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Abstract

Sharing graphs are a brilliant solution to the implementation of Lévy optimal re-
ductions of A-calculus. Sharing graphs are interesting on their own and optimal
sharing reductions are just a particular reduction strategy of a more general shar-
ing reduction system.

The paper is a gentle introduction to sharing graphs and tries to confute some of
the common myths on the difficulty of sharing implementations.
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1 Introduction

Sharing graphs have been introduced by Lamping [Lam89,Lam90] to im-
plement Lévy optimal reduction for A-calculus [Lév78,1Lév80]. Nevertheless,
Lamping’s sharing graphs are not just a brilliant and ad-hoc solution to
an important problem of A-calculus. In fact, Gonthier, Abadi and Lévy
[GAL92a,GAL9I2D| reformulated Lamping’s algorithm inside Geometry of In-
teraction [Gir89] by means of a generalization of Lafont’s Interaction Nets [Laf90],
and Asperti and Laneve studied the problem of (optimal) sharing implemen-
tations for a general class of higher order rewriting systems that they named
Interaction Systems [AL94,AL96].
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1.1 Lamping

The main tools introduced by Lamping are a set of graph rewriting operators
for sharing and unsharing and for the control of the scope of the sharing oper-
ators. Despite the relevance widely acknowledged to Lamping’s breakthrough
and to the successive studies on sharing graphs, there remain some common
myths that bride a widen usage of this technique. The more common crit-
icisms are that sharing graphs are (i) a hard topic to grasp, (ii) difficult to
implement, (iii) suitable for A-calculus optimal reductions only, (iv) inefficient
because of Asperti-Mairson’s result [AMO01] that showed that there is no poly-
nomial bound between the number of shared (-reductions and the whole cost
of the reduction.

The paper is a gentle introduction to sharing graphs and tries to confute
some of the previous common myths. In particular, the aim is at showing
that, on the contrary, sharing graphs are

(i) an easy and natural approach to the implementation of rewriting rules a
la B-rule of A-calculus,

(ii) easily implementable,
(iii) applicable to any “orthogonal” graph rewriting system,

(iv) an optimal implementation (according to Lévy) of the underlying system,
as efficient as the underlying system.

The real reason that has led to the common myths on the complexity of
sharing graphs is the difficulty of the proof of soundness for sharing graphs
reductions. But this should not have impact on the application of the result,
for instance, in algebra, we commonly use many simple and useful results in
spite of the complexity of their proofs.

1.2 The structure of the paper

In the following, we shall follow the general approach to sharing implemen-
tations presented in [Gue99]. For an almost complete account of the main
research on sharing implementations we refer to [AG98].

In section 2, we shall introduce graph reduction of A-terms. We shall
see the first approach given by Wadsworth [Wad71] and we shall give a first
implementation of S-reduction by means of atomic and local graph reduction
rules that, however, does not allow any sharing. At the end of the section,
we shall see which are the problems of the approach given in section 2 if one
wants to allow sharing.

In section 3, we shall discuss a solution to the problem of sharing suggested
by the use of Linear Logic, in particular, by the introduction of the boxes
introduced by the encoding A — B =!A — B. At the end of the section, we
shall also see that a particular reduction strategy of the sharing graph rewriting
system presented in the first part of the section is an implementation of Lévy
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optimal reductions.

In section 4, we shall conclude with an analysis of the results in the paper
and with some words on the meaning of Asperti-Mairson’s result on the rela-
tion between the minimal number of S-rules fired in the shared reduction of
a A-term and the actual complexity of the reduction of that term.

2 JA-calculus Graph Reduction

Looking at the g-rule of A-calculus from the point of view of its implementa-
tion, one can easily see that the execution of (Az.t)s — 4 t[s/x] involves two
main operations:

(i) the assignment of the argument s to the variable x;

(ii) the duplication and displacement of the term s, namely,
(a) a new copy of s is created for every occurrence of the variable x,
(b) any copy of s is put in the place of the corresponding occurrence of
the variable z.

If we represent A-terms by means of their syntax tree (where the @-node rep-
resents application, the A-node represents A-abstraction, variable occurrences
are represented by e-nodes, and the binding relation is represented by the
dotted line joining the nodes of a variable to the corresponding binder), the
rewriting corresponding to a (-reduction is depicted in Figure 1.

(Az.t)s t[s/x]

Fig. 1. Term graph implementation of S-rule

The previous considerations also lead to observe that a direct implementa-
tion of f-rule (as for instance the term graph rewriting in Figure 1) is global,
namely, it is not an atomic step of some abstract reduction machine. There-
fore, counting the number of G-rules is not a good measure of reduction com-
plexity, for the execution of a (-reduction might require to copy a huge term.
On the other hand, the direct reduction of a F-redex (Az.t)s does not seem the
best that one can do from the point of view of efficiency, for the duplication
of s would cause the duplication of all the redexes in it.
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2.1 Lévy optimal reduction

The aim of Lévy in the definition of his optimal reductions was of finding
some (parallel) reduction strategy that, at each step, contracts all the redexes
“sharable” by a smart reduction machine, avoiding any “useless duplication”.
By the way, Lévy also had to define the notion of “sharable” and of “useless
duplication”, or more generally of “useless work”, and to motivate them.

The main concept that Lévy introduced to define sharable redexes is that
of redex family. Given a term ¢ and two redexes r’ and r” in two reducts of
t, the redexes " and r” are in the same family iff there is a reduction ¢t —* s
and a redex r of s such that r’ and r” are residuals of r. In other words,
two redexes are in the same family iff they have the same origin; as it is also
shown by a different characterization of redex families: two redexes are in
the same family iff they are residual of the same path in the graph of ¢ (the
graph of a term t has been already described: it is the syntax tree of ¢ plus
a set of back-connections that link each occurrence of a variable to its binder
(w.l.o.g., we can assume that ¢ is closed)). These two characterizations point
out the main issue of Lévy families: it is conceptually possible to reduce all
the redexes in a family in a single step. For instance, if one takes the reduction
t —* s — u where u is obtained by reducing the redex r of s, then, no reduct
of s can contain a redex in the same family (a residual) of r. However, it is not
possible to find a reduction strategy that reduces the canonical representative
of a family at every step. Therefore, we need some astute sharing mechanism
that allows to keep always shared the paths of the initial term that during
the reduction will become redexes—those paths are sometimes referred to as
“virtual redexes”.

Family of redexes correspond to sharable redex, while the goal of avoiding
any useless work corresponds to the fact that one wants to reduce redexes
that must be contracted in any reduction of the given term, and a strategy
that allows to avoid useless work is the leftmost-outermost, also known as the
normal strategy.

We shall see that sharing graphs allow to reach optimal reductions, as there
are reduction strategies that avoid the duplication of paths that can become
redexes.

2.2 Graph Reduction

Let us come back to the reduction in Figure 1, some sharing can be reached by
using DAGs in the place of trees. In order to avoid the duplication of the term
s, we define a new version of the -rule that replaces the pointers from the
occurrences of the variable = to the corresponding binder with pointers to the
term s, see Figure 2. Nevertheless, this approach does not completely solve
the problem of the need for global copying of terms. In fact, let us assume
that, in the example in Figure 2, s = A\y.s’ and t = f(zu)(zv). The next step
can be to reduce either su or sv. Let us reduce su first. It is readily seen that
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Fig. 2. Wadsworth’s graph implementation of S-rule

this cannot be done by replacing u for y in the body of the unique copy of
s = A\y.s’ shared by the redexes, otherwise, this would have the unwanted side
effect of replacing s'[u/y]v for sv. The solution proposed by Wadsworth, and
followed by the usual graph reduction approaches [PJ86], is to make a new
copy of s and to replace u for y in this new copy only. In this way, a term
replacing a variable is duplicated only if it starts with a A-node and when it
becomes the functional part of a 3-redex.

2.8 A first step-by-step implementation of duplication

We are again in a situation in which, from time to time, we need to execute
the duplication of a whole subterm. We want to find a way (i) to completely
decompose the duplication process in atomic steps and (ii) to be able to ex-
ecute it in a completely lazy way. For instance, in the example previously
described, we would like to be able to duplicate just a small part of the term
s and not the whole of it.

Let us start with the first part of our goal. We can formulate it in the
following terms

e define a graph rewriting system that implements the [f-rule by means of
local and atomic rewritings only

or, equivalently

e decompose the §-rule into a sequence of atomic graph rewritings.

2.3.1 Sharing B-rule
We introduce a node that explicitly represents sharing, namely, in the g-rule
in Figure 2, we introduce a sharing node named multiplezer, mux for short,
or fan between the occurrences of the variable x and the root of s. The
corresponding sharing S-rule is depicted in Figure 3.

The port of the mux that points to the term s is the principal port of
the node, the other ports are the auxiliary ports of the node. The auxiliary
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Fig. 3. Sharing §-rule (basic idea)

ports of a mux are distinct, or equivalently, they have different names. In the
following, we shall use binary muxes only and in the picture we shall assume
that one of the two ports is marked with a * and the other one with a o.

2.3.2  Mux propagation rules

After the execution of a sharing -rule, we want a way to completely duplicate
the term s (as in the case of the rule in Figure 1) by a step-by-step duplication
of the nodes of s obtained by propagating the mux in s. The mux propagation
rules that implement such a duplication are depicted in Figure 4 where, to
simplify the presentation, we have drawn the rules for the case of binary
muxes only, the generalization to the n-ary case is straightforward.

A-up
_>
A-down

absorption

Fig. 4. Mux propagation rules

Let us remark that, when a mux reaches a A\/@-node, the mux duplicates
the node and splits in two copies. We can say that the duplication thread of
the original mux gives rise to two new duplication threads that can proceed in-
dependently and in parallel. Moreover, duplication threads do not propagate
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downward only, but upward too, according to the orientation of the corre-
sponding mux. E.g., a A-up rule introduces a mux that propagates upward
(from the variables inside the term).

2.3.8 The absorption rule
The absorption rule requires some additional words.

e Absorption is the only rule of the previous ones that erases a mux.

e Absorption corresponds to the end of a duplication thread: it corresponds
to a duplication that reaches a free variable of the duplicating term. That
is, in the sharing reduction of the redex (Az.t)s, it corresponds to a mux
that reaches the occurrence of a variable that is free in s.

 Absorption is not always sound: if during the reduction of the redex (A\z.t)s
a mux reaches the occurrence of a variable bound in s, absorption is not
sound. In that case, it would be sound to duplicate the A-node instead, as
in the case of a A-down rule.

2.3.4  Mux annihilation rule

As already pointed out, we can distinguish two kinds of (complementary)
muxes. According to the natural vertical orientation induced by the graph
representation of terms, we have that

* a positive mux or fan-in node is downward oriented and duplicates the tree
of a A-term moving towards the leaves;

e a negative mux or demuz or fan-out node is upward oriented and duplicates
the tree of a A-term moving towards the root.

When two complementary muxes face, we have the case of two duplication
threads that meet: one duplicating the part of the tree below it, the other
one duplicating the part of the tree above it. However, both the muxes have
nothing more to duplicate. In fact, the part of the tree below the positive mux
has been already duplicated by the negative one, and vice versa. Therefore,
the two muxes have completed their tasks and may annihilate, that is, we may
replace the two muxes with direct connections between pairs of ports with the
same name, as described by the rule in Figure 5.

N7
PN

Fig. 5. Mux annihilation rule
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2.3.5 Soundness

Let us restrict w.l.o.g. to closed A\-terms. The sharing (-rule in Figure 3
plus the mux propagation rules in Figure 4 plus the mux annihilation rule in
Figure 5 give a sound implementation of 3-rule provided that one applies the
following algorithm:

(i) rewrite a f-redex by means of a sharing [-rule;

(ii) before the firing of another sharing (-rule or of any absorption rule, prop-
agate all the muxes in the graph until they disappear or they reach the
binding port of a A-node;

(iii) remove the muxes left in the graph by means of absorption rules.

Let us remark that, in step (ii), no absorption rule can be fired and that,
at the end of this phase, all the muxes left in the graph are at the binding
ports of A-nodes.

More formally, if one denotes by —, the reduction relation induced by the
mux propagation rules without absorption plus the mux annihilation rule, by
—, the reduction relation induced by the absorption rule only, and by —g,
the reduction relation induced by the sharing (-rule, we have the following
proposition.

Proposition 2.1 Let T be the graph representation of a term t. Ift — t,
then T —p G1 —y Gy —, 1", where T" is the graph representation of t'.

t > t’ A-terms

I |

T G1 e = graphs
ﬁs Ty Ta

2.3.6  Troubles and limits of this solution

Let us remark again that, up to now, the soundness of the graph reduction
rules rests on a particular reduction strategy, moreover, for that reduction
strategy we have that:

(i) after the execution of a [s-rule we reduce the graph to a new graph
without muxes, namely, we unfold all the sharing introduced by muxes;

(ii) as already remarked in 2.3.3, the absorption rule is sound only after the
elimination of all the downward oriented muxes in the graph. Absorption
is sound when a mux reaches the binding port of a variable free in the
duplicating term t. In the case of a mux that reaches the binding port
of a A-node in ¢, such a mux is waiting to be erased by a complementary
mux. In this case, absorption is not sound, but the rule that allows the
mux to duplicate the A\-node passing through its binding port is sound.
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Therefore, in order to achieve our goal of a rewriting system that allows
to share redexes and that implements reduction by means of atomic steps, we
need to relax the constraints forced by their reduction strategy. In particular,

(i) we need to be able to fire a fs-rule independently of the status of the
propagation of the muxes introduced by a previously fired Fs-rule;

(ii) we need a way to determine when the absorption rule is sound that does
not depend from the reduction strategy.

2.4 Firing two Bs-rules

2.4.1 The muz swap rule

After reducing a g-redex, if we fire another f¢-rule before the completion of the
duplication process started by the first sharing rule, it is no longer true that all
the muxes in the graph are duplicating the same term and, as a consequence,
it is no longer true that two facing muxes annihilate.

N 7 N

Fig. 6. Muxes originated by distinct Js-reductions

Figure 6 gives an example in which two facing muxes must not annihilate.
After the firing of the §,-redex in the picture, we get two facing muxes coming
from the reduction of two distinct J-redexes. In this case, it is no longer true
that the facing muxes may annihilate. Let us remark that (in the pictures of
the paper) we are drawing binary muxes only and that in the general case,
muxes coming from the execution of distinct §,-reductions might have different
arity. This should make clearer that in the case in Figure 6 annihilation
cannot apply, for the facing muxes might also have different arity and we
would not know how to connect the opened ports after the annihilation of
them. In the case of Figure 7, instead of annihilating, the two facing muxes
swap duplicating each-other, as in the case of a mux propagation through a A
or @-node. The corresponding mux swap rule (for the case of binary muxes)
is given in Figure 7.

2.4.2  Naming muxes
In order to decide whether to apply swap or annihilation in the case of pairs
of facing muxes, we need a way to name muxes s.t.

e two facing muxes with the same name annihilate,
9
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Fig. 7. Mux swap rule

* two facing muxes with different names swap.

We have already seen that two muxes originated by the execution of two
distinct (,-rules must swap. This suggests to assign names to muxes at their
creation, in such a way that, muxes that have been originated by the execution
of the same (,-rule have the same name, while muxes that have been origi-
nated by distinct fs-rule have distinct names. Unfortunately, because of the
higher-order nature of A-calculus, there are cases—even in typed A-calculus—
in which two copies of the same mux must swap (an example is given in
see [Lam89,Lam90]). However, we remark that static naming of muxes works
in the relevant case of the systems with bound complexity coming from the
elementary and light linear logic proposed by Girard [Gir98|.

3 Sharing reductions

Linear logic gives a way to dynamically assign names to muxes in order to
be able to decide when to apply annihilation or swap and, as we shall see, to
solve the problem of when absorption is sound.

3.1 Boxes and graphs with levels

In Proof Nets for Linear Logic, a bor is a subnet with a unique principal
door and many auziliary doors. In MELL (Multiplicative Exponential Lin-
ear Logic), a box corresponds to the introduction of an l-exponential, then,
according to the most used MELL translation of A-calculus

A—B=1A—B

the argument of an application is always enclosed into a box. Moreover, a box
always corresponds to a subterm: the principal door of the box corresponds
to the root of the tree of the subterm, the auxiliary doors correspond to the
free variables of the subterm.
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3.1.1 FExponential links
Let us introduce two new nodes or links?® for the principal and auxiliary doors
of boxes, the !-link and the ?-link depicted in Figure 8. Every !-link denotes

ntl internal ntp
p=>0
n n
n external n

Fig. 8. Exponential links

the principal door of a box: its conclusion, the external port, is always the
conclusion of exactly one box. The ?-links correspond instead to the auxiliary
doors of boxes: every 7-link can be the auxiliary door of many boxes. The key
property of boxes is that they properly nest.

We remark the orientation of the arrows in Figure 8. The orientation
of the arrows of the !-link does not correspond to that usually adopted for
the exponential links of MELL. In fact, the conclusion of the !-link (the port
external to the box associated to the link) is not the port corresponding to
the arrow emerging from the link, but the bottom one. The orientation of the
arrows has been chosen in this way in order to preserve the natural orientation
of the trees associated to A-terms.

Definition 3.1 [box nesting property] Two boxes B; and B, of a proof net
that have the box nesting property cannot partially overlap, namely, either
By and B, are disjoint, or By is in By, or By is in Bj.

Usually, boxes are represented by a global map that assigns to each !-box
the set of the links in its box. In the case that we are considering, boxes are
connected, this allows to give a representation of boxes by means of indexes.

3.1.2  Contraction

In the graph representation of A-terms used in the previous section, we have
(back-)connected every occurrence of a bound variable to the binding port of
the corresponding A-node. In proof nets, a A-link corresponds to a ’g-link,
that have three ports only (two premises and one conclusion). Binding several
occurrences of a variable implies then a contraction.

In the graphs that we shall use in the following, we shall introduce a con-
traction link (see Figure 9) that takes the conclusions of an arbitrary number
of 7-links and contracts them to a unique conclusion. As we shall see by the
rules for the construction of the graphs representing A-terms, see Figure 10,
the conclusion of a ?-link corresponds to the occurence of a variable x marked
by a 7, that is, to a term ?z. As a contraction denotes the identification of

3 The graphs that we shall use in the following to represent A-terms are a particular case
of proof nets. Because of this, according to the usual terminology of proof nets, we shall
also use link in the place of node.
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contracting arrows

Tz Tx 7z
n\ln n
n
J/n contracted arrow
Tx

Fig. 9. Contraction

all the occurrences of a given variable, all the premises of a contraction must
be marked by a variable named z, and no conclusion of a contraction can be
premise of another contraction. The previous provisos have the consequence
that the conclusion of a contraction must be connected to the binding port
of the A-link binding x, since this is the only port marked by a 7z term (see
Figure 10).

3.1.3  Levels

Exploiting the box nesting property, we can assign a level to each link: its boz
nesting depth. The box nesting depth changes at the border of boxes, that
is, at the exponential links. In particular, moving from the conclusion of an
I-link to its premise, the box nesting depth increases by one, while, moving
from the conclusion of a ?7-link to its premise, the box nesting depth increases
by a positive number p that corresponds to the number of boxes that have that
link as auxiliary door (see Figure 8). We can then assign an index, its level,
to each link and arrow in the graph of a A-term. The levels assigned to the
exponential links were already given in Figure 8. The premises/conclusions of
the other links are all at the same level, that is the level of the link also, see
Figure 10 and Figure 9.

tit, 1.t /¢ AREEEEEE 2% x t
n n \\ / n+p n+1
n n
.TL
t 't, 7x t 7x 7x 't
x € FV(¢)

Fig. 10. Links with levels for the representation of \-terms

The terms at the arrows of the links in Figure 10 and in Figure 9 give the
rules for the construction of the syntax tree with levels of a given A-term. In
particular, we see that, at the argument port of an @-link we always have an
I-link (this port is marked by an !t term that is the conclusion of a !-link), and
that the binding port of any A-link is the conclusion of a contraction link or
of a 7-link.

By means of levels, and by the fact that the boxes that we are considering
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are connected, we can always recover the box associated to a given !-link.

Definition 3.2 [box| The box of an !-link with level n is the largest connected
subgraph of the A\-term with levels that contains the !-link and s.t. all the links,
but the ?-links at the auxiliary doors of the box, have a level > n.

It is readily seen that, if one opens the connections at the binding ports of
the A-links, the box associated to an !-link corresponds to the subtree of the
term rooted at the !-link.

3.1.4 Consequences of the introduction of levels
The introduction of levels implies that muxes too must be indexed and that,
after the execution of a [s-rule, the new copies of the argument must be
properly reindexed. Indeed, in the setting with levels, muxes must duplicate
and reindex at the same time the links that cross.

The level of a mux, at his creation, is the level (of the !-link) of the box
that it has to duplicate. In this way, such a level can be interpreted as a sort
of threshold: a mux duplicates and reindex every link that it reaches and that
has a level lower than its threshold.

The level or threshold of a mux also allows to recognize when a mux must
propagate at the binding port of a A-link or must be absorbed by it. In fact,
when the threshold is lower or equal than the level of the top port of the
A-link, the A-link is outside the box that the mux is duplicating, otherwise,
when the threshold is greater than the level of the top port of the A\-link, the
A-link is inside the box. In the first case, the mux can be absorbed, in the
second one, the mux can propagate through the A\-link duplicating it.

3.2 The Sharing Rewriting System

3.2.1 The sharing (3-rule

First of all, we have to reformulate the sharing [-rule. The new rule is given
in Figure 11. The rule includes the rewriting of the contraction and the
exponential links connected to the A and @-link in the (-redex, in this way,
we do not have to add new rules for those links (apart for the extension to
them of the mux propagation rules).

n+1

7 Bs

n+1+qr

n+1+q;

n

n+1l+q1 n+1l+q1

Fig. 11. Sharing S-rule

Let us observe that the difference between the level of the premise of a
?-link and its conclusion is always > 0. In the particular case of a head
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occurrence of the bound variable (i.e., in a term Az.xt;...t,), the level of
the premise of the ?-link corresponding to that variable is equal to the level
of its conclusion. In fact, in Az.xt;...t,, there is no box enclosing the head
occurrence of x.

Let us assume that the difference between the conclusion and the premise
of a 7-link in a redex at level n is g+1. The [s-reduction of the redex intro-
duces a mux whose principal port is at level n + 1 and whose auxiliary port
corresponding to the premise of the given ?7-link is at level n+¢+ 1, that is, the
difference between the principal port and the given auxiliary port is ¢g. Such
a value is the offset of the port and, by analysis of the rules in Figure 12 and
13, we see that the level of every new copy of a link duplicated by the mux is
increased by the offset ¢ of the port that has created the new link. That offset
corresponds to the two actions that one has to perform in order to replace a
new copy of a give argument/box for an occurrence of a variable enclosed by
q+ 1 boxes: first of all we have to open the box surrounding the box, and this
means to decrease by 1 the levels of every link in the argument, then we have
to push inside ¢ + 1 boxes the argument, and this means to increase by ¢ + 1
the levels of the links in the argument.

We remark that, in the particular case of a head occurrence, the offset
is —1, that is, the levels of an argument replacing such a variable are just
decreased by 1.

3.2.2  The m-rules

The mux propagation rules are the natural extension of those in Figure 4 and
are given in Figure 12. The a-propagation applies whenever a mux reaches any
port of a A-link, of an @-link or of a contraction link. The rule requires that
the threshold m of the mux is lower than the level n of the a-link. We shall
not prove that but, if one starts with a properly indexed graph, the relation
m < n is always verified. The !/?-propagation rule deals with the case of the
Ilink and of the ?-link. If m is the threshold of the mux and ns if the level of
the port to which the mux is not connected, the rule apply when m < ns. It is
possible to see that the only case in which m < ny may not hold is when the
mux is connected to a ?-link and the level of the link is lower or equal than
n (in general, there are more possible cases but, if one starts with a correct
graph, that cases cannot arise), that case is covered by the absorption rule
(the last rule in Figure 12). The meaning of that rule should be clear: the
level of the links in the box that a mux has to duplicate are higher than the
threshold of the mux, therefore, when the mux reaches a 7-link whose level is
lower than the threshold, it means that it has reached the border of the box
on which it has to operate and it can be absorbed.

The mux annihilation and swap rules are given in Figure 13. Two muxes
annihilate if they meet with the same threshold, or swap otherwise. More-
over, the mux with the lower threshold operates on the mux with the higher
threshold, increasing its threshold in the same way in which it increases the

14



GUERRINI

n ni+qi ni1+qz2 ni+qi

m m

al; ag ay az n+qi n+qz
m<n n m<ng
ntaq
T ntqp n+qs n+qs — n2+q1 na2+qz
ntq1 n+qz
n+qi n+qz
a-propagation 1/?-propagation

n+p+q n+p+qz
m>n
_)71'
n n
> @<
n n

nl

absorption

Fig. 12. m-rules: the mux propagation rules

level of the link in an a-rule.

n+ry n+ra
miy mi n+qi n+qs
a1 a2 a1 a2z
n+qitr2
n+qz+r2 -
n+qi+ri n+qz2+ri
b] b2 b‘l b2
ma+q1 ma+q2 n+q1 n+qo
n+qi n+qz
swap annihilation

Fig. 13. m-rules: the mux interaction rules

The propagation rules in Figure 12 plus the mux rules (Figure 13) are the
m-rules.

3.8 Main Results

The fs-rules in Figure 11 and the 7-rules in Figure 12 and Figure 13 allow to
implement (-reduction in a complete shared and asynchronous way.

Theorem 3.3 (soundness) Let T' be the graph representation of a term t
s.t. T —* G, then the m-normal form T = NF.(G) of G is unique and there
ist —*t' s.t. T' is the graph representation of t'.
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T e, “T' = NF,(G) graphs
t ; t/ A-terms

By Theorem 3.3, we have that every sharing reduction 7" —* G of the
graph representation 7" of a A-term ¢ corresponds to some reduction ¢ —* t'.
The graph G is a shared representation of the A\-term ' and, since the graph
representation 7" of ¢’ is the m-normal form of G, we have that the m-rules
completely implement sharing unfolding, giving a readback algorithm that
allows to find the A-term represented by a sharing graph.

On the other side, every reduction of a A-term ¢ has a corresponding reduc-
tion of the graph T representing ¢. This generalization of Proposition 2.1 is a
consequence of the fact that, when ¢t — ¢, after the reduction T" — 3, G that
fires the redex of 1" corresponding to the redex fired in ¢, we have G; — T}
(by Theorem 3.3). Therefore, by iteration, we get the following diagram

/ ty ot /
i ﬁj ﬁf | ﬁtl
T 5 G T 5 Go " Ty T, — G —= T

Theorem 3.4 (completeness) Let T be the graph representation of a term
t. If t =*t', there is T —* T" s.t. T" is the graph representation of t'.

3.3.1 Proofs of soundness

As already remarked, the main obstacle in a full understanding of sharing
reductions is the proof of soundness. In literature, one can find several versions
of that proof. Lamping gave a proof of the soundness of his system in [Lam89).
Gonthier, Abadi and Lévy [GAL92a,GALI92b| gave a sketch of the proof of
their reformulation of Lamping’s algorithm. Complete proofs of the soundness
of the sharing rules restricted to the optimal case (see 3.4) can be found in
the work by Asperti and Laneve on Interaction Systems [AL94,AL96] and in
Laneve’s thesis[Lan93]. A first proof of soundness for a system in the style
of that presented here, that is, in which we allow non-optimal duplication
also, can be found in [Asp95]. For a detailed analysis of the optimal case, we
refer to [AG98]. All the proofs of the statements in this paper can be found
in [Gue99]. We also remark that [GMMO02,GMMO1]| presents different proof
techniques of the main properties.
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3.4 Optimal reductions

Optimal reductions are just a particular reduction strategy of the sharing
rewriting system. In fact, as every m-reduction (apart from absorption and
mux annihilation) corresponds to the unfolding of some sharing, we may try
to restrict m-reductions to those that otherwise might forbid the creation of (-
redexes. A mux whose principal port points to the function port of an @-node
or to the top port of a A-node might forbid the creation of a redex. On the
contrary, if a mux at the argument or at the top port of an @-node duplicates
the node (and analogously for a mux at the binding or at the body port of a
A-node), we might have the duplication of a shared redex.

The set of the optimal rules is formed of the sharing (-rule in Figure 11,
the mux rules in Figure 12 and the 7w-rules in Figure 13 with the following
constraints:

e the a-propagation applies only when the a-node is
(i) an @-node and the mux is at its function port,
(ii) a A-node and the mux is at its top port,
(iii) a contraction and the mux is at the conclusion of the node;

* the !|/7-propagation applies only when the mux is at the conclusion of the
node.

Let —, be the reduction relation induced by the optimal rules. We can
prove that

(i) if T is the graph representation of ¢, for every t —* ¢/, there is T' =% G
and ¢ —* t" st. G —% T" where T" is the graph representation of ¢”
(i.e., by unfolding the sharing we get the representation of ¢”);

(ii) the term ¢” can be obtained by a Lévy family reduction that reduces the
families of the redexes reduced in t —* t/;

(iii) the number of fs-rules fired in 7" —} G is equal to the number of families
reduced in ¢ —* ¢/, that is, it is optimal in the sense of Lévy.

In particular, if ¢’ is the normal form of ¢, we have that G —* T’  where
T’ is the graph representation of ¢, that is, we have that the sharing system
computes the normal form of ¢ in an optimal number of sharing [-rules.

For more details on Lévy optimal reduction and on the optimal sharing
graph reductions, we refer the reader to [Lév78,Lév80] and [AGIS].

Summing up, we can conclude that optimal reductions are the reductions
that minimize the number of §-reductions without blocking the creation and
execution of them. For more details see [Gue99] or [AGIS].

4 Conclusions

In [AMO1], Asperti and Mairson proved that there are terms with a polynomial
number of Lévy redex families for which the cost of the reduction cannot be
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bound by any elementary recursive function. Usually, this is interpreted as
a negative result for sharing implementations, instead, it only says that we
cannot get the size of its set of redex families to measure the cost of the
reduction of a A-term. In terms of sharing graphs, this implies that there
are terms whose sharing reduction requires a number of duplications much
bigger than the number of G,-rules. We remark that this is not a problem of
the sharing implementation, this phenomenon is caused by the nature of the
reducing term and it is only by the great insight on the reduction mechanism
of A\-terms given by sharing graphs that we have been able to understand it.

There are also other approaches to graph implementation of A-reduction,
in particular, we cite the work by Mackie [Mac98,Mac04] based on Interaction
Nets [Laf90].

The results in the paper generalize to any graph rewriting system whose
rules can be formalized in terms of boxes for which the box nesting property

holds. In particular they apply to orthogonal term graph rewriting systems,
see [Gue99).
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