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Lambda calculus

The λ-calculus is the main reference for the semantics and the
implementations of functional programming languages.

I The β-rule (λx .t)s → s[t/x ] being the basic computational mechanism.
I Computing corresponding to finding the (unique) normal form, if any

(in some cases, according to a given reduction strategy)

In accord to the standard behaviour of programming languages, the
application of β-rule may be restricted, introducing a corresponding new
definition of normal forms.

I call-by-value reduces a redex only if the argument is a value.
Given a set V ⊂ Λ of values

(λx .t)v → s[v/x ] only if v ∈ V

By contrast, the standard unrestricted β-rule is usually referred to as
call-by-name.

I lazy or weak evaluation does not allow to reduce redexes in the scope of a
λ-abstraction.
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Reduction strategies

A reduction strategy is a rule that fixes the (set or the sequence of) redex(s) to
reduce while computing the normal form of a term.

Let Λ be the set of the λ-terms.

Definition
A reduction strategy is a function

F : Λ→ Λ s.t. t →∗ F (t)

t ∈ Λnf implies F (t) = t, where Λnf ⊂ Λ is the set of the normal forms.

A reduction strategy F is one-step, when t → F (t) for every t 6∈ Λnf .

A reduction strategy is recursive when F is recursive.

A recursive reduction strategy is effective when it can be computed in a
relatively simple way: constant, linear time, or even polynomial, it may
depend on our purposes (theory of computation or effective implementations).
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Reduction strategies (cont.)

Every reduction strategy F induces an F -reduction

t → F (T )→ F 2(t)→ · · ·

We shall use LF (t) to denote the length of the F -reduction of t.

LF (t) =

{
min{n | F n(t) ∈ Λnf } when F n(t) ∈ Λnf for some n

∞ otherwise

A reduction strategy F is normalizing when it computes the normal-form, if
any, of every term t.

t ∈ Λnf =⇒ F n(t) ∈ Λnf for some n

A reduction strategy F is Church-Rosser when it reduces β-equivalent terms
to the same term. For every s, t ∈ Λ

s =β t =⇒ F n(s) = Fm(t) for some n,m
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Leftmost reduction

Let us write t →lm s when t → s by reducing the leftmost redex of t.

The leftmost (outermost) reduction is the reduction strategy defined by

lm(t) =

{
t if t ∈ Λnf

s when t 6∈ Λnf and t →lm s

Proposition

The leftmost reduction strategy is effective and normalizing.

A reduction strategy is quasi leftmost if

∀i ,∃j ≥ i : F j(t)→lm F j+1(t)

Proposition

Let Q be a quasi leftmost reduction strategy. LQ(t) =∞ iff t has no normal form.

Every quasi leftmost reduction strategy is normalizing.
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Innermost reduction

The innermost reduction is the reduction strategy that reduces the
(rightmost) innermost redex.

The innermost reduction →im is not normalizing.

(λx .s)ω →im (λx .s)ω →im (λx .s)ω →im · · ·

where ω = ∆∆ and ∆ = λx .xx

The innermost reduction corresponds to an evaluation strategy that always
tries to evaluate the argument of a function before to replace it into the body
of the function.
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Perpetual reduction

A reduction strategy F is perpetual when it takes an infinite reduction path
for every term that is not strongly normalizing.

t has an infinite reduction path =⇒ LF (t) =∞
(and the F reduction of t does not contain empty reduction steps, i.e.,
F n(t)→+ F n+1(t) for every n).

An (effective) perpetual strategy can be defined by a simple modification of
leftmost reduction in which we avoid to erase terms that contains redexes.

I A redex (λx .u)v is an erasing or K -redex when x 6∈ FV(t).
I If r = (λx .u)v is the leftmost redex of t, and C [] is the context s.t. t = C [r ],

we define

F∞(C [(λx .u)v ]) =

{
C [u[v/x ]] when r is not an erasing or v ∈ Λnf

C [(λx .u)F∞(v)] when r is an erasing and u 6∈ Λnf

The key idea is that, when we erase a term v , not only v does not contain
any redex, but no reduction can lead to the creation of a redex in v (indeed,
no reduction can modify v).
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One-step optimal strategies

Given two reduction strategies F and G we can try to compare them in terms
of efficiency, by comparing the lengths of their reduction paths.

F is better than G , if LF (t) ≤ LG (t) for every term t.

A one-step strategy is optimal if it is better than any other one-step strategy.

While we can easily define an optimal one-step reduction strategy, any of
such optimal strategy is not recursive.

Proposition

There exists no optimal one-step reduction strategies.
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No optimal one-step strategy: an example

Fm = λx .(x I x x . . . x︸ ︷︷ ︸
m times

) I = λx .x ∆n = λx .(x x . . . x︸ ︷︷ ︸
n times

)

Gn = λy .(∆n (y z)) G ′n = λy .((y z) (y z) . . . (y z)︸ ︷︷ ︸
n times

)

P = FmGn = Fm(λy .∆n(yz))

P

=  (z z . . . zG’ G’ G’ )n n n . . . 

)nG’. . . nG’nG’( I z )( I z ) ( I z ) . . .=  (Q3)P3 =  (∆  n z G G  . . . Gn n n

 . . . GP2 =  (∆  n( I  z )  Gn Gn n )

P =  (  G I G1 n n Gn G . . . n)

 . . . z G Gnz z . . . Gn )nP4 =  (

2Q G’=  ( nG’G’ I n n . . . G’n )

)Q G’nm=  ( F  1

*

*

 Q

Every reduction strategy
duplicates work

lhs is lazy innermost:
m + 4 β-reductions.

rhs is lazy leftmost:
n + 3 β-reductions.
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No optimal one-step strategy: an example (cont.)

Informally, we may say that in the previous example there are only four
distinct redexes:

1 FmGn and FmG
′
n

2 ∆n(yz) and ∆n(Iz)
3 Iz
4 GnI and G ′nI

These redexes, which appear in distinct terms along the reductions, have the
same common origin:

1 FmG
′
n is a reduct of the original redex FmGn

2 ∆n(Iz) is obtained from ∆n(yz) by replacing I for the free variable y
3 all the redexes Iz come from the application yz in Gn

4 GnI and G ′nI is obtained by replacing Gn and G ′n for x in the application xI of
Fm, respectively, and G ′n is a reduct of Gn
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An ideal sharing machine

If we want to avoid useless duplication of work, we must
I avoid the duplication of redexes (e.g., ∆n(yx))
I avoid the duplication of applications that will be instantiated to redexes (e.g.,

xI and yz), we may say that such applications are a sort of virtual redexes.

In the example, no one-step reduction strategy can avoid all such duplications
at the same time.

We might hope to have some kind of sharing mechanism (implementing some
multistep reduction strategy) that keeps a unique representation of some
parts of terms (e.g., the m copies of Gn in the leftmost derivation) reducing
them just once.

The reductions of such a sharing machine would correspond
to the diagram

3

P

 Q

P Q

P

P Q

1

2

3

1

Q2
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Sharable redexes

In order to find an ideal/practical sharing machine, we need a robust and
stable definition of sharable redexes (or more in general of sharable terms,
subterms, or contexts).

We shall give a direct approach based on a detailed analysis of equivalent
reduction paths.

Using the correspondence between λ-terms and nets (and the so-called
Geometry of Interaction), we shall be able to reformulate the notion of
sharable redexes by means of paths on the starting net.

I In nets, a β-redex is a direct connection between the lhs of an application and
the top of a λ-abstraction.

I Studying net reductions we shall see that some paths disappear, while other
paths are stretched/contracted or duplicated.

I Two redexes are sharable when they correspond to the same path in the
starting net that eventually reduce to a β-redex.

Using nets we can reestablish the original idea of sharable redexes:
I two redexes are sharable iff we can trace back to a common origin on the

starting net/term.
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Redexes: copying and creation

During a reduction, redexes may be
copied:

(λx .sxx)t → stt

makes two copies of every redex in t.

or created:

(λy .ys)(λx .t)→ (λx .t)s

(λy .(λx .t))us → (λx .t[u/y ])s

(λy .y)(λx .t)s → (λx .t)s

In some cases, two redexes must be considered as copies of the same redex
even if they are created independently:

(λy .(λx .sxx)(yz))(λx .t)→ (λy .s(yz)(yz))(λx .t)→ s((λx .t)z)((λx .t)z)

but, if we rearrange the reduction

(λy .(λx .sxx)(yz))(λx .t)→ (λx .sxx)((λx .t)z)→ s((λx .t)z)((λx .t)z)

the two redexes can be obtained as copies of the same redex. In some sense,
we can find a common ancestor of the two redexes.
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An example

∆ = λx . (x x) I = λx . x F = λx . (x y)

Intuitively, there are just three kinds of redexes:
R = ∆(F I ) S = F I T = I y

all the redexes Ri and Si are
residuals of R and S

The two redexes T1 and T2 clearly
look sharable (and they are indeed
‘shared’ as the unique redex T in
the innermost reduction on the left)
but are not residuals of any
(common) redex.

The redexes T3 and T4 are residuals
of the same redex T (after R1). T3

(T4) is also a residual of T1 (T2).
All these redexes seem to be in a
same family.

(

1 S 2

T 2

R1

T 1 S 3 S 4

S 5 T 3 T 4 S 6

T 5 T 6
R2

∆ (F I)( )

((F I) (F I))

((I y) (F I)) ((F I) (I y))

((I y) (I y)) ((F I) y)

(y (I y)) ((I y) y)

∆

T

R

S

(y (F I))

(y y)

( )∆ (I y)

y)

S
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Residuals

Informally, a residual of a redex is what is left of a redex after some other redex
has been reduced. Residuals can be identified by:

Underlining every redex of a term M and associating a distinct name to each
underlining

(∆ (F I )
S

)
R

Assuming that β-reduction preserves marking and naming while copying
terms

(∆ (F I )
S

)
R
→R ((F I )

S
(F I )

S
)→S1 ((I y) (F I )

S
)→S3 ((I y) (I y))

Given a reduction ρ of the term M, the residual of a redex R of M under ρ is
the set ρ/R of the redexes marked by an underlining with name R.

The redex R is the ancestor of any redex in R/ρ

Any redex in R/ρ is a residual redex of R (under ρ)
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Finite developments

Let F be a set of redexes of a λ-term M. A reduction ρ : M →∗ N is relative
to F when no redex underlined by a name R 6∈ F is reduced along the
marked reduction corresponding to ρ.

A reduction ρ : M →∗ N is a (complete) development of a set of redexes F
of M when

I ρ is relative to F and,
I after the marked reduction corresponding to ρ, N does not contain any redex

underlined by a name R ∈ F .

Theorem (finite developments)

Let F be a set of redexes of a λ-term.

1 There is no infinite reduction relative to F .

2 All developments end at the same term.

3 For any redex R of M and any pair of developments ρ and σ relative to F ,
we have that R/ρ = R/σ.
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Parallel reduction

F : M →∗ N denotes a parallel reduction in which a whole set of redexes F
is simultaneously reduced in one step.

The result of the parallel reduction of a set of redexes F can be obtained by
taking any development of F .

The notion of residual can be directly extended to parallel reductions and to
set of redexes

R ′ ∈ G/F iff R ′ ∈ R/F for some R ∈ G

Let us define F t G = F(G/F)

Lemma (parallel moves)

Let F and G be set of redexes of a λ-term M. We have that:

1 F t G and G t F ends at the same expression;

2 H/(F t G) = H/(G t F).

The parallel moves lemma suggests that F t G ≡ G t F w.r.t. some
equivalence of reductions well-defined w.r.t. the definition of residuals.
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Permutation equivalence
We want to equate reductions in which redexes are permuted preserving their
grouping, as in F t G and G t F .

The parallel reduction of the empty set of redexes ∅ : M → M is distinct from
the empty reduction ε, but it seems reasonable to ask ∅ ≡ ε.
We expect that F t ∅ ≡ F ≡ ∅ t F
and that F ∪ G ≡ F t G, even if F ∪ G 6= F t G, since they denote different
sets of reduction sequences.

Definition (permutation equivalence)

≡ is the smallest equivalence such that:

1 F t G ≡ G t F , when F and G are set of redexes of the same λ-term;

2 ∅ = ε;

3 ρστ ≡ ρσ′τ , when σ ≡ σ′.

In other words, the permutation equivalence of reductions ≡ is the smallest
congruence with respect to composition of reductions satisfying the parallel moves
lemma and elimination of empty steps (ε reductions).
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Diamond property

The notion of residual extends to reductions.

ε/ρ = ε

(σF)/ρ = (σ/ρ)(F/(ρ/σ))

Theorem (diamond property)

For any pair of reductions ρ and σ starting from the same term, we have that
ρ (σ/ρ) ≡ σ (ρ/σ).

M

M1 ≡ M2

N

ρ

∗

σ/ρ

∗

σ

∗

ρ/σ

∗
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Equivalence of reductions by permutation

The diamond property is the base of the equivalence by permutation:

two reductions ρ and σ are permutation equivalent if, by com-
posing instances of the previous diagram, we can get a commut-
ing diagram in which the composition of the external reductions
yields ρ and σ.

The diamond property is a strong version of the Church-Rosser (confluence)
property:

it proves the confluence of the calculus, showing at the same
time how to complete any pair of reductions ρ and σ in order
to get the same result.
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Families of redexes

Definition (copy)

A redex S with history σ is a copy of a redex R with history ρ, written ρR ≤ σS ,
if and only if there is a derivation τ such that ρτ is permutation equivalent to σ
(ρτ ≡ σ) and S is a residual of R with respect to τ (S ∈ R/τ).

Definition (family)

The symmetric and transitive closure of the copy relation is called the family
relation, and will be denoted with '.
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Zig-zag relation

ρR ' σS

iff there is a finite sequence

ρR = τ0R0, τ1R1, . . . , τkRk ≤ σS

such that, for i = 1, . . . , k

τi−1Ri−1 ≤ τiRi or τiRi ≤ τi−1Ri−1

FAMILY

τ

M

ρ

σ

N

P
S

R

COPY 

R2

j

Μ

R

ρ σ

R R

R

R

PNN2Ν

j

1 3 k

1N N3 Nk

S
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An example

∆ = λx . (x x) I = λx . x F = λx . (x y)

RS1T1 ≤ RS1S3T3 ≥ ST ≤ RS2S4T4 ≥ RS2T2

ST ' RS1T1 ' RS2T2 ' RS1S3T3 ' RS2S4T4

(

1 S 2

T 2

R1

T 1 S 3 S 4

S 5 T 3 T 4 S 6

T 5 T 6
R2

∆ (F I)( )

((F I) (F I))

((I y) (F I)) ((F I) (I y))

((I y) (I y)) ((F I) y)

(y (I y)) ((I y) y)

∆

T

R

S

(y (F I))

(y y)

( )∆ (I y)

y)

S
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Equivalence of histories

Lemma

Let ρ ≡ ρ′ and σ ≡ σ′. Then:

1 ρR ≤ σS iff ρ′R ≤ σ′S
2 ρR ' σS iff ρ′R ' σ′S

In order to check that two redexes are in the same family, we can consider
any pair of histories of the redexes, provided that they are permutation
equivalent to the given ones. In particular, we can restrict our analysis to
standard derivations.
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Standard derivations

Definition (standard derivation)

A derivation R1R2 · · · is standard when Ri is not a residual of any redex at the left
of Rj , for any i and any j < i .

In the case of parallel reductions, the derivation F1F2 · · · is standard when
the previous proviso holds assuming that Ri and Rj are the leftmost redexes
of the respective sets Fi and Fj .

The standardization theorem ensures that, for any reduction, there exists an
equivalent one which is standard.

S. Guerrini (LIPN - Paris 13) LL and Opt. Red. - Optimal reductions 2009–2010 (v. 04/12/09) 25 / 45



Some properties of the copy relation

Let us define ρ v σ, when ρτ ≡ σ for some reduction τ .

Lemma

ρR ≤ σS iff ρ v σ and S ∈ R/(σ/ρ).

Lemma (interpolation)

For any ρ v σ v τ and ρR ≤ τT , there exists a redex S such that
ρR ≤ σS ≤ τT .

Lemma (uniqueness)

If ρRi ≤ σS, for i = 1, 2, then R1 = R2.

Therefore, the copy relation is decidable, since for any σS , the minimal redex ρR
such that ρR ≤ σS is unique.
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Causal history

Let us assume a simplification process (extraction) that, for any redex ρR,
throws away all the redexes in the history ρ that are not relevant to the
“creation” of R.

At the end of this process, we essentially obtain the “causal history” of R
(with respect to ρ).

In order to aovid the porbems caused by the permutation equivalence of
reductions, we assume to work with standard derivations.
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Parallelization

Let x 6∈ FV(N) and M[ ]ix be the context in which the ith occurrence of
x ∈ FV(M) is replaced by a hole.

R = (λx .M) N →R M[N] = M[N]ix [N/x ]→∗ρi M[N]ix [N/x ]

the reduction ρi reduces redexes in the ith copy of N only.

For every, such a reduction ρi , there is

R = (λx .M) N →∗ρ′ (λx .M) N ′ = R/ρ′

and k reductions

M[N/x ] = M[N]jx [N/x ]→∗ρj M[N ′]jx [N/x ]

moreover, let ρ̄ = ρ1 t · · · t ρk : M[N/x ]→∗ M[N ′/x ]

R →R M[N/x ]→∗ρ̄ M[N ′/x ] R/ρ′
∗← (λx .M)N ′ ρ′

∗← R

R ρ̄ ≡ ρ′(R/ρ′)
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Parallelization (cont.)
The reductions ρ̄ is a sort of parallelization of ρi w.r.t. R, say ρ̄ = ρi‖R.

ρi‖R can be defined inductively. Let ρi = Sσ

(λx .M)N (λx .M)N ′′ (λx .M)N ′

M[N/x ] M[N ′′/x ] M[N ′/x ]

M[N ′′]ix [N/x ] M[N ′]ix [N ′′/x ]

M[N ′]ix [N/x ]

S′ σ′

R

S′/R σi/(S′/RSi )‖R/S′

Si

σi

R/S′

R/S′σ′

S′/RSi

σi/(S′/RSi )

ρ′

ρi‖R

ρi

ρ̄
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Parallelization (cont.)

Definition (parallelization)

Let R = (λx .M) N. Let Rρi be a derivation such that ρi is internal to only one
instance of N, say the ith one, in the contractum M[N/x ] of R.

The reduction ρi‖R (ρi parallelized by R) is inductively defined as follows:

ε ‖R = ε

Siσi ‖R = (S ′/R) ((σ/F)‖(R/S ′)) where Si ∈S ′/R, F = S ′/RSi

Let Rρi : (λx .M)N →∗ M[N ′]ix [N/x ], we can prove that:

ρi‖R : M[N/x ]→∗ M[N ′/x ]

ρi‖R ≡ ρ̄ = ρ1 t · · · t ρk
there is a unique ρ′ s.t. R(ρi‖R) ≡ ρ′(R/ρ′)
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Parallelization (cont.)
Let ρi = τiTi be the reduction internal to the ith copy of the argument, and
ρj = τjTj the isomorphic reduction in the jth copy.

In general, there is no redex T ′ in R s.t. RτjTj ≤ T ′

However, let ρ′ = τ ′T ′

T = T ′/(R/τ ′) = {T ′j }kj=1

τ ′T ′ ≤ R(τi‖R)T ′i =

R(τi‖R)T ′i ≥ RτiTi

τ ′T ′ ' RτiTi

(λx .M)N (λx .M)N ′′ (λx .M)N ′

M[N/x ] M[N ′′/x ] M[N ′/x ]

M[N ′′]ix [N/x ] M[N ′]ix [N ′′/x ]

M[N ′]ix [N/x ]

τ ′ T ′

R

τj‖R T

τi

Ti

R/τ ′ R/τ ′T ′

τ ′/Rτi
T ′

i
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Extraction

We aim at finding a relation that allows to remove the part of a reduction
that are not relevant for the creation of a redex.

Given a redex with history ρR, we want to find a “simpler” reduction ρ′ and
a redex R ′ s.t. ρ′R ′ ' ρR, a sort of “causal history” of R.

The easiest case is when we can find ρ′R ′ ≤ ρR.
I We can take just ρ′R ′.
I The rest of ρ ≡ ρ′ t τ (i.e., τ) is not related to the creation of R).

In some case, we have to use parallelization.
I Given (λx .M)N →R M[N/x ]→∗τi M[N ′]ix [N/x ]→Ti , where τiTi is internal to

the ith copy of N.
I We can think that R is not a cause of Ti .
I R can be removed by taking the previously constructed τ ′T ′.
I For instance, let R = ∆((λx .xM)I

S
)

F R →R ((λx .xM)I
S1

)((λx .xM)I
S2

)→S1
(IMT1

)((λx .xM)I
S′

2

)

F R →S ∆(IMT ′ )→R (IMT ′
1
)(IMT ′

2
)

F From RS1T1 we want to obtain ST ′

F Let us reamrk that ST ′ 6≤ NRS1T1,
F but ST ′ ≤ SRT ′1 ≥ RS1T1, thus ST ′ ' RS1T1
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Extraction (cont.)

In order to define the extraction relation we distinguish four cases.

1 The base case is when the last redex in the reduction is the residual of some
other redex that appears along the reduction

ρRS B1 ρS ′ if S ∈ S ′/R

2 When two disjoint reductions are executed in parallel, we may remove the one
that is not relevant

ρ (R t σ) B2 ρσ if σ 6= ε and R, σ are disjoint

R σ

/ Rσ
C[M’,N] C[M’,N’]

C[M,N] C[M,N’]
ρ σ

R /
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Extraction (cont.)

3 If in a redex R = (λx .M)N we have a reduction σ internal to the functional
part of R, then in the reduction R t σ ≡ R(σ/R) we can avoid to reduce R

ρ(R t σ) B3 ρσ if σ 6= ε and σ is internal to the function part of R

C[(   x.M’ N)]

σ

/ Rσ

ρ σ

R

C[M[N/x]] C[M’[N/x]]

λλC[(   x.M N)]

R /
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Extraction (cont.)

4 The last case is when we need parallelization.

ρRσ Bi
4 ρσ

′

σ 6= ε

1 σ is internal to the ith instance of the argument
of R in its contractum

2 σ′/R = σ‖R

C[M[N’/x]]

σ

’σ

’ / R =     || Rσ σ

ρ

R

C[M[N/x]]

λC[(   x.M N’)]

’

σ

xC[M   [N, . . . ,N’, . . . ,N]]

C[(   x.M N)]λ

R /
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Extraction: the definition

Definition (extraction)

The contraction by extraction B is the union of the following four relations:

1 ρRS B1 ρS ′, if S ∈ S ′/R;

2 ρ (R t σ) B2 ρσ, if σ 6= ε and R, σ are disjoint reductions;

3 ρ(R t σ) B3 ρσ, if σ 6= ε and σ is internal to the function part of R;

4 ρRσ Bi
4 ρσ

′, if |σ| ≥ 1, σ is internal to the ith instance of the argument of R
in its contractum, and σ′/R = σ‖R.

The extraction relation D is the transitive and reflexive closure of B.

Theorem
D is confluent and strongly normalizing.
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Extraction and families

The extraction procedure relates redexes in the same family.

In particular, for the four cases, we have already seen that, given

R = (λx .M)N → M[N/x ]→∗τi M[N ′]ix [N]→Ti M[N ′′]ix [N]

R = (λx .M)N →∗τ ′
i

(λx .M)N ′ →T ′
i

(λx .M)N ′′

s.t. τ ′T ′ t R ≡ R(τiTi‖R)

then RτiTi D4 τ
′T ′ and RτiTi ' τ ′T ′

In the other cases instead, we directly have

ρR D1,2,3 ρ
′R ′ =⇒ ρ′R ′ ≤ ρR =⇒ ρR ' ρ′R ′

Proposition

If there exists a reduction τT such that ρR D τT E σS, then ρR ' σS.
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Families and extraction

The converse of the previous proposition is also true: given two redexes in
the same family, extraction reduce them to a common redex.

Lemma
If R ≤ σS, then σS D R.

Lemma
Let ρR ≤ σS. There is a reduction τT such that ρR D τT E σS.

Proposition

If ρR ' σS, then ρR D τT E σS for some τT .

Since we have already shown that extraction is sound w.r.t. to families,
ρR ' τT ' σS .
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Decidability of extraction

Theorem (decidability of extraction)

Let σ and ρ be two standard reductions. Then ρR ' σS if and only if
ρR D τT E σS for some τT .

The previous result not only establishes a full correspondence between zig-zag
and extraction, but also gives an effective procedure for deciding the family
relation.

I Since D is confluent and strongly normalizing, extraction has the unique
normal form property.

I Therefore, two reexes are in the same family iff they have the same normal
form w.r.t. extraction.

The unique normal form of every redex in a family can be taken as the
canonical representative of the family.

We recall that these results can be achieved because we are assuming to work
with standard reductions only.

S. Guerrini (LIPN - Paris 13) LL and Opt. Red. - Optimal reductions 2009–2010 (v. 04/12/09) 39 / 45



Canonical derivation

Definition (canonical derivation)

Every standard derivation ρR in normal form with respect to D will be called
canonical.

Corollary (canonical representative)

The canonical representative derived from each member ρR of the family is the
unique canonical derivation ρcRc such that ρsR D ρcRc , where ρs is the standard
derivation equivalent to ρ.

Each family of redexes has a unique canonical representative.

S. Guerrini (LIPN - Paris 13) LL and Opt. Red. - Optimal reductions 2009–2010 (v. 04/12/09) 40 / 45



Reductions by families

We introduce a strategy of derivation by families: a parallel reduction in
which at each step several redexes in the same family can be reduced in
parallel.

The idea is that by systematically reducing in parallel all the redexes in a
given family, another member of that family cannot appear later on during
the computation.

First of all, we define the class involved in a (parallel) reduction

Definition

Let [ρR] = {σS | σS ' ρR} be the family class of ρR. Let ρ = F1 · · · Fn. Then,

FAM(ρ) = {[F1 · · · FiR] | R ∈ Fi+1, i = 0, 1, . . . , n − 1}

is the set of family classes contained in ρ.
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Generalized finite developments

We can then generalize the finite development theorem.

Definition (development of family classes)

Let X be a set of family classes. A derivation ρ is relative to X if FAM(ρ) ⊆ X .
A derivation ρ is a development of X if there is no redex R such that [ρR] ∈ X .

Theorem (generalized finite developments)

Let X be a (finite) set of family classes. Then:

1 There is no infinite derivation relative to X .

2 If ρ and σ are two developments of X , then ρ ≡ σ.
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Developments of families

First of all a technical property.

Lemma
Let ρR be the canonical derivation of σS. Then ρ v σ if and only if ρR ≤ σS.

We can now prove that, after the development of a set of families X , no redex in
a family contained in X can be created along the reduction.

Lemma
Let ρ be a development of X .

1 Let σS be the canonical derivation of ρR. Then σS ≤ ρR.

2 For every σS such that ρ v σ, [σS ] 6∈ FAM(ρ).
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Complete derivations

Definition (complete derivation)

We say that the derivation F1 · · · Fn is complete if and only if Fi 6= ∅ and Fi is a
maximal set of redexes such that

∀R,S ∈ Fi . F1 · · · Fi−1R ' F1 · · · Fi−1S

for i = 1, 2, . . . , n.

Lemma

Every complete derivation ρ is a development of FAM(ρ).
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Optimal reductions

Lemma
A derivation ρ = F1 · · · Fn is complete if and only if, for i = 1, . . . , n, Fi is a
maximal set of copies. Namely, for any i , there exist σiSi and τi such that
σiτi ≡ ρi and Fi = S/τi .

Proposition

Let ρ be a complete derivation. We have that |ρ| = ](FAM(ρ)), where ](FAM(ρ))
is the cardinality of FAM(ρ).
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