches. Besides, we plan to extend swarm verification procedures
proposed for Uppaal [ZNL16a, ZNL16b] and the novel parameter synthesis based
on distributed CTL model checking of [BBD+16] would be of interest.

Finally, we would like to formally verify the master-worker communication
scheme of Sections 3.3 and 3.4, so as to assure its reliability.

Parameter synthesis algorithms In the future, the work in Chapter 4
can be continued and improved by using the approach recently proposed to
synthesize parameters using IC3 for reachability properties [CGMT13] which
looks promising; it would be interesting to investigate a combination of that
work with a PRP-like procedure.

Symbolic verification By studying subsumption abstraction in symbolic
verification, we proposed some state exploration strategies in Chapter 5. There,
we only gave the run-time of our algorithms. Then we should evaluate precisely
the efficiency of our strategies by counting the number of inefficient phenomena
for each strategy. Then we can compare the number of inefficient phenomena
among strategies and this is very useful for strategy optimization purposes.

However, the idea of our algorithms come from the works in [HT15], in which
the authors proposed the waiting strategy that we have not extended to the
parametric case yet and it could serve as a basis for future parametric strategies.
In addition, mitigating the cost of merging states used in Chapter 5 for our
strategies other than LayerBFS is on our agenda, by selecting the right time to
perform this expensive test.

As we mentioned in Section 2.5.4, the extrapolation or normalization for
PTAs has not been studied yet. In order to deal with the termination of our
algorithms, these techniques should be investigated.

Non-Zeno verification Our technique in Chapter 7 relying on CUB-PTAs
extends the technique of CUB-TAs: this technique is shown in [WSW+15] to be
the most efficient for performing non-Zeno model checking for TAs. However,
for PTAs, other techniques (such as yet to be defined parametric extensions of
strongly non-Zeno TAs [TYB05] or guessing the zone graph [HSW12]) could turn
more efficient and should be investigated. Studying whether other techniques
can be proposed is therefore on our agenda.

In addition, parametric stateful timed CSP (PSTCSP) [ALSD14] is a for-
malism for which the CUB assumption seems to be natively verified. Therefore,

145

studying non-Zeno parametric model checking for PSTCSP, as well as transform-
ing PTAs into PSTCSP models, would be an interesting direction of research.

Finally, extending them to hybrid systems [SÁC+15] is also of high practical
interest.

Decidability of subclasses The termination of a synthesis algorithm depends
on its decidability problem. Although some techniques are proposed to increase
the chance of termination and return a complete result, our procedures might
not terminate. Therefore, studying the decidability of the underlying decision
problem should be done for well-known subclasses of PTAs constraining the use
of parameters (namely L/U-PTAs, L-PTAs and U-PTAs [HRSV02]) as well as
for new semantic subclasses recently proposed and that benefit from decidability
results (namely integer-point PTAs and reset-PTAs [ALR16a]).

Machine learning Machine learning, a prominent field related to artificial
intelligence will be our new direction to increase the efficiency of parameter
synthesis.

The very first work on machine learning for IMITATOR described in [LSGA17]
looks quite promising. In this work, the authors use supervised learning to learn
from non-parametric models for guessing a potential parameter constraint, which
is then verified by calling IMITATOR. The result of [LSGA17] shows that machine
learning is a promising direction for parameter synthesis.

In the future, it can be used to help us verifying large scale models and deal
with the termination of our synthesis algorithms.

146

Bibliography

[ABB+16] Lacramioara Astefanoaei, Saddek Bensalem, Marius Bozga, Chih-
Hong Cheng, and Harald Ruess. Compositional Parameter Synthe-
sis. In FM 2016: Formal Methods - 21st International Symposium,
Limassol, Cyprus, November 9-11, 2016, Proceedings, pages 60–68,
2016. 13

[Abd12] Parosh Aziz Abdulla. Regular Model Checking. STTT, 14(2):109–
118, 2012. 13

[ABS01] Aurore Annichini, Ahmed Bouajjani, and Mihaela Sighireanu.
TReX: A Tool for Reachability Analysis of Complex Systems. In
CAV, Lecture Notes in Computer Science, pages 368–372. Springer,
2001. 26, 63

[ACD90] Rajeev Alur, Costas Courcoubetis, and David L. Dill. Model-
Checking for Real-Time Systems. In Proceedings of the Fifth Annual
Symposium on Logic in Computer Science (LICS ’90), Philadel-
phia, Pennsylvania, USA, June 4-7, 1990, pages 414–425. IEEE
Computer Society, 1990. 36

[ACD+09] Étienne André, Thomas Chatain, Olivier De Smet, Laurent Fri-
bourg, and Silvain Ruel. Synthèse de Contraintes Temporisées pour
une Architecture d’Automatisation en Réseau. In Didier Lime and
Olivier H. Roux, editors, MSR, Journal Européen des Systèmes
Automatisés, pages 1049–1064. Hermès, November 2009. 63

[ACE14] Étienne André, Camille Coti, and Sami Evangelista. Distributed
Behavioral Cartography of Timed Automata. In Jack Dongarra,
Yutaka Ishikawa, and Hori Atsushi, editors, 21st European MPI
Users’ Group Meeting (EuroMPI/ASIA’14), pages 109–114. ACM,
September 2014. 51, 52, 55, 78

[ACEF09] Étienne André, Thomas Chatain, Emmanuelle Encrenaz, and Lau-
rent Fribourg. An Inverse Method for Parametric Timed Au-
tomata. International Journal of Foundations of Computer Science,
20(5):819–836, 2009. 13, 27, 30, 42, 46, 115, 166

147

[ACN15] Étienne André, Camille Coti, and Hoang Gia Nguyen. Enhanced
Distributed Behavioral Cartography of Parametric Timed Au-
tomata. In Michael J. Butler, Sylvain Conchon, and Fatiha Zäıdi,
editors, Formal Methods and Software Engineering - 17th Interna-
tional Conference on Formal Engineering Methods, ICFEM 2015,
Paris, France, November 3-5, 2015, Proceedings, volume 9407 of
Lecture Notes in Computer Science, pages 319–335. Springer, 2015.
14

[AD90] Rajeev Alur and David L. Dill. Automata for Modeling Real-Time
Systems. In Mike Paterson, editor, Automata, Languages and
Programming, 17th International Colloquium, ICALP90, Warwick
University, England, UK, July 16-20, 1990, Proceedings, volume
443 of Lecture Notes in Computer Science, pages 322–335. Springer,
1990. 12, 13, 21

[AD94] Rajeev Alur and David L. Dill. A Theory of Timed Automata.
Theoretical Computer Science, 126(2):183–235, 1994. 12, 13, 21, 71

[AD16] Parosh Aziz Abdulla and Giorgio Delzanno. Parameterized Verifi-
cation. STTT, 18(5):469–473, 2016. 13

[ADD+11] Rajeev Alur, Loris D’Antoni, Jyotirmoy V. Deshmukh, Mukund
Raghothaman, and Yifei Yuan. Regular Functions, Cost Reg-
ister Automata, and Generalized Min-Cost problems. CoRR,
abs/1111.0670, 2011. 13

[ADD+13] Rajeev Alur, Loris D’Antoni, Jyotirmoy V. Deshmukh, Mukund
Raghothaman, and Yifei Yuan. Regular Functions and Cost Regis-
ter Automata. In 28th Annual ACM/IEEE Symposium on Logic
in Computer Science, LICS 2013, New Orleans, LA, USA, June
25-28, 2013, pages 13–22. IEEE Computer Society, 2013. 13

[AF10] Étienne André and Laurent Fribourg. Behavioral Cartography
of Timed Automata. In Antońın Kučera and Igor Potapov, edi-
tors, Proceedings of the 4th Workshop on Reachability Problems in
Computational Models (RP’10), volume 6227 of Lecture Notes in
Computer Science, pages 76–90. Springer, Aug 2010. 42, 43, 46,
167

[AFKS12] Étienne André, Laurent Fribourg, Ulrich Kühne, and Romain
Soulat. IMITATOR 2.5: A Tool for Analyzing Robustness in
Scheduling Problems. In FM, volume 7436 of Lecture Notes in
Computer Science, pages 33–36, 2012. 15, 34, 46, 51, 63, 78, 83, 93,
110, 137

[AFM+02] Tobias Amnell, Elena Fersman, Leonid Mokrushin, Paul Pettersson,
and Wang Yi. TIMES - A Tool for Modelling and Implementation of
Embedded Systems. In Tools and Algorithms for the Construction

148

and Analysis of Systems, 8th International Conference, TACAS
2002, Held as Part of the Joint European Conference on Theory
and Practice of Software, ETAPS 2002, Grenoble, France, April
8-12, 2002, Proceedings, 2002. 26

[AFS13a] Étienne André, Laurent Fribourg, and Romain Soulat. Merge and
Conquer: State Merging in Parametric Timed Automata. In ATVA,
volume 8172 of Lecture Notes in Computer Science, pages 381–396.
Springer, 2013. 83, 94

[AFS13b] Étienne André, Laurent Fribourg, and Jeremy Sproston. An Ex-
tension of the Inverse Method to Probabilistic Timed Automata.
Formal Methods in System Design, 42(2):119–145, April 2013. 35

[AH89] Rajeev Alur and Thomas A. Henzinger. A Really Timed Automata.
In 30th Annual Symposium on Foundations of Computer Science,
Research Triangle Park, North Carolina, USA, 30 October - 1
November 1989, pages 164–169. IEEE Computer Society, 1989. 36

[AHV93] Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi. Paramet-
ric Real-Time Reasoning. In STOC, pages 592–601. ACM, 1993.
13, 26, 27, 34, 35, 39, 45, 70, 71, 72, 81, 83, 94, 110, 116, 137, 143

[AKPP16] Étienne André, Michal Knapik, Wojciech Penczek, and Laure
Petrucci. Controlling Actions and Time in Parametric Timed
Automata. In 16th International Conference on Application of
Concurrency to System Design, ACSD 2016, Torun, Poland, June
19-24, 2016, pages 45–54, 2016. 35

[AL17] Étienne André and Didier Lime. Liveness in L/U-Parametric
Timed Automata. In 17th International Conference on Application
of Concurrency to System Design, ACSD 2017, Zaragoza, Spain,
June 25-30, 2017, pages 9–18. IEEE Computer Society, 2017. 37,
39, 40

[ALNS15] Étienne André, Giuseppe Lipari, Hoang Gia Nguyen, and Youcheng
Sun. Reachability Preservation Based Parameter Synthesis for
Timed Automata. In NFM, volume 9058 of Lecture Notes in
Computer Science, pages 50–65. Springer, 2015. 15, 69

[ALR16a] Étienne André, Didier Lime, and Olivier H. Roux. Decision Prob-
lems for Parametric Timed Automata. In ICFEM, volume 10009 of
Lecture Notes in Computer Science, pages 400–416. Springer, 2016.
39, 40, 41, 146

[ALR16b] Étienne André, Didier Lime, and Olivier H. Roux. On the Expres-
siveness of Parametric Timed Automata. In Martin Fränzle and
Nicolas Markey, editors, Formal Modeling and Analysis of Timed
Systems - 14th International Conference, FORMATS 2016, Quebec,

149

QC, Canada, August 24-26, 2016, Proceedings, volume 9884 of
Lecture Notes in Computer Science, pages 19–34. Springer, 2016.
39, 40

[ALSD14] Étienne André, Yang Liu, Jun Sun, and Jin Song Dong. Parameter
Synthesis for Hierarchical Concurrent Real-Time Systems. Real-
Time Systems, 50(5-6):620–679, 2014. 13, 145

[AM15] Étienne André and Nicolas Markey. Language Preservation Prob-
lems in Parametric Timed Automata. In FORMATS, volume 9268
of Lecture Notes in Computer Science, pages 27–43. Springer, 2015.
38, 39, 40, 43, 116, 117

[And09] Étienne André. IMITATOR: A tool for synthesizing constraints on
timing bounds of Timed Automata. In Martin Leucker and Carroll
Morgan, editors, Proceedings of the 6th International Colloquium
on Theoretical Aspects of Computing (ICTAC’09), volume 5684 of
Lecture Notes in Computer Science, pages 336–342, Kuala Lumpur,
Malaysia, August 2009. Springer. 46

[And15] Étienne André. What’s Decidable About Parametric Timed Au-
tomata? In Formal Techniques for Safety-Critical Systems - Fourth
International Workshop, FTSCS 2015, Paris, France, November
6-7, 2015. Revised Selected Papers, pages 52–68, 2015. 13, 38, 39

[And16] Étienne André. Parametric Deadlock-Freeness Checking Timed
Automata. In ICTAC, volume 9965 of Lecture Notes in Computer
Science, pages 469–478. Springer, 2016. 94

[ANP17] Étienne André, Hoang Gia Nguyen, and Laure Petrucci. Efficient
Parameter Synthesis Using Optimized State Exploration Strate-
gies. In 22nd International Conference on Engineering of Complex
Computer Systems, ICECCS 2017, Fukuoka, Japan, November 5-8,
2017, pages 1–10. IEEE Computer Society, 2017. 15, 110

[ANPS17] Étienne André, Hoang Gia Nguyen, Laure Petrucci, and Jun Sun.
Parametric Model Checking Timed Automata Under Non-Zenoness
Assumption. In Clark Barrett, Misty Davies, and Temesghen Kah-
sai, editors, NASA Formal Methods - 9th International Symposium,
NFM 2017, Moffett Field, CA, USA, May 16-18, 2017, Proceedings,
volume 10227 of Lecture Notes in Computer Science, pages 35–51,
2017. 15

[AS11] Étienne André and Romain Soulat. Synthesis of Timing Parameters
Satisfying Safety Properties. In RP, volume 6945 of LNCS, pages
31–44. Springer, 2011. 73

[AS13] Étienne André and Romain Soulat. The Inverse Method. ISTE
Ltd and Wiley & Sons, 2013. 41, 42, 43, 83, 165, 166

150

[B+10] Blaise Barney et al. Introduction to Parallel Computing. Lawrence
Livermore National Laboratory, 6(13):10, 2010. 48

[Bar] Blaise Barney. Message Passing Interface (MPI). https://
computing.llnl.gov/tutorials/mpi/, Last accessed on 2018-07-
04. 49

[BBBC16] Peter Bezdek, Nikola Benes, Jiri Barnat, and Ivana Cerná. LTL
Parameter Synthesis of Parametric Timed Automata. In Rocco De
Nicola and eva Kühn, editors, Software Engineering and Formal
Methods - 14th International Conference, SEFM 2016, Held as
Part of STAF 2016, Vienna, Austria, July 4-8, 2016, Proceedings,
volume 9763 of Lecture Notes in Computer Science, pages 172–187.
Springer, 2016. 84, 101

[BBD+16] Nikola Benes, Lubos Brim, Martin Demko, Samuel Pastva, and
David Safránek. Parallel Smt-based Parameter Synthesis with
Application to Piecewise Multi-Affine Systems. In Cyrille Artho,
Axel Legay, and Doron Peled, editors, Automated Technology for
Verification and Analysis - 14th International Symposium, ATVA
2016, Chiba, Japan, October 17-20, 2016, Proceedings, volume 9938
of Lecture Notes in Computer Science, pages 192–208, 2016. 52,
145

[BBLS15] Nikola Beneš, Peter Bezděk, Kim G. Larsen, and Jǐŕı Srba. Lan-
guage Emptiness of Continuous-Time Parametric Timed Automata.
In ICALP, Part II, volume 9135 of Lecture Notes in Computer
Science, pages 69–81. Springer, 2015. 39

[BDM+98] M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and S. Yovine.
Kronos: A Model-Checking Tool for Real-Time Systems. In CAV,
volume 1427 of LNCS, pages 546–550. Springer, 1998. 26

[BDR03] Véronique Bruyère, Emmanuel Dall’Olio, and Jean-François Raskin.
Durations, Parametric Model-Checking in Timed Automata with
Presburger Arithmetic. In Helmut Alt and Michel Habib, editors,
STACS 2003, 20th Annual Symposium on Theoretical Aspects of
Computer Science, Berlin, Germany, February 27 - March 1, 2003,
Proceedings, volume 2607 of Lecture Notes in Computer Science,
pages 687–698. Springer, 2003. 14

[Bea03] Danièle Beauquier. On Probabilistic Timed Automata. Theor.
Comput. Sci., 292(1):65–84, 2003. 13

[Beh05] Gerd Behrmann. Distributed Reachability Analysis in Timed
Automata. STTT, 7(1):19–30, 2005. 83, 84

[BF01] Gerd Behrmann and Ansgar Fehnker. Efficient Guiding Towards
Cost-Optimality in UPPAAL. In TACAS, volume 2031 of Lecture
Notes in Computer Science, pages 174–188. Springer, 2001. 84

151

https://computing.llnl.gov/tutorials/mpi/
https://computing.llnl.gov/tutorials/mpi/

[BFSV04] Giacomo Bucci, Andrea Fedeli, Luigi Sassoli, and Enrico Vicario.
Timed State Space Analysis of Real-Time Preemptive Systems.
Transactions on Software Engineering, 30(2):97–111, 2004. 80

[BG06] H. Bowman and R. Gómez. How to Stop Time Stopping. Formal
Aspects of Computing, 18(4):459–493, 2006. 115, 117

[BHJL13] Béatrice Bérard, Serge Haddad, Aleksandra Jovanovic, and Didier
Lime. Parametric interrupt Timed Automata. In Reachability
Problems - 7th International Workshop, RP 2013, Uppsala, Sweden,
September 24-26, 2013 Proceedings, pages 59–69, 2013. 35

[BHV00] Gerd Behrmann, Thomas Hune, and Frits W. Vaandrager. Dis-
tributing Timed Model Checking – How the Search Order Matters.
In CAV, volume 1855 of Lecture Notes in Computer Science, pages
216–231. Springer, 2000. 83, 84

[BHZ08] Roberto Bagnara, Patricia M. Hill, and Enea Zaffanella. The
Parma Polyhedra Library: Toward a Complete Set of Numerical
Abstractions for the Analysis and Verification of Hardware and
Software Systems. Science of Computer Programming, 72(1–2):3–
21, 2008. 93, 110, 137

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of Model Check-
ing (Representation and Mind Series). The MIT Press, 2008. 11,
35

[BL09] Laura Bozzelli and Salvatore La Torre. Decision Problems for
Lower/Upper Bound Parametric Timed Automata. Formal Methods
in System Design, 35(2):121–151, 2009. 36, 39, 40, 166

[BLN03] D. Beyer, C. Lewerentz, and A. Noack. Rabbit: A Tool for BDD-
Based Verification of Real-Time Systems. In CAV, pages 122–125.
Springer, 2003. 26

[BLP03] Gerd Behrmann, Kim Guldstrand Larsen, and Radek Pelánek. To
Store or Not to Store. In CAV, volume 2725 of Lecture Notes in
Computer Science, pages 433–445. Springer, 2003. 84

[BO14] Daniel Bundala and Joël Ouaknine. Advances in Parametric Real-
Time Reasoning. In Erzsébet Csuhaj-Varjú, Martin Dietzfelbinger,
and Zoltán Ésik, editors, Mathematical Foundations of Computer
Science 2014 - 39th International Symposium, MFCS 2014, Bu-
dapest, Hungary, August 25-29, 2014. Proceedings, Part I, volume
8634 of Lecture Notes in Computer Science, pages 123–134. Springer,
2014. 39

[BOS02] V́ıctor A. Braberman, Alfredo Olivero, and Fernando Schapachnik.
ZEUS: A Distributed Timed Model-Checker Based on KRONOS.

152

Electronic Notes in Theoretical Computer Science, 68(4):503–522,
2002. 84

[BY03] Johan Bengtsson and Wang Yi. Timed Automata: Semantics,
Algorithms and Tools. In Lectures on Concurrency and Petri Nets,
Advances in Petri Nets, volume 3098 of Lecture Notes in Computer
Science, pages 87–124. Springer, 2003. 34, 41, 82, 84

[CC77] Patrick Cousot and Radhia Cousot. Abstract Interpretation: A Uni-
fied Lattice Model for Static Analysis of programs by construction
or approximation of fixpoints. In Robert M. Graham, Michael A.
Harrison, and Ravi Sethi, editors, Conference Record of the Fourth
ACM Symposium on Principles of Programming Languages, Los
Angeles, California, USA, January 1977, pages 238–252. ACM,
1977. 13

[CC04] Robert Clarisó and Jordi Cortadella. Verification of Timed Circuits
with Symbolic Delays. In Masaharu Imai, editor, ASP-DAC, pages
628–633, Piscataway, NJ, USA, 2004. IEEE Computer Society. 63

[CE81] Edmund M. Clarke and E. Allen Emerson. Design and Synthesis of
Synchronization Skeletons Using Branching-Time Temporal Logic.
In Logics of Programs, Workshop, Yorktown Heights, New York,
May 1981, 1981. 36

[CETFX09] Rémy Chevallier, Emmanuelle Encrenaz-Tiphene, Laurent Fribourg,
and Weiwen Xu. Timed Verification of the Generic Architecture
of a Memory Circuit Using Parametric Timed Automata. Form.
Methods Syst. Des., 34(1), February 2009. 34, 80

[CGMT13] Alessandro Cimatti, Alberto Griggio, Sergio Mover, and Stefano
Tonetta. Parameter Synthesis with IC3. In FMCAD, pages 165–168.
IEEE, 2013. 51, 145

[CPR08] Alessandro Cimatti, Luigi Palopoli, and Yusi Ramadian. Symbolic
Computation of Schedulability Regions Using Parametric Timed
Automata. In RTSS, pages 80–89. IEEE Computer Society, 2008.
34

[CVWY92] Costas Courcoubetis, Moshe Y. Vardi, Pierre Wolper, and Mihalis
Yannakakis. Memory-Efficient Algorithms for the Verification of
Temporal Properties. Formal Methods in System Design, 1(2/3):275–
288, 1992. 47

[Der00] John Derrick. Concurrent and Real-Time Systems: The CSP
Approach, Steve Schneider, Wiley, 2000 (Book Review). Softw.
Test., Verif. Reliab., 10(3):195, 2000. 12, 13

153

[DHQ+08] Jin Song Dong, Ping Hao, Shengchao Qin, Jun Sun, and Wang
Yi. Timed Automata Patterns. IEEE Transactions on Software
Engineering, 34(6):844–859, 2008. 123

[DLL+12] A.E. Dalsgaard, A.W. Laarman, K.G. Larsen, M.C. Olesen, and
J.C. van de Pol. Multi-Core Reachability for Timed Automata. In
FORMATS, LNCS 7595, 2012. 34

[Doy07] Laurent Doyen. Robust Parametric Reachability for Timed Au-
tomata. Inf. Process. Lett., 102(5):208–213, 2007. 39

[DSZ10] Giorgio Delzanno, Arnaud Sangnier, and Gianluigi Zavattaro. Pa-
rameterized Verification of Ad Hoc Networks. In Paul Gastin and
François Laroussinie, editors, CONCUR 2010 - Concurrency The-
ory, 21th International Conference, CONCUR 2010, Paris, France,
August 31-September 3, 2010. Proceedings, volume 6269 of Lecture
Notes in Computer Science, pages 313–327. Springer, 2010. 13

[DT98] Conrado Daws and Stavros Tripakis. Model Checking of Real-Time
Reachability Properties Using Abstractions. In TACAS, volume
1384 of Lecture Notes in Computer Science, pages 313–329. Springer,
1998. 32, 84

[DWDR05] Martin De Wulf, Laurent Doyen, and Jean-François Raskin. Almost
ASAP Semantics: From Timed Models to Timed Implementations.
Formal Aspects of Computing, 17(3):319–341, 2005. 51

[EH86] E. Allen Emerson and Joseph Y. Halpern. ”Sometimes” and ”Not
Never” Revisited: on Branching Versus Linear Time Temporal
Logic. J. ACM, 33(1):151–178, 1986. 36

[EK10] Sami Evangelista and Lars Michael Kristensen. Search-Order In-
dependent State Caching. Transactions on Petri Nets and Other
Models of Concurrency, 4:21–41, 2010. 84

[EK14] Sami Evangelista and Lars Michael Kristensen. A Sweep-Line
Method for Büchi Automata-based Model Checking. Fundam.
Inform., 131(1):27–53, 2014. 101, 108

[ELPvdP12] Sami Evangelista, Alfons Laarman, Laure Petrucci, and Jaco van de
Pol. Improved Multi-Core Nested Depth-First Search. In ATVA,
volume 7561 of Lecture Notes in Computer Science, pages 269–283.
Springer, 2012. 32, 51, 145

[FJ13] Léa Fanchon and Florent Jacquemard. Formal Timing Analysis
of Mixed Music Scores. In Proceedings of the 39th International
Computer Music Conference, ICMC 2013, Perth, Australia, August
12-16, 2013, 2013. 34

154

[FJJV96] Jean-Claude Fernandez, Claude Jard, Thierry Jéron, and César
Viho. Using On-the-Fly Verification Techniques for the Generation
of Test Suites. In Rajeev Alur and Thomas A. Henzinger, editors,
Computer Aided Verification, 8th International Conference, CAV
’96, New Brunswick, NJ, USA, July 31 - August 3, 1996, Proceed-
ings, volume 1102 of Lecture Notes in Computer Science, pages
348–359. Springer, 1996. 47

[FJK08] G. Frehse, S.K. Jha, and B.H. Krogh. A Counterexample-Guided
Approach to Parameter Synthesis for Linear Hybrid Automata. In
HSCC’08, volume 4981 of LNCS, pages 187–200. Springer, 2008.
41

[FSLM12] Laurent Fribourg, Romain Soulat, David Lesens, and Pierre Moro.
Robustness Analysis for Scheduling Problems Using the Inverse
Method. In 19th International Symposium on Temporal Repre-
sentation and Reasoning, TIME 2012, Leicester, United Kingdom,
September 12-14, 2012, pages 73–80, 2012. 34

[GB07] R. Gómez and H. Bowman. Efficient Detection of Zeno Runs in
Timed Automata. In FORMATS, volume 4763 of Lecture Notes in
Computer Science, pages 195–210. Springer, 2007. 115

[Geo14] Samuel R. J. George. Design, Formalization and Realization of
Harmonic Box Coordination Language : An Externally Timed
Specification Substrate for Arbitrarily Reliable Distributed Systems.
PhD thesis, University of Bristol, UK, 2014. 13

[GFB+04] Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun,
Jack J. Dongarra, Jeffrey M. Squyres, Vishal Sahay, Prabhanjan
Kambadur, Brian Barrett, Andrew Lumsdaine, Ralph H. Castain,
David J. Daniel, Richard L. Graham, and Timothy S. Woodall.
Open MPI: Goals, Concept, and Design of a Next Generation MPI
Implementation. In Proceedings, 11th European PVM/MPI Users’
Group Meeting, Budapest, Hungary, September 2004. 49

[GHP92] Patrice Godefroid, Gerard J. Holzmann, and Didier Pirottin. State-
Space Caching Revisited. In CAV, volume 663 of Lecture Notes in
Computer Science, pages 178–191. Springer, 1992. 84

[Har05] Jon D Harrop. OCaml for Scientists. Flying Frog Consultancy,
2005. 46

[HBE+10] Khaled Hamidouche, Alexandre Borghi, Pierre Esterie, Joel Falcou,
and Sylvain Peyronnet. Three High Performance Architectures in
the Parallel APMC Boat. In PMDC. IEEE, 2010. 51

[HBH+99] Anthony Hall, Jonathan P. Bowen, Michael G. Hinchey, Jean-
nette M. Wing, and C. A. R. Hoare. Formal Methods. In High-
Integrity System Specification and Design, Formal Approaches to

155

Computing and Information Technology (FACIT), pages 127–230.
Springer London, 1999. 10

[Hen96] Thomas A. Henzinger. The theory of hybrid automata. In Proceed-
ings, 11th Annual IEEE Symposium on Logic in Computer Science,
New Brunswick, New Jersey, USA, July 27-30, 1996, 1996. 21

[HH94] Thomas A. Henzinger and Pei-Hsin Ho. HYTECH: The Cornell
HYbrid TECHnology Tool. In Hybrid Systems II, pages 265–293,
1994. 35

[HHW97] Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi.
HYTECH: A Model Checker for Hybrid Systems. STTT, 1(1-
2):110–122, 1997. 35

[HMU03] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. In-
troduction to Automata Theory, Languages, and Computation -
International Edition (2. ed). Addison-Wesley, 2003. 161, 162, 163

[Hoa78] C. A. R. Hoare. Communicating Sequential Processes. Commun.
ACM, 21(8):666–677, 1978. 12

[HRSV02] Thomas Hune, Judi Romijn, Mariëlle Stoelinga, and Frits W. Vaan-
drager. Linear Parametric Model Checking of Timed Automata.
Journal of Logic and Algebraic Programming, 52-53:183–220, 2002.
27, 34, 39, 83, 84, 115, 127, 146, 170

[HS10] Frédéric Herbreteau and B. Srivathsan. Efficient On-the-Fly Empti-
ness Check for Timed Büchi Automata. In Ahmed Bouajjani and
Wei-Ngan Chin, editors, Automated Technology for Verification and
Analysis - 8th International Symposium, ATVA 2010, Singapore,
September 21-24, 2010. Proceedings, volume 6252 of Lecture Notes
in Computer Science, pages 218–232. Springer, 2010. 14

[HSTW16] Frédéric Herbreteau, B. Srivathsan, Thanh-Tung Tran, and Igor
Walukiewicz. Why Liveness for Timed Automata Is Hard, and
What We Can Do About It. In 36th IARCS Annual Conference
on Foundations of Software Technology and Theoretical Computer
Science, FSTTCS 2016, December 13-15, 2016, Chennai, India,
pages 48:1–48:14, 2016. 101

[HSW12] Frédéric Herbreteau, B. Srivathsan, and Igor Walukiewicz. Efficient
Emptiness Check for Timed Büchi Automata. Formal Methods in
System Design, 40(2):122–146, 2012. 115, 145

[HT15] Frédéric Herbreteau and Thanh-Tung Tran. Improving Search
Order for Reachability Testing in Timed Automata. In FORMATS,
volume 9268 of Lecture Notes in Computer Science, pages 124–139.
Springer, 2015. 83, 84, 86, 90, 143, 145

156

[JLR15] Aleksandra Jovanović, Didier Lime, and Olivier H. Roux. Integer
Parameter Synthesis for Timed Automata. TSE, 41(5):445–461,
2015. 5, 13, 29, 31, 34, 37, 39, 40, 44, 45, 46, 51, 70, 71, 72, 79, 80,
81, 83, 94, 115, 143, 169

[KMH01] Lina Khatib, Nicola Muscettola, and Klaus Havelund. Mapping
Temporal Planning Constraints into Timed Automata. In TIME,
pages 21–27. IEEE Computer Society, 2001. 26

[KMP15] Michal Knapik, Artur Meski, and Wojciech Penczek. Action Syn-
thesis for Branching Time Logic: Theory and Applications. ACM
Trans. Embedded Comput. Syst., 14(4):64:1–64:23, 2015. 13, 35

[KNSS99] Marta Z. Kwiatkowska, Gethin Norman, Roberto Segala, and
Jeremy Sproston. Automatic Verification of Real-Time Systems
with Discrete Probability Distributions. In Joost-Pieter Katoen, ed-
itor, Formal Methods for Real-Time and Probabilistic Systems, 5th
International AMAST Workshop, ARTS’99, Bamberg, Germany,
May 26-28, 1999. Proceedings, volume 1601 of Lecture Notes in
Computer Science, pages 75–95. Springer, 1999. 13

[Koy90] Ron Koymans. Specifying Real-Time Properties with Metric Timed
Automata. Real-Time Systems, 2(4):255–299, 1990. 36

[KP12] Michal Knapik and Wojciech Penczek. Bounded Model Checking
for Parametric Timed Automata. Trans. Petri Nets and Other
Models of Concurrency, 5:141–159, 2012. 13, 34, 93, 110

[KT11] Temesghen Kahsai and Cesare Tinelli. PKind: A Parallel k-
induction Based Model Checker. In PDMC, volume 72 of EPTCS,
pages 55–62, 2011. 51

[Lam94] Leslie Lamport. The Temporal Logic of Actions. ACM Trans.
Program. Lang. Syst., 16(3):872–923, 1994. 36

[LGS+95] Claire Loiseaux, Susanne Graf, Joseph Sifakis, Ahmed Bouajjani,
and Saddek Bensalem. Property Preserving Abstractions for the
Verification of Concurrent Systems. Formal Methods in System
Design, 6(1):11–44, 1995. 13

[LOD+13] Alfons Laarman, Mads Chr. Olesen, Andreas Engelbredt Dals-
gaard, Kim Guldstrand Larsen, and Jaco Van De Pol. Multi-Core
Emptiness Checking of Timed Büchi Automata using Inclusion
Abstraction. In CAV, volume 8044 of Lecture Notes in Computer
Science. Springer, 2013. 51, 84, 101, 102, 103, 104, 144, 145

[Lon93] David Esley Long. Model Checking, Abstraction, and Compositional
Verification. PhD thesis, Carnegie Mellon University, Pittsburgh,
PA, USA, 1993. UMI Order No. GAX94-02579. 47

157

[LPY97] Kim Guldstrand Larsen, Paul Pettersson, and Wang Yi. UPPAAL
in a Nutshell. STTT, 1(1-2):134–152, 1997. 26

[LRST09] Didier Lime, Olivier H. Roux, Charlotte Seidner, and Louis-Marie
Traonouez. Romeo: A Parametric Model-Checker for Petri Nets
with Stopwatches. In Tools and Algorithms for the Construction
and Analysis of Systems, 15th International Conference, TACAS
2009, Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2009, York, UK, March 22-29,
2009. Proceedings, pages 54–57, 2009. 26

[LSGA17] Jiaying Li, Jun Sun, Bo Gao, and Étienne André. Classification-
Based Parameter Synthesis for Parametric Timed Automata. In
Zhenhua Duan and Luke Ong, editors, Formal Methods and Soft-
ware Engineering - 19th International Conference on Formal En-
gineering Methods, ICFEM 2017, Xi’an, China, November 13-17,
2017, Proceedings, volume 10610 of Lecture Notes in Computer
Science, pages 243–261. Springer, 2017. 146

[Mar11] Nicolas Markey. Robustness in Real-Time Systems. In SIES, pages
28–34. IEEE Computer Society Press, 2011. 26, 42, 51

[Mer74] Philip Meir Merlin. A Study of the Recoverability of Comput-
ing Systems. PhD thesis, University of California, Irvine, 1974.
AAI7511026. 12, 13

[Mil00] Joseph S. Miller. Decidability and Complexity Results for Timed
Automata and Semi-Linear Hybrid Automata. In Nancy A. Lynch
and Bruce H. Krogh, editors, Hybrid Systems: Computation and
Control, Third International Workshop, HSCC 2000, Pittsburgh,
PA, USA, March 23-25, 2000, Proceedings, volume 1790 of Lecture
Notes in Computer Science, pages 296–309. Springer, 2000. 39

[Min67] Marvin L. Minsky. Computation: Finite and Infinite Machines.
Prentice-Hall, Inc., 1967. 38, 39, 116

[MMH13] Yaron Minsky, Anil Madhavapeddy, and Jason Hickey. Real World
OCaml: Functional Programming for the Masses. O’Reilly Media
Inc., 2013. 46

[NPvdP18] Hoang Gia Nguyen, Laure Petrucci, and Jaco van de Pol. Layered
and Collecting NDFS with Subsumption for Parametric Timed
Automata. In 23nd International Conference on Engineering of
Complex Computer Systems, ICECCS 2018, Melbourne, Australia,
December 12-14, 2018. IEEE Computer Society, 2018. 15

[OW02] Joël Ouaknine and James Worrell. Timed CSP = Closed Timed
Safety Automata. Electr. Notes Theor. Comput. Sci., 68(2):142–159,
2002. 12, 13

158

[Pet62] Carl Adam Petri. Kommunikation mit Automaten. PhD thesis,
Darmstadt University of Technology, Germany, 1962. 12

[Pnu77] Amir Pnueli. The Temporal Logic of Programs. In 18th An-
nual Symposium on Foundations of Computer Science, Providence,
Rhode Island, USA, 31 October - 1 November 1977, 1977. 35, 36

[SÁC+15] Stefan Schupp, Erika Ábrahám, Xin Chen, Ibtissem Ben Makhlouf,
Goran Frehse, Sriram Sankaranarayanan, and Stefan Kowalewski.
Current Challenges in the Verification of Hybrid Systems. In CyPhy,
volume 9361 of Lecture Notes in Computer Science, pages 8–24.
Springer, 2015. 146

[SE05] S. Schwoon and J. Esparza. A Note on On-the-Fly Verification
Algorithms. In TACAS, LNCS 3440, pages 174–190. Springer, 2005.
104

[SLDP09] Jun Sun, Yang Liu, Jin Song Dong, and Jun Pang. PAT: Towards
Flexible Verification under Fairness. In CAV, volume 5643 of
Lecture Notes in Computer Science, pages 709–714. Springer, 2009.
26

[TLR09] Louis-Marie Traonouez, Didier Lime, and Olivier H. Roux. Paramet-
ric Model-Checking of Stopwatch Petri Nets. J. UCS, 15(17):3273–
3304, 2009. 13, 35

[Tri99] Stavros Tripakis. Verifying Progress in Timed Systems. In AMAST,
pages 299–314, 1999. 14, 115, 117, 127

[TYB05] Stavros Tripakis, Sergio Yovine, and Ahmed Bouajjani. Checking
Timed Büchi Automata Emptiness Efficiently. Formal Methods in
System Design, 26(3):267–292, 2005. 14, 115, 145

[Wan02] F. Wang. Symbolic Verification of Complex Real-Time Systems
with Clock-Restriction Diagram. In Formal Techniques for Net-
worked and Distributed Systems, pages 235–250. Springer, 2002.
26

[WR88] W. M. Wonham and P. J. Ramadge. Modular Supervisory Control
of Discrete-Event Systems. MCSS, 1(1):13–30, 1988. 13

[WSW+15] Ting Wang, Jun Sun, Xinyu Wang, Yang Liu, Yuanjie Si, Jin Song
Dong, Xiaohu Yang, and Xiaohong Li. A Systematic Study on
Explicit-State Non-Zenoness Checking for Timed automata. IEEE
Transactions on Software Engineering, 41(1):3–18, 2015. 14, 115,
117, 118, 119, 123, 124, 127, 144, 145

[ZNL16a] Zhengkui Zhang, Brian Nielsen, and Kim G. Larsen. Distributed
Algorithms for Time Optimal Reachability Analysis. In Martin
Fränzle and Nicolas Markey, editors, Formal Modeling and Analysis

159

of Timed Systems - 14th International Conference, FORMATS
2016, Quebec, QC, Canada, August 24-26, 2016, Proceedings, vol-
ume 9884 of Lecture Notes in Computer Science, pages 157–173.
Springer, 2016. 52, 145

[ZNL16b] Zhengkui Zhang, Brian Nielsen, and Kim G. Larsen. Time Optimal
Reachability Analysis Using Swarm Verification. In Sascha Os-
sowski, editor, Proceedings of the 31st Annual ACM Symposium on
Applied Computing, Pisa, Italy, April 4-8, 2016, pages 1634–1640.
ACM, 2016. 52, 145

160

A
A

p
p

e
n

d
ix

Appendix

7

Contents
A.1 Decidability . 161

A.1.1 Turing machine . 161
A.1.2 Halting problem . 162
A.1.3 Decidable and undecidable problems 163
A.1.4 Reducibility . 163

A.2 Two-counter machine 164

A.1 Decidability
Decidability studies problems that computer has ability to solve. A certain
problem is said to be decidable if it can be solved by a computer.

A.1.1 Turing machine
Recall in the literature, e. g. [HMU03], the Turing machine is a simple computer-
like model or a finite automaton, has a single infinite tape on which it can read
and write data.

161

Definition A.1.1. A Turing machine (TM for short) is a tuple:
M = (Q,Σ ,Γ , δ, q0 ,B,F) where:

• Q: The finite set of states of the finite control.

• Σ: The finite set of input symbols.

• Γ: The complete set of tape symbols; Σ is always a subset of Γ.

• q0: The initial state and q0 ∈ Q.

• B: The blank symbol, B ∈ Γ but B /∈ Σ; it is not an input symbol.
The blank appears initially in all but the finite number of initial cells
that hold input symbols.

• F : The set of final states, F ∈ Q

• δ: The transition function. The arguments of δ(q,X) are a state q and
a tape symbol X. The value of δ(q,X) is a triple (p,Y ,D) where:

1. p: is the next state in Q.
2. Y : is the symbol in Γ, written in the cell being scanned, replacing

whatever symbol was there.
3. D: is a direction either L or R, standing for “left” or “right”,

respectively, and telling us the direction in which the head moves.

A.1.2 Halting problem
In computability theory, the halting problem is a decision problem. It asks
“given a computer program and an input, will the program terminate or will it
run forever?”. In general, a computer program with its input can be modeled by
a TM with an infinite tap. A TM halts if it enters a state q and then scanning a
tape symbol X, and there is no more transition δ(q,X) to move to other states.

Languages accepted by the Turing machine [HMU03]

Recursively enumerable language : A language is recursively enumerable
if some Turing machine accepts it. The Turing machine cannot be halt on
this language and loop forever. And there is an enumeration procedure for
it.

Recursive language : A language is recursive if some Turing machine accepts
it and halts on any input string. And iff there is an enumeration procedure
for it.

Non-Recursively enumerable language : A language is not accepted by
any Turning machine.

162

In other words, recursive language ⊂ recursively enumerable language ⊂
non-recursively enumerable language:

Non-Recursively enumerable language

Recursively enumerable language

Recursive language

A.1.3 Decidable and undecidable problems
Recall again in [HMU03], given a TM (algorithm), a language (problem) is called
decidable if it is a recursive language and it is called undecidable if it is not a
recursive language.

Decidable problems If there is an algorithm to solve a given problem exists,
that always finishes and produces an answer, then we say the problem is decidable.
In other words, there is a TM will halt on its input eventually (whether it accepts
or not). Hence, TMs that always halt are a good model of an algorithm.

Undecidable problems Otherwise, if there does not exist an algorithm to
solve a given problem, then we say the problem is undecidable. In other words,
there is no TM accepting its input or it will run forever and fails to halt on its
input.

A.1.4 Reducibility
Sometimes a certain problem cannot be solved directly, then a problem A will
be reduced to problem B, and if we can solve the problem B then we can solve
problem A.

It is the same with the decidable problem, problem A is reduced to problem
B. If B is decidable then A is decidable, on the contrary if A is undecidable
then B is undecidable.

163

A.2 Two-counter machine
Definition A.2.1. A two-counter machine M is a finite state machine with
two integer-valued counters c1, c2. Two different instructions (presented
for c1 and identical for c2) are considered: for c2 are similar) i) when in
state qi, increment c1 and go to qj ; ii) when in state qi, if c1 = 0 go to qk,
otherwise decrement c1 and go to qj .

We assume w.l.o.g. that the machine halts iff it reaches a special state qhalt.

164

B
A

p
p

e
n

d
ix

Distributed verification of
parametric real-time systems

Contents
B.1 Existing algorithms 165

B.1.1 The Inverse Method algorithm 165
B.1.2 The Behavioral Cartography algorithm 167

B.2 Master-worker point distribution algorithms 167
B.2.1 Sequential point distribution: initialization algorithm 167
B.2.2 Random point distribution: initialization algorithm . 167
B.2.3 Shuffle point distribution: algorithms 168

B.1 Existing algorithms
B.1.1 The Inverse Method algorithm
We recall here IM from [AS13].

Given a parameter valuation v, a state (l, C) is said to be v-compatible if
v |= C. We extend Succ to sets of states as follows: given a set S of states,
Succ(S) = {s′ | ∃s ∈ S s.t. s′ ∈ Succ(s)}. Given a set S of symbolic states, we
denote by Succj(S) the set of states reachable from S in exactly j steps, i. e. the
composition of j times Succ.

165

Here, we consider PTA extended with an initial parameter domain (as con-
sidered in, e. g. [AS13, ACEF09, BL09]). That is, these PTA have their possible
parameter valuations restricted to belong to the set defined by a parameter
constraint K. When clear from the context, given a PTA A and a constraint K,
we denote by A(K) the PTA initially constrained by A. (This can be simulated
using an initial gadget that will ensure this constraint over the parameters before
the actual initial location of the PTA.)

We use notation SuccA(K) to denote that the Succ operation is applied to
PTA A(K).

Algorithm 23: Inverse Method IM(A, v)
input : PTA A, parameter valuation v
output : Constraint K over the parameters

1 i← 0 ; Kc ← > ; Snew ← {s0} ; S ← {}
2 while true do
3 while there are v-incompatible states in Snew do
4 Select a v-incompatible state (l, C) of Snew
5 Select a v-incompatible J in C↓P
6 Kc ← Kc ∧ ¬J
7 S ←

⋃i−1
j=0 SuccjA(Kc)({s0})

8 Snew ← SuccA(Kc)(S)
9 if Snew ⊆ S then

10 return K ←
⋂

(l,C)∈S C↓P
11 i← i+ 1 ; S ← S ∪ Snew ; Snew ← SuccA(Kc)(S)

IM [AS13, ACEF09] is a breadth-first algorithm (given in Algorithm 23), that
maintains an integer i (which corresponds to the exploration depth), the current
constraint Kc (initially set to >, i. e. the parameter constraint corresponding to
all parameter valuations), the set Snew of states computed at the latest iteration,
and the set S of states computed at all previous iterations. IM iteratively explores
states and refines the constraint Kc: when a v-incompatible state (l, C) is met
(line 4), then a v-incompatible inequality is selected within C↓P (line 5), and
added to Kc (line 8). When a fixpoint is reached, i. e. when no more new state is
generated (line 9), then the intersection of the projection onto P of all reachable
states is returned (line 10).

The inverse method can be characterized as follows.
Theorem B.1.1 ([AS13]). Let A be a PTA and v be a parameter valuation.
Assume IM(A, v) terminates with result K. Then

1. v |= K, and

2. for all v′ |= K, the trace sets of A[v] and A[v′] are the same.

166

B.1.2 The Behavioral Cartography algorithm
We recall the original non-distributed behavioral cartography algorithm from [AF10]
in Algorithm 24. We extend the |= notation as follows: given a set T of tiles, we
write v |= T if there exists some K in T such that v |= K.

Algorithm 24: Behavioral Cartography BC(A, D)
input : PTA A, point v
output : Set of tiles T

1 T ← ∅
2 foreach integer point v ∈ D do
3 if v 6|= T then T ← T ∪ {IM(A, v)};
4 return T

B.2 Master-worker point distribution algorithms
B.2.1 Sequential point distribution: initialization algorithm
We give the Sequential.initialize() function in Algorithm 25.

Algorithm 25: Sequential.initialize()
variables : Point vprev

1 vprev ← ⊥

B.2.2 Random point distribution: initialization algorithm
We give the Random.initialize() function in Algorithm 26.

Algorithm 26: Random.initialize()
variables : Point vprev, flag seqPhase

1 seqPhase ← false
2 vprev ← ⊥

167

B.2.3 Shuffle point distribution: algorithms

Algorithm 27: Shuffle.initialize()
variables : List of points allPoints

1 allPoints ← shuffle(allIntegers(D))

Algorithm 28: Shuffle.choosePoint()
variables : List of points allPoints
output : Point v

1 v ← pop(allPoints)
2 while v is covered by a tile do
3 v ← pop(allPoints)
4 return v

168

C
A

p
p

e
n

d
ix

Reachability preservation
based parameter synthesis for

timed automata

Contents
C.1 Reachability synthesis algorithm 169
C.2 Proof of Proposition 4.2.3 170

C.1 Reachability synthesis algorithm
We first recall in Algorithm 29 the semi-algorithm EFsynth in [JLR15]. If
EFsynth terminates, it synthesizes all parameter valuations for which a set of
target location G is reachable, and it is also a correct solution to the EF-synthesis
problem (see the proof in [JLR15]).

Technically, the semi-algorithm EFsynth below is a recursive function which
explores all possible states on the symbolic reachability tree, and collects all
parametric constraints associated with the target locations G . The set S is
used to remember the visited states. The initial call to EFsynth is set with
EFsynth(A; s0;G; ∅). If the state is a target sate, the projection of its constraint
onto the parameters is returned (line 1). Otherwise, the algorithm returns the
union over all outgoing edges of the algorithm recursively applied to its successors

169

via these edges (line 6).

Algorithm 29: Reachability synthesis EFsynth(A, s,G, S)
input : A PTA A, a symbolic state s = (l, C), a set of target

locations G, a set S of passed states on the current path
output : Constraint K over the parameters

1 if l ∈ G then K ← C↓P ;
2 else
3 K ← ⊥;
4 if s 6∈ S then
5 for each outgoing edge e from l in A do
6 K ← K ∪EFsynth

(
A,Succ(s, e), G, S ∪ {s}

)
;

7 return K

C.2 Proof of Proposition 4.2.3
We first recall below two results from [HRSV02], that relate runs in TA and
PTA.

Proposition C.2.1 ([HRSV02, Proposition 3.17]). Let A be a PTA, and v
a parameter valuation. For any symbolic run of A reaching a state (l, C),
there exists an equivalent concrete run in A[v] reaching a state (l, w), with
<w|v> |= C.

Proposition C.2.2 ([HRSV02, Proposition 3.18]). Let A be a PTA, and v
a parameter valuation. For any concrete run of A[v] reaching a state (l, w),
there exists an equivalent symbolic run in A reaching a state (l, C) such that
<w|v> |= C.

We can now prove Proposition 4.2.3 below.
Proposition C.2.3. Let A be a PTA, and v a parameter valuation. Suppose
PRP(A, v) terminates with result K. Then, v |= K and, for all v′ |= K:

• if lbad is reachable in A[v], then lbad is reachable in A[v′];

• if lbad is unreachable in A[v], then every trace of A[v′] is a trace of
A[v].

Proof. Consider the value of Bad at the end of PRP.

• First, suppose Bad = true. From Algorithm 7, some bad states have
been met, and the output is Kbad. Let us first note that v |= Kbad: by
construction, Kbad is made of the disjunction of constraints associated with

170

states of Snew that are necessarily v-compatible – otherwise they would
have been discarded (lines 3–7).
Now, let v′ |= Kbad. Kbad is made of a disjunction of constraints of the
form Kbad = K1

bad ∨ · · · ∨Kn
bad for some n. Since v′ |= Kbad , there exists at

least one Kj
bad with 1 ≤ j ≤ n such that v′ |= Kj

bad . This constraint Kj
bad

has been added in Algorithm 7 when a run reaching some (lbad , C
j) has

been met (line 9), with Kj
bad = Cj↓P . Since v′ |= Kj

bad , then v′ |= Cj hence
there exists w′ such that <w′|v′> |= Cj . Hence, from Proposition C.2.1,
there exists an equivalent run in A[v′], and therefore lbad is reachable in
A[v′].
Using the same reasoning with v together with the fact that v |= Kbad
gives that lbad is also reachable in A[v].

• Conversely, suppose Bad = false. From Algorithm 7, no bad state has
been met, and the output is Kgood .
Let us first note that v |= Kgood : by construction of Kgood , Kgood is made
of the intersection of the negation of v-incompatible inequalities.
Let us now show that every trace of A[v′] is a trace of A[v]. Let v′ |= Kgood ,
and consider a run of A[v′] reaching (l, w′). From Proposition C.2.2, there
exists an equivalent run in A reaching a state (l, C) with <w′|v′> |= C.

1. First, assume v |= C↓P : by definition, there exists w such that
<w|v> |= C. Hence, from Proposition C.2.1, there exists an equivalent
run in A[v] reaching (l, w), which gives the result.

2. Conversely, assume v 6|= C↓P : this situation cannot happen due to
the removal of v-incompatible states in Algorithm 7.

Now, we shall show that lbad is unreachable in A[v]. Suppose lbad is
reachable in A[v], i. e., there exists a run of A[v] reaching (lbad , w), for
some w. From Proposition C.2.2, there exists an equivalent run in A
reaching a state (lbad , C) with <w|v> |= C. This cannot happen since C
is by definition v-compatible, and no bad state was met in Algorithm 7.

From the two items above, we have that lbad is reachable in A[v] iff Bad = true.
Hence, if lbad is reachable in A[v], then lbad is reachable in A[v′]; and conversely
if lbad is unreachable in A[v], then every trace of A[v′] is a trace of A[v].

171

	Introduction
	Context
	Formal methods
	Testing vs. formal verification
	Model checking and verification
	Real-time model checking
	Parametric model checking

	Objectives
	Contributions
	Organization of the document

	Preliminary definitions
	Introduction
	Labeled transition systems
	Clocks, parameters and constraints
	Clocks
	Parameters
	Constraints

	Timed Automata
	Introduction
	Syntax
	Concrete semantics
	Problems
	Tools and applications

	Parametric timed automata
	Introduction
	Syntax
	Concrete semantics
	Symbolic semantics
	Subsumption abstraction
	Problems
	Tools and applications
	Related formalisms

	System property specification
	Temporal logic
	State of the art
	Decision and computation problems
	Decidability of PTA

	Parameter synthesis
	The good parameters problem
	The Inverse problem
	The Inverse Method
	The Behavioral Cartography
	EF-problems

	IMITATOR
	Efficient verification
	On-the-fly verification
	Abstracted verification
	Compositional verification

	Parallel computing

	Distributed verification of parametric real-time systems
	Introduction
	Static domain decomposition
	Master-worker point distribution algorithms
	Principle: master-worker
	An abstract algorithm for the master
	Sequential point distribution
	Random + sequential point distribution
	Shuffle point distribution

	Dynamic domain decomposition
	Master algorithm
	Worker algorithm
	An additional heuristic

	Experiments
	Conclusion

	Reachability preservation based parameter synthesis
	Introduction
	Solving the EF-emptiness problem using reachability preservation
	Undecidability of the preservation of reachability
	Parameter synthesis preserving the reachability
	EF-synthesis using PRP

	Towards distributed parameter synthesis
	Experimental comparison
	Conclusion

	Efficient synthesis using optimized state exploration strategies
	Introduction
	Parametric zone inclusion algorithm
	Parametric ranking strategy
	Parametric priority strategy
	Experimental evaluation
	Symbolic state merging
	Comparison
	Final interpretation

	Conclusion

	Layered and Collecting NDFS with Subsumption for Parametric Timed Automata
	Introduction
	Preserving accepting runs with subsumption
	Parametric timed nested depth-first search with subsumption
	NDFS with subsumption for PTA
	Early pruning of the red search
	Starting the red search early: A layered NDFS

	Collecting NDFS for parameter synthesis
	Experiments
	Implementation
	Experimental results

	Conclusion

	Parametric model checking under non-Zenoness assumption
	Introduction
	Undecidability of the non-Zeno emptiness problem
	CUB-parametric timed automata
	CUB timed automata
	Parametric clock upper bounds
	CUB parametric timed automata
	CUB PTA detection
	Transforming a PTA into a disjunctive CUB-PTA

	Zeno-free cycle synthesis in CUB-PTAs
	Distributing non-Zeno parametric model checking
	Master algorithms
	Worker algorithm
	Handling the case of a network of PTAs

	Experiments
	Evaluation of the non-distributed version
	Evaluation of the distributed version

	Conclusion

	Conclusion and perspectives
	Summary of the thesis
	Perspectives

	Appendix
	Decidability
	Turing machine
	Halting problem
	Decidable and undecidable problems
	Reducibility

	Two-counter machine

	Distributed verification of parametric real-time systems
	Existing algorithms
	The Inverse Method algorithm
	The Behavioral Cartography algorithm

	Master-worker point distribution algorithms
	Sequential point distribution: initialization algorithm
	Random point distribution: initialization algorithm
	Shuffle point distribution: algorithms

	Reachability preservation based parameter synthesis for timed automata
	Reachability synthesis algorithm
	Proof of proposition:EFIM-correctness

