
5

Redex Families and Optimality

In 1978, Lévy introduced the notion of redex family in the λ-calculus
with the aim of formally capturing an intuitive idea of optimal sharing
between ‘copies’ of the same redex. In order to satisfy his notion of
family, Lévy proposed several alternative definitions inspired by different
perspectives and proved their equivalence.

The most abstract approach to the notion of family (see [Lév78,
Lév80]) is the so called zig-zag relation. In this case, duplication of
redexes is formalized as residuals modulo permutations. In particular, a
redex u with history σ (notation σu) is a copy of a redex v with history
ρ iff ρv ≤ σu (i.e., there exists τ such that σ = ρτ up to a notion of
permutation of redexes, and u is a residual of v after τ). The family
relation " is then the symmetric and transitive closure of the copy re-
lation. Now, let us draw reduction arrows downwards. Pictorially, the
family reduction gives rise to an alternate sequence of descending and
ascending reduction arrows. This is the reason why it is also known as
the ‘zig-zag’ relation.

Another approach is that of considering the causal history of redexes.
Intuitively, two redexes can be ‘shared’ if and only if they have been
‘created in the same way’ (or, better, their causes are the same). This
is formalized by defining an extraction relation over redexes (with his-
tory) σu, which throws away all the redexes in σ that have not been
relevant for the creation of u. The canonical form we obtain at the end
of this process essentially expresses the causal dependencies of u along
the derivation (we may deal with causal chains instead of partial orders
since only standard derivations are considered).

The most ‘operational’ approach to the family relation is based on a
suitable labeled variant of the λ-calculus [Lév78]. The idea of labels is
essentially that of marking the ‘points of contact’ created by reductions.

88

5.1 Zig-Zag 89

In particular, labels grow along the reduction, keeping a trace of its
history. Two redexes are in a same family if and only if their labels are
identical.

The equivalence between zig-zag and extraction is not particularly
problematic (see [Lév80]). On the contrary, the proof of the equivalence
between extraction (or zig-zag) and labeling is much more difficult (see
for instance the long proof that Lévy gave in [Lév78]). For this reason,
we shall postpone its proof to Chapter 6, after the introduction of the
so-called legal paths. In fact, given a term T , legal paths will give us a
complete characterization in terms of paths (virtual redexes) in T of the
redexes generated along the reduction of T . Intuitively, a legal path for
a redex R will be a suitable composition of subpaths connecting those
redexes required for the creation of R. Any legal path ϕ will correspond
to a reduction ρ composed of redexes in ϕ only; moreover, the redex
with history ρR will be in normal form with respect to the extraction
relation. The main issue of section 6.2 of Chapter 6, will be to prove that
the labels generated along the reduction of T ‘are’ indeed legal paths in
T , and vice versa.

5.1 Zig-Zag

Let ∆ = λx. (x x), F = λx. (x y), I = λx. x. Consider the possible reduc-
tions of M = (∆ (F I)), represented in Figure 5.1.

Intuitively, there are just three kinds of redexes in this example: R,
S and T . In the case of R and S, the common nature of these redexes
is clear, for all Ri and Si are residuals of R and S. The case of T is
more complex. In fact, T , T1 and T2 are not residuals of any redex
in M: they are just created by the immediately previous reduction.
The two redexes T1 and T2 clearly look sharable (and they are indeed
‘shared’ as the unique redex T in the innermost reduction on the left).
However, the only way to establish some formal relation between these
redexes is by closing residuals downwards. In fact, T1 and T have a
common residual T3 inside the term ((I y) (I y)); similarly, T2 and T have
a common residual T4 in the same term. By transitive closure, we can
thus conclude the ‘common nature’ of T1 and T2: in a sense, T1 is ‘the
same’ redex as T3, which is the same as T , which in turn is the same as
T4 which is the same as T2. So, the idea of ‘closing residuals downwards’
seems the right extension allowing connection of redexes with a common
origin, but without any common ancestor.

The formalization of the previous intuition requires, however, some

90 5 Redex Families and Optimality

S 1 S 2

T 2

R 1

T 1 S 3 S 4

S 5 T 3 T 4 S 6

T 5 T 6
R 2

! (F I)()

((F I) (F I))

((I y) (F I)) ((F I) (I y))

((I y) (I y)) ((F I) y)

(y (I y)) ((I y) y)

!

T

R

S

(y (F I))

(y y)

()! (I y)

y)(

Fig. 5.1. ∆ = λx. (x x), F = λx. (x y), I = λx. x.

care. In particular, let us start by noticing that T1 and T2 should not be
connected if the initial expression is ((F I) (F I)), instead of M. The intu-
itive reason is that, while we want to preserve the sharing ‘inherent’ in
the initial λ-term, we are not interested in recognizing common subex-
pressions generated along the reduction—the equivalence of such new
subexpressions should be considered as a mere syntactical coincidence.
For instance, although when reducing any of the two redexes in (I (I x))

we get the ‘same’ term, the term (I x) obtained reducing the outermost
redex and the term (I x) obtained reducing the innermost redex should
be considered distinct. The reasons should be computationally clear: to
look for common sharable subexpressions would be too expensive in any
practical implementation. Furthermore, even though we could imag-
ine an optimization step based on a preprocessing recognizing common

5.1 Zig-Zag 91

subexpressions in the initial term, to run such an optimizing algorithm
at run-time would be infeasible.

A main consequence of the latter assumption is that the relation we
are looking for will not really be a relation over redexes, it will be rather
relativized with respect to the reduction of some initial expression. In
other words, we shall have to consider pairs composed of a redex R to-
gether with the reduction ρ that generated it. Namely, given a derivation

T
ρ
! T ′ R

→, we shall say that ρ is the history of the redex R in T ′. As
a consequence, any redex with history ρR determines a unique initial
term T with respect to which we are considering sharable redexes, and
two redexes with history will be comparable only when they start at the
same initial term.

Let us come back to the see how the previous considerations apply
to our previous examples. Since we relativized redexes with respect to
an initial expression and we equipped them with a history, redexes are
no longer identified only by their syntactical position in the term. For
instance, the term M = (I (I x)) has two redexes R and S. By firing any of
them we obtain the term (I x), in which we have a unique redex T . Since
T is a residual of both R and S we could be tempted to conclude that R

and S are connected by our ‘sharing’ relation. On the contrary, for we
do not want to relate distinct redexes in the initial term, the equivalence
of the result reducing R or S is merely incidental. In fact, introducing
histories, the two reductions respectively give RT and ST . Thus, the two
redexes RT and ST can be related via our sharing relation, only if their
histories R and S are related via such a relation. That is, only if M is
some partial result of the computation of another term N, and we can
find two reductions ρ and σ of N such that ρR and σS might be equated
applying zig-zag or the extraction relation. This is indeed the case for
the term ((I y) (I y)) generated along the reduction in Figure 5.1. The
two redexes T3 and T4 do not have any common ancestor. Nevertheless,
zig-zag will relate them (see Example 5.1.9) and the extraction relation
will associate to any ρT3 and any σT4 the same redex with history ST

(see Example 5.2.3 and Exercise 5.2.5).

5.1.1 Permutation equivalence

Before to give the definition of families, we present some standard re-
sults of λ-calculus. For an unabridged presentation of λ-calculus and
for the proof of the previous results, we refer the reader to Hindley and
Seldin’s book [HS86], even though the most complete source for the

92 5 Redex Families and Optimality

syntax properties of λ-calculus is definitely Barendregt’s book [Bar84].
Nevertheless, especially for readers unfamiliar with λ-calculus, we sug-
gest starting with Hindley and Seldin. We also remark that the proofs of
the following results are actually subsumed by the results on the labeled
calculus that we give in section 5.3.

The first notions we need are those of residual of a redex (note that in
the proof of correctness we have already met this concept using graphs)
and permutation of a reduction. To introduce them, let us recollect
what we did learn by analyzing the example of (I (I y)). The relevant
point was that the syntactical equivalence of the redexes RT (T with
history R) and ST (T with history S) is incidental, for the redex T in
(I y) is respectively a residual of S w.r.t. R and a residual of R w.r.t. S.
Abstracting from the contingent syntax of λ-calculus that equates the
result of the two reductions above, there is clearly no reason to equate
RT and ST .

The previous point is settled by introducing a permutation operation

on redexes such that two reductions T
ρ
! T ′ and T

σ
! T ′ are permutation

equivalent only when ρ is a suitable permutation of the redexes in σ. By
the way, in this framework the word permutation must be interpreted
in a wide sense, for the contraction of a redex might cause duplication
of another redex following it; thus, permuting a reduction, its length
might shrink or expand. In the previous example, since R and S are
distinct redexes of the initial term, the corresponding reductions cannot
be equated by permutation. Furthermore, in such a formal setting we
should not use the name T to denote the redex of (I y); taking into
account that reducing R the redex T is what remains of the redex S,
while reducing S the redex T is what remains of R, we should rather use
the names S/R (the residual of S after R) and S/R. It is then intuitive
that in order to get two equivalent reductions, the reductions R and S

should be completed reducing S/R and R/S, respectively. Namely, while
RS/R and SR/S will not be equated as redexes with history, the two
reductions RS/R and SR/S are obviously equivalent by permutation.

To denote the residual of a redex, let us assume that we can mark some
redexes of a λ-term by underlining them and associating a name to each
underlining. For instance, let us consider again the term of Figure 5.1

(∆ (F I)
S
)

R

we have underlined the redexes R and S of (∆ (F I)) using the names R

and S (we say that the redexes are underlined by R and S, respectively).

5.1 Zig-Zag 93

Let us assume that β-reduction preserves marking and naming. It
is intuitive that, after a reduction, what is left of a redex marked by a
name R, say its residual, is formed of all the redexes of the result with
the same marking R.

Example 5.1.1 For instance,

(∆ (F I)
S
)

R

R
→ ((F I)

S
(F I)

S
)

S1→ ((I y) (F I)
S
)

S3→ ((I y) (I y))

is a marked reduction taken from the example in Figure 5.1.

The previous example also shows that when a marked redex is fired
there is no trace of its underlining in the result, which corresponds to
the fact that after its contraction a redex has no residual.

Definition 5.1.2 (residual) Let ρ : M ! N. Let us assume that R

is the only redex of M marked by an underlining with name R. The
set R/ρ of the redexes of N marked by an underlining with name R is
the residual of R under ρ. The redex R is the ancestor of any redex
R ′ ∈ R/ρ, while any of these R ′ is a residual redex of R.

The previous definition gives an example of how to use marking. In
general, given a reduction ρ : M ! N, we associate to ρ a corresponding
marked reduction assuming that each redex of M is underlined using
its name. As a consequence, two redexes R and S of M will always be
underlined using distinct names. Let us however remark that this is no
longer true for the result of a reduction (see the example above).

Let F be a set of redexes of a λ-term M. A reduction ρ : M ! N is
relative to F when no redex underlined by a name R $∈ F is reduced along
the marked reduction corresponding to ρ. For instance, the reduction
in Example 5.1.1 is relative to {R, S}.

A reduction ρ : M ! N is a (complete) development of a set of
redexes F of M when ρ is relative to F and, after the marked reduction
corresponding to ρ, N does not contain any redex underlined by a name
R ∈ F .

Theorem 5.1.3 (finite developments) Let F be a set of redexes of
a λ-term.

(i) There is no infinite reduction relative to F .

(ii) All developments end at the same term.

(iii) For any redex R of M and any pair of developments ρ and σ

relative to F , we have that R/ρ = R/σ.

94 5 Redex Families and Optimality

A first consequence of the previous lemma is that there is no ambiguity
in writing F : M → N, for we may assume that this is a notation for all
the developments of F . Besides, we get in this way a parallel reduction
of λ-terms in which a whole set of redexes is simultaneously reduced
at each step. Thus, the composition F1F2 · · · Fk denotes a sequence of
parallel reduction steps Fi : Mi−1 → Mi. In particular, as there is no
restriction on the shape of the previous sets, Fi might even be empty;
in which case Mi−i = Mi. In spite of this, we stress that ∅ $= ε (ε being
the empty reduction), then in the equivalence by permutation that we
will define later, we will have to explicitly state that the empty reduction
and the reduction relative to an empty set of redexes are equivalent.

The notion of residual can be directly extended to parallel reductions,
i.e., R/F is the residual of the redex R under (any development of) F
(let us note that by Theorem 5.1.3 such a definition is not ambiguous).
Furthermore, residuals can be also extended to a set of redexes, taking
R ′ ∈ G/F iff R ′ ∈ R/F for some R ∈ G.

Of particular relevance is the reduction F & G = F(G/F), that is,
given two sets of redexes F and G of a λ-term, the reduction obtained
reducing first the set F and then the residual of G. In terms of devel-
opments, it is not difficult to realize that, appending a development σ

of G/F to a development ρ of F , we get a development ρσ of F ∪ G.
Nevertheless, F ∪ G and F & G differ, for they denote different sets of
reduction sequences. Hence, assuming parallel reduction as atomic, we
are not allowed to equate them. What we expect to equate instead are
reductions in which redexes are permuted preserving their grouping, i.e.,
as in the two reductions F & G and G & F .

Lemma 5.1.4 (parallel moves) Let F and G be set of redexes of a
λ-term M. We have that:

(i) F & G and G & F ends at the same expression;

(ii) H/(F & G) = H/(G & F).

The main consequence of the previous lemma is that the equivalence
F & G ≡ G & F is sound. We can thus use it as the core of the equiv-
alence of reduction by permutation, the other equations being the ones
induced by the fact that we want to obtain congruence with respect to
composition of reductions.

Definition 5.1.5 (permutation equivalence) We define the permu-
tation equivalence of reductions ≡ as the smallest congruence with re-
spect to composition of reductions satisfying the parallel moves lemma

5.1 Zig-Zag 95

and elimination of empty steps. Namely, ≡ is the smallest equivalence
such that:

(i) F & G ≡ G & F , when F and G are set of redexes of the same
λ-term;

(ii) ∅ = ε;

(iii) ρστ ≡ ρσ ′τ, when σ ≡ σ ′.

The notion of residual extends to reductions too. In fact, we have the
following definition by induction on the length of the reduction:

ε/ρ = ε

(σF)/ρ = (σ/ρ)(F/(ρ/σ))

The previous definition allows us to conclude this part with the so-
called diamond property.

Theorem 5.1.6 (diamond property) For any pair of reductions ρ

and σ starting from the same term, we have that ρ (σ/ρ) = σ (ρ/σ).

That can be graphically depicted by the following diamond:

Let us remark that the previous commuting diagram is indeed the
base of the equivalence by permutation. In fact, two reductions ρ and σ

are permutation equivalent if when composing instances of the previous
diagram we can get a commuting diagram in which the composition of
the external reductions yields ρ and σ.

The diamond property is a strong version of the so-called Church–
Rosser (or confluence) property. In fact, it proves the confluence of
the calculus, showing at the same time how to complete any pair of
reductions ρ and σ in order to get the same result. Hence, an easy
corollary of the previous result is the uniqueness of the normal form (if
any).

96 5 Redex Families and Optimality

5.1.2 Families of redexes

Definition 5.1.7 (copy) A redex S with history σ is a copy of a redex
R with history ρ, written ρR ≤ σS, if and only if there is a derivation τ

such that ρτ is permutation equivalent to σ (ρτ ≡ σ) and S is a residual
of R with respect to τ (S ∈ R/τ).

Definition 5.1.8 (family) The symmetric and transitive closure of the
copy relation is called the family relation, and will be denoted with ".

Explicitly, two redexes R and S with respective histories ρ and σ are
in the same family (ρR " σS) if and only if there is a finite sequence
τ0T0, τ1T1, . . . , τkTk, with τ0T0 = ρR and τkTk ≤ σS, such that either
τi−1Ti−1 ≤ τiTi or τiTi ≤ τi−1Ti−1, for i = 1, . . . , k. That, pictorially,
gives rise to a sort of ‘zig-zag’ (see Figure 5.2).

"

M

#

$

N

P
S

R

COPY

R 2

j

%

R

$

R R

R

R

PNN 2&

j

1 3 k

1N N 3 N k

S

FAMILY

Fig. 5.2. Copy and family relations.

Example 5.1.9 Coming back to the example of Figure 5.1. We have:

RS1T1 ≤ RS1S3T3 ≥ ST ≤ RS2S4T4 ≥ RS2T2

From which we conclude that RS1T1 " RS2T2.

Let us now prove a few properties of the copy and family relations.

Lemma 5.1.10 Let ρ ≡ ρ ′ and σ ≡ σ ′. Then:
(i) ρR ≤ σS iff ρ ′R ≤ σ ′S

(ii) ρR " σS iff ρ ′R " σ ′S

Proof Obvious, since ≡ is a congruence for composition.

5.1 Zig-Zag 97

Although the previous lemma looks straightforward, its relevance is
not negligible. Indeed, it says that in order to check that two redexes
are in the same family, we can consider any other history of the redexes,
provided that they are permutation equivalent to the given ones. In
particular, it allows us to restrict our analysis to standard derivations.
In fact, let us recall that a derivation R1R2 · · · is standard when Ri is
not a residual of any redex at the left of Rj, for any i and any j < i. In
the case of parallel reductions, the derivation F1F2 · · · is standard when
the previous proviso holds assuming that Ri and Rj are the leftmost-
outermost redexes of the respective sets Fi and Fj. A relevant result
of λ-calculus—the so-called standardization theorem—ensures that, for
any reduction, there exists an equivalent one which is standard.

The permutation equivalence allows us to extend the usual preorder
given by the prefix relation between reduction sequences. Namely, let
us define ρ * σ, when ρτ ≡ σ for some reduction τ.

Lemma 5.1.11 ρR ≤ σS iff ρ * σ and S ∈ R/(σ/ρ).

Proof (⇒) By definition, if ρR ≤ σS there exists τ such that ρτ ≡ σ and
S ∈ R/τ. Thus, ρ * σ, by definition of *. Moreover, τ ≡ σ/ρ, which
implies R/τ = R/(σ/ρ) and S ∈ R/(σ/ρ). (⇐) Just take τ = (σ/ρ).

Moreover, because of the following property of interpolation:

Lemma 5.1.12 (interpolation) For any ρ * σ * τ and ρR ≤ τT ,
there exists a redex S such that ρR ≤ σS ≤ τT .

Proof By assumption, there exist reductions ρ ′, σ ′ and τ ′ such that
ρρ ′ ≡ σ, σσ ′ ≡ τ, ρτ ′ ≡ τ and T ∈ R/τ ′. Thus ρτ ′ ≡ ρρ ′σ ′, and by
left-cancellation τ ′ ≡ ρ ′σ ′. Since R has a residual T after τ ′ ≡ ρ ′σ ′,
then it must also have a residual S after ρ ′.

We can see that the copy relation is decidable, since for any σS, the
minimal redex ρR such that ρR ≤ σS is unique.

Lemma 5.1.13 (uniqueness) If ρRi ≤ σS, for i = 1, 2, then R1 = R2.

Proof Since each redex is a residual of at most one ancestor.

Exercise 5.1.14
(i) Prove that ≤ is a preorder.

98 5 Redex Families and Optimality

(ii) Prove that R " σS if and only if S ∈ R/σ. (Hint : For the if part,
apply an induction on the definition of ", using interpolation and
uniqueness.)

5.2 Extraction

Intuitively, two redexes ρR and σS are in a same family if and only if
they have been created ‘in the same way’ along σ and ρ. Nevertheless,
this intuition is not easy to formalize, since ‘creation’ is a very complex
operation in the λ-calculus.

A way to get rid of this complexity is to modify the calculus associating
a label to each (sub)term. In this labeled version of the calculus, labels
would be a trace of the history of each subterm, and in particular of
the way in which each redex has been created. This technique, which
generalizes an idea of Vuillemin for recursive program schemes, leads to
the labeled λ-calculus that will be presented in section 5.3. Here, we give
an alternative approach to zig-zag that does not involve any modification
of the calculus.

Let us assume a simplification process (extraction) such that any redex
ρR throws away all the redexes in its history ρ that are not relevant to
the ‘creation’ of R. At the end of this process, we essentially obtain the
‘causal history’ of R (with respect to ρ). The causal histories of redexes
could then be used to decide when two redexes are in the same family.
Namely, we could say that ρR and σS are in the same family when the
extraction process contracts them to the same redex τT . However, in
order to achieve such a strong result, we immediately see that we have to
fix some technical details. In particular, when several redexes participate
in the creation of R and S, the corresponding casual histories might differ
for the order in which such redexes are applied. Unfortunately, this
would immediately lead back to permutation equivalence and zig-zag.
Thus, as we want a unique ‘linear’ representation of equivalent causal
histories (namely, a unique derivation), we are forced to organize redexes
in some fixed order. But in view of Lemma 5.1.10, this does not seem a
big problem, for restricting to standard derivations fulfils the uniqueness
requirement and does not force any limitation.

In order to formally define the extraction relation, we need a few pre-
liminary definitions. In the next subsection we will show that extraction
gives indeed a decision procedure for the family relation. In fact, al-
though the results of section 5.2.1 hold for redexes whose history is in
standard form, this does not impact upon the decidability of zig-zag, for

5.2 Extraction 99

there is a recursive algorithm transforming a given reduction ρ into a
(unique) standard reduction ρs such that ρ ≡ ρs.

We say that two derivations σ : M ! N and ρ : M ! P are disjoint
if they contract redexes into disjoint subexpressions of M. This means
that σ : M = C[Q1, Q2] ! C[Q ′

1, Q2] = N, and ρ : M = C[Q1, Q2] !

C[Q1, Q ′
2] = P, for some context C[" , "] with two disjoint holes. We also

recall that, in a redex R = (λx.M N), the subterm λx.M is the function
part of R, while M is its argument part.

Finally, let us recall that σ/ρ (the residual of a derivation σ with
respect to a derivation ρ) is defined inductively by:

σ/ρ =

{
ε when σ = ε

(σ ′/ρ) (R/(ρ/σ ′)) when σ = σ ′R

where ε is the empty reduction.
The next definition gives the only issue that poses some technical

difficulties in the definition of extraction. The idea is that, given a
redex R = (λx. M N) and a reduction Rρi such that ρi works inside the
ith instance Ni of the argument part N of R. Any redex created by Rρi

could have been created by the direct execution in N of the reduction ρ

isomorphic to ρi. In order to formalize this point, let us introduce the
notation Mx[" , " , . . . , "] to represent the context obtained by replacing
a hole for all the occurrences of a given variable x occurring free in M.

Definition 5.2.1 (parallelization) Let R = (λx.M N). Let Rσ be
a derivation such that σ is internal to the ith instance of N in the
contractum M[N/x] of R (see the figure in item 4 of Definition 5.2.2).
The reduction σ||R (σ parallelized by R), is inductively defined as follows:

ε || R = ε

(Sσ) || R = (S ′/R) ((σ/F)||(R/S ′)) where S∈S ′/R, F = S ′/(RS)

Intuitively, for σ corresponds to a reduction applied to the instance
of N inserted in the ith hole of Mx[" , . . . , "], the reduction σ works on
a subterm isomorphic to N. Hence, there exists a reduction

σ ′ : C[(λx. M N)] ! C[(λx. M N ′)]

internal to N and isomorphic to σ, such that

σ : C[Mx[N, . . . , N, . . . , N]] ! C[Mx[N, . . . , N ′, . . . , N]]

The order of R and σ could then be commuted obtaining σ ′ & R. Nev-
ertheless, it is immediate that after σ ′ & R all the instances of N in

100 5 Redex Families and Optimality

C[Mx[N, . . . , N, . . . , N]] are contracted to M ′. The reduction σ ′ & R is
indeed the parallelization of σ by R, that is, σ ′/R = σ ′ & R (see again
item 4 of Definition 5.2.2).

In order to clarify how Definition 5.2.1 fits such an idea of paralleliza-
tion, we remark that, by induction on Sσ: (i) S ′ is internal to N; (ii) F
is disjoint from σ; (iii) R/S ′ is a singleton {R ′}; (iv) σ/F is internal to
the ith instance of the argument of R ′ in its contractum. By which we
conclude the soundness of Definition 5.2.1 and that, as we anticipated,
(Sσ)||R = (S ′σ ′)/R, for a suitable reduction σ ′ internal to N.

Definition 5.2.2 (extraction) The contraction by extraction # is the
union of the following four relations:

(i) ρRS #1 ρS ′, if S ∈ S ′/R;

(ii) ρ (R & σ) #2 ρσ, if |σ| ≥ 1 and R, σ are disjoint reductions;

R /$

/ R$
C[M’,N] C[M’,N’]

C[M,N] C[M,N’]
$

R

(iii) ρ(R & σ) #3 ρσ, if |σ| ≥ 1 and σ is internal to the function part
of R;

R /$

/ R$

$

R

C[M[N/x]] C[M’[N/x]]

''C[(x.M N)] C[(x.M’ N)]

(iv) ρRσ #i
4 ρσ ′, if |σ| ≥ 1, σ is internal to the ith instance of the

argument of R in its contractum, and σ ′/R = σ||R.

R /$

’$

’ / R = || R$ $

#

R

C[M[N/x]]

'C[(x.M N’)]

’

$

xC[M [N, . . . ,N’, . . . ,N]]

C[(x.M N)]'

C[M[N’/x]]

The extraction relation $ is the transitive and reflexive closure of #.

5.2 Extraction 101

Example 5.2.3 Let us consider again the example in Figure 5.1. By
parallelization, we have RS1T1 # ST and RS2T2 # ST . By the second
rule of the extraction relation, we have RS1S3T3 # RS1T1 and RS2S4T4 #

RS2T2. Summarizing,

RS1S3T3 $ ST % RS2S4T4

Which is the same result that we could have obtained by applying zig-zag
(see Example 5.1.9).

Theorem 5.2.4 ([Lév80]) $ is confluent and strongly normalizing.

Proof See [Lév80] or solve Exercise 5.2.6.

Exercise 5.2.5 Let ρiRi, σiSi, and τiTi be the redexes with history
relative to the example in Figure 5.1. Applying $ to each of them, ver-
ify that extraction is confluent and strongly normalizing. Furthermore,
check that: (i) R is the unique normal form of any ρiRi; (ii) S is the
unique normal form of any σiSi; (iii) ST is the unique normal form of
any τiTi.

Exercise 5.2.6 Prove the following fact:
Let R and S be two distinct redexes in a term M. If T, T1, T2 are
such that T ∈ T1/(R/S), T ∈ T2/(S/R), then there exists some redex
T ′ such that T ∈ T ′/(R & S) and T ∈ T ′/(S & R).

Use the previous result to prove Theorem 5.2.4.

5.2.1 Extraction and families

In this section, we shall consider standard derivations only.

Proposition 5.2.7 If there exists a reduction τT such that ρR $ τT %

σS, then ρR " σS.

Proof It is enough to observe that, if ρR $ τT , then ρR " τT . In the
first three cases in the definition of #, we obviously have τT ≤ ρR. In
the last case (see Figure 5.3) we have ρ = ρ ′R ′ρ ′′ and τ = ρ ′τ ′, for some
R ′. Let ν = τ ′/(R ′ρ ′′). Then ρ ′′ν ≡ τ ′/R ′. Moreover, R has a unique
residual T ′ after ν, and this must also be a residual of T after R ′/τ ′.
(Note that T is internal to N ′ in C[(λ. x N ′)], and that R is the image of
T in C[Mx[N, . . . , N ′, . . . , N]].) Thus, ρR ≤ ρ ′(R ′ & τ ′)T ′ ≥ τT , which
implies ρR " τT .

102 5 Redex Families and Optimality

C[M [N, . . . ,N’, . . . ,N]]x

"#

’"’#

xC[M [N’, . . . ,N’, . . . ,N’]]

R’

C[M[N/x]]

(

C[(x.M N)]' '

=

C[(x.M N)]

C[M[N’/x]]

’R’/"

" "’ / R’ = || R’

Fig. 5.3.

Also the converse of the previous proposition is true. But to prove it
we need some preliminary lemmas.

Lemma 5.2.8 If R ≤ σS, then σS $ R.

Proof If R ≤ σS, then S ∈ R/σ and σS $ R by #1.

Lemma 5.2.9 Let ρR ≤ σS. There is a reduction τT such that ρR $

τT % σS.

Proof First of all, let us note that ρ * σ, for by hypothesis ρR ≤ σS. The
proof continues then by induction on |σ|. The base case is immediate.
In fact, when |σ| = 0, also |ρ| = 0, for ρ * σ. The result follows then by
Lemma 5.2.8. So, let us proceed with the induction case.
We can distinguish two subcases, according to the length of ρ. The
easy one is |ρ| = 0, for the result follows again by Lemma 5.2.8. Thus,
let σ = S ′σ ′ and ρ = R ′ρ ′. If S ′ = R ′, then ρ ′R ≤ σ ′S and, by
the induction hypothesis, there exists τ ′T such that ρ ′R $ τ ′T % σ ′S.
Then, for τ = R ′τ ′, ρR $ τT % σS.
Summarizing, we have left to prove the case σ = S ′σ ′, ρ = R ′ρ ′, and
R ′ $= S ′. The redex R ′ cannot be external or to the left of S ′, for
otherwise R ′/σ ′ $= ∅, contradicting the hypothesis ρ * σ. Since ρ is
standard (recall the assumption at the beginning of this section), it
can be decomposed as ρ = ρf & ρa & ρd such that ρf, ρa and ρd are
respectively internal to the function part of S ′, internal to the argument
part of S ′, and disjoint from S ′ (to its right). Moreover, S ′ has a unique
residual S ′′ after ρ (recall that S ′ is leftmost w.r.t. Rq ′). We proceed

5.2 Extraction 103

then by case analysis, according to the mutual positions of R and S ′′ in
the final term of ρ.

(i) R is external or to the left of S ′′: There is a redex T external or
to the left of S ′ such that R ∈ T/ρ (easy induction on |σ|). Thus,
ρR $ T . That, by Proposition 5.2.7, implies T " ρR. Moreover,
T " σS, for ρR ≤ σS. Hence, S ∈ T/σ (see Exercise 5.1.14) and
σS $ T (by definition of #1).

(ii) R is internal to the function part of S ′′: Let ν = (ρa & ρd)/ρf.
If Sf is the unique residual of S ′ after ρf, then Sf/ν = {S ′′}.
Moreover, ν is disjoint from the function part of Sf. Thus, there
exists a redex Rf in the function part of Sf such that Rf/ν = {R},
which implies both ρR $ ρfRf and ρR ≥ ρfRf. By transitivity,
since ρR ≤ σS, we also have ρfRf ≤ σS. By Lemma 5.1.11,
S ∈ Rf/(σ/ρf). Then, let ρ ′

f = ρf/S ′ and R ′
f = Rf/Sf (i.e.,

(ρfRf)/S ′ = ρ ′
fR

′
f). We have that ρ ′

fR
′
f ≤ σ ′S and S ′ρ ′

fR
′
f $ ρfRf

(see Figure 5.4). Since ρf is in the function part of S ′ and ρf

R f

fR’

$ ’

fSS’

(

R

S

f

’f#

S"

Fig. 5.4.

is standard, S ′ρ ′
f and then ρ ′

f are standard too. We can now
apply the induction hypothesis to ρ ′

fR
′
f ≤ σ ′S, concluding that

there is τ ′T ′ such that ρ ′
fR

′
f $ τ ′T ′ % σ ′S. Therefore, S ′ρ ′

fR
′
f $

S ′τ ′T ′ % σS (let us note that also τ ′ is in the function part of S ′,
and then that S ′τ ′ too is standard). But we have already seen
that S ′ρ ′

fR
′
f $ ρfRf. So, by the Church–Rosser property of $,

there exists a derivation τT such that S ′τ ′T ′ $ τT % ρfRf. Thus,
σS $ τT % ρR.

(iii) R is disjoint from S ′′ or to its right: There is again some Rd

disjoint from the residual Sd of S ′ after ρd, such that ρR $ ρdRd

and ρR ≥ ρdRd. Then we proceed as in the previous case.

104 5 Redex Families and Optimality

(iv) R is in the argument part of S ′′: There is a redex Ra in the
argument part of the residual Sa of S ′ after ρa, such that ρR $

ρaRa and ρR ≥ ρaRa. Unfortunately, the previous reasoning
does not follow so simply in this case, since ρ ′′

a = ρa/S ′ might
not be standard. In fact, let us note that ρ ′′

a is the union of
disjoint reductions, each of them internal to a different instance
of the argument of Sa in its contractum. Anyhow, it is still true
that ρaRa ≤ σS, for ρR ≤ σS. Thus, S ∈ Ra/(σ/ρa) and there
is a redex R ′′

a ∈ Ra/Sa such that ρ ′′
aR ′′

a ≤ σ ′S. Moreover, R ′′
a is

internal to some instance, say the ith one, of the argument part of
Sa in its contractum. Let us take the component ρ ′

a of ρ ′′
a internal

to such an instance. There is a redex R ′
a such that ρ ′

aR ′
a ≤ ρR,

with ρ ′
aR ′

a standard. Moreover, S ′ρ ′
aR ′

a $ ρaRa, for ρaRa/S ′ =

(ρ ′
aR ′

a)||S ′ by #4; and ρ ′
aR ′

a ≤ σ ′S, for ρ ′′
aR ′′

a ≤ σ ′S. We can now
proceed as in case 2. By induction hypothesis, there is τ ′T ′ such
that ρ ′

aR ′
a $ τ ′T ′ % σ ′S. Therefore, S ′ρ ′

aR ′
a $ S ′τ ′T ′ % σS. But

since S ′ρ ′
aR ′

a $ ρaRa, by the Church–Rosser property of $, there
exists τT such that S ′τ ′T ′ $ τT % ρaRa. Thus, σS $ τT % ρR.

Let us comment on the structure of the previous proof. It follows
exactly the definition of $. In fact, each subcase in Definition 5.2.2
yields a corresponding subcase in the non-trivial part of the proof. It
is indeed true that this is the actual reason for the four cases in the
definition of extraction.

Proposition 5.2.10 If ρR " σS, then ρR $ τT % σS for some τT .

Proof By definition of family, ρR " σS if and only if there exists a
chain of ρiRi such that ρ0R0 = ρR, ρnRn = σS, and for all 1 ≤ i ≤ n

either ρi−1Ri−1 ≤ ρiRi or ρiRi ≤ ρi−1Ri−1 (recall that we can assume
without loss of generality that all the ρi are standard). By Lemma 5.2.9,
there exists τiTi such that ρi−1Ri−1 $ τiTi % ρiRi, for every i. By
the confluence of $, we conclude then that there exists τT such that
ρR $ τT % σS.

Theorem 5.2.11 (decidability of extraction) Let σ and ρ be two
standard reductions. Then ρR " σS if and only if ρR $ τT % σS for
some τT .

5.3 Labeling 105

Proof By Proposition 5.2.7 and Proposition 5.2.10.

The previous result not only establishes a full correspondence between
zig-zag and extraction, but also gives an effective procedure for deciding
the family relation. In fact, given two redexes ρR and σS, there is an
effective way for deriving the standard reductions ρs and σs respectively
equivalent to ρ and σ by permutation. Then, as extraction is effective
and terminating, we can compute the $ canonical forms ρ ′

sR
′ and σ ′

sS
′

of ρsR and σSS. If and only if ρ ′
sR

′ = σ ′
sS

′ the redexes ρR and σS are
in the same family. The previous considerations can be summarized as
follows.

Definition 5.2.12 (canonical derivation) Every standard derivation
σu in normal form with respect to $ will be called canonical.

Corollary 5.2.13 (canonical representative) The canonical repre-
sentative of a family can be effectively derived from each member ρR of
the family: it is the unique canonical derivation ρcRc such that ρsR $

ρcRc, where ρs is the standard derivation equivalent to ρ. Each family
of redexes has a unique canonical representative.

5.3 Labeling

The labeled λ-calculus is an extension of λ-calculus proposed by Lévy in
[Lév78].

Let L = {a, b, . . .} be a denumerable set of atomic labels. The set L
of labels, ranged over by α, β, . . ., is defined as the set of words over the
alphabet L, with an arbitrary level of nested underlinings and overlin-
ings.

Formally, L is the smallest set containing L and closed with respect
to the following formation rules:

(i) if α ∈ L and β ∈ L, then αβ ∈ L;
(ii) if α ∈ L, then α ∈ L;
(iii) if α ∈ L, then α ∈ L.

The operation of concatenation αβ is supposed to be associative.
The set ΛL

V of labeled λ-terms over a set V of variables and a set L of
labels is defined as the smallest set containing:

(i) xα, for any x ∈ V and α ∈ L;
(ii) (M N)α, for all M, N ∈ ΛL

V and α ∈ L;

106 5 Redex Families and Optimality

(iii) (λx.M)α, for any M ∈ ΛL
V and α ∈ L.

As usual, we shall identify terms up to α-conversion.
The concatenation α ·M of a label α with a labeled term M is defined

as follows:

(i) α · xβ = xαβ;

(ii) α · (M N)β = (M N)αβ;

(iii) α · (λx.M)β = (λx.M)αβ.

The substitution M[N/x] of a free variable x for a labeled λ-term N

in a labeled λ-term M, is inductively defined by:

(i) xα[N/x] = α · N;

(ii) yα[N/x] = yα, when y $= x ;

(iii) (M1 M2)α[N/x] = (M1[N/x] M2[N/x])α;

(iv) (λx. M)α[N/x] = (λx. M)α;

(v) (λy. M)α[N/x] = (λy. M[N/x])α.

In item (v) above, N is free for y in M, that is, no free variable of
N is captured by the binder of y. This is not a limitation, due to our
assumption on α-conversion, we can always suitably rename the variable
y in λy. M.

In the labeled system, β-reduction is defined by the following rule:

((λx.M)α N)β → β · α · M[α · N/x]

The degree of a redex R = ((λx.M)α N)β is the label α of its function
part (notation: degree(R). = α).

The formal presentation of the labeled λ-calculus given above should
not scare the reader. The main idea is indeed very simple, once shifting
from the concrete syntax of terms to their graphical representation as
syntax trees. In this context, to add a label to each subterm corresponds
to marking each edge in the tree by a label. The degree of a redex
R = ((λx.M)α N)β is the label of the edge between the corresponding
@-node of (λx.M N) and the λ-node of λx.M. Firing the redex, the
degree of R is captured between the labels of the other edges incident to
the nodes in R. Namely, between the label of the application of R and
the label of the body of the abstraction in R, and between the label of
any occurrence of the variable in R and the label of the argument part of
R. In the contractum, the pairs of edges corresponding to the previous
pairs of labels are replaced by new connections. Apart from lining, the

5.3 Labeling 107

'x

) *+1

M

NN
x x

. . .

. . .

@

M

N

,

)) 1 k

,*-

-

* +

) *+k

Fig. 5.5. Labeled β-reduction.

labels of these new edges are obtained by composing the labels of the
corresponding edges in the natural way (see Figure 5.5).

Overlining and underlining respectively represent the two ways in
which new connections are created by firing R: upwards (from the con-
text to the body M of λx.M), and downwards (from the occurrences of
the variable x in M to the instances of the argument N).

'x

x
'x

x

@

@

x

a

c

d

e

f

g

b

'x

x

@

x

a

defegb

c
'x

x

@

x

abcbd

f

ge

xabcbdefeg

Fig. 5.6. (I (I x)).

Example 5.3.1 We already observed that, when contracting (I (I x)),
after one step we get the same term (I x) whichever redex we reduced.

108 5 Redex Families and Optimality

We pointed out that this equivalence is merely incidental. This situation
is correctly handled by the labeled system, where labels allow one to
distinguish between the way in which the two terms (I x) are obtained
(see Figure 5.6). However, after one more step, the reduction ends with
the same term also in the labeled system (Figure 5.6). In fact, labeling
preserves confluence of the calculus, as we will show in the next section.

Example 5.3.2 In the λ-calculus, reducing (∆ ∆) we get a reduction
sequence composed of an infinite number of copies of (∆ ∆). As for the
previous example, in the labeled calculus this is no longer true. In fact,
the reduction of (∆ ∆) gives rise to an infinite sequence of distinguished
labeled terms (see Figure 5.7).

'x 'x

@
a

b

d e

c

@

x x

@

x x

f

g

h i

'x 'x

@

@

x x

@

x x

g

h i

abc

ebf

g

h i

dbf

'x 'x

@

@

x x

@

x x

g

h i

abcdbfg

idbfebfhdbfebf

g

h i

Fig. 5.7. (λx.(x x) λx.(x x)).

5.3.1 Confluence and standardization

In this section we shall prove the Church–Rosser and standardization
properties for the labeled λ-calculus.

For the sake of the proof of such properties, we will consider a suitable
extension of β-reduction. Namely, we will assume that the degrees of
the redex contracted reducing terms verify a given predicate P on L.
According to this, the reduction ((λx.M)α N)β → β ·α ·M[α ·N/x] will
be considered legal only when P(α) is true.

The introduction of this predicate does not cause any loss of expres-
siveness, as usual β-reduction corresponds to the case in which P is
always true. Furthermore, the use of P allows one to recover in a very
simple way many other kinds of labelings considered in the literature,
without a sensible complication of the theory of the calculus.

5.3 Labeling 109

The schema of the proofs of confluence and standardization is the
following:

(i) We shall start proving that labeled λ-calculus is locally confluent,
for any choice of the predicate P .

(ii) We shall directly prove standardization for strongly normalizable
terms.

(iii) Since it is well known that local confluence implies confluence
for strongly normalizable terms, the goal will be to exploit the
previous results in conjunction with some suitable predicate P
ensuring strong normalization. To this purpose, we shall give
some sufficient conditions for P that imply strong normalization
of every term (taking into account reductions that are legal with
respect to P only).

(iv) Finally, we shall observe that, for any pair of reductions ρ : M !

N and ρ ′ : M ! N ′, we can construct a predicate P satisfying the
above mentioned sufficient conditions, for which the reductions ρ

and ρ ′ are legal.

The proof of local confluence is preceded by some lemmas used to
prove that substitution behaves well with respect to labels. Namely, that
the usual property of λ-calculus M[N/x] ! M ′[N ′/x], when M ! M ′

and N ! N ′, holds in the labeled case too.

Lemma 5.3.3
(i) α · (M[N/x]) = (α · M)[N/x];

(ii) M[N/x][N ′/y] = M[N ′/x][N[N ′/y]/x], when x $= y and x does
not occur free in N ′.

Proof An easy induction on the structure of M.

Lemma 5.3.4 If M ! M ′, then M[N/x] ! M ′[N/x].

Proof Let us prove first the case M → M ′ by structural induction on
M:

(i) M = xα. This case is vacuous.
(ii) M = (λx.M1)α. Since the redex must be internal to M1, M ′ =

(λx.M ′
1)α, with M1 → M ′

1. By induction hypothesis, M1[N/x] →
M ′

1[N/x], and thus M[N/x] → M ′[N/x].
(iii) M = (M1 M2)α, and the redex is internal to M1 or M2. This

case is similar to the previous one.

110 5 Redex Families and Optimality

(iv) M = ((λy.M1)α M2)β, M ′ = βα · M1[α · M2/y] and P(α) is
true. By α-conversion we may suppose x $= y and y not free in
N. Then, we have M[N/x] = ((λy.M1[N/x])α M2[N/x])β, and

M ′[N/x] = (βα · M1[α · M2/y])[N/x]

= βα · M1[α · M2/y][N/x]

by Lemma 5.3.3.(i)

= βα · M1[N/x][(α · M2)[N/x]/y]

by Lemma 5.3.3.(ii)

= βα · M1[N/x][α · M2[N/x]/y]

by Lemma 5.3.3.(i)

Since P(α) is true, M[N/x] → M ′[N/x].

By iteration, we get the case M ! M ′.

Lemma 5.3.5 If M ! M ′, then α · M ! α · M ′.

Proof Trivial.

Lemma 5.3.6 If N ! N ′, then M[N/x] ! M[N ′/x].

Proof By structural induction on M:

(i) M = xα. Then, M[N/x] = α ·N, M[N ′/x] = α ·N ′, and α ·N !

α · N ′, by Lemma 5.3.5.
(ii) M = yα, where y $= x. Obvious.
(iii) M = (λx.M1)α. We have that M[N/x] = (λx.M1[N/x])α (up

to α-conversion) and that M[N ′/x] = (λx.M1[N ′/x])α. By in-
duction hypothesis, M1[N/x] ! M1[N ′/x], and thus M[N/x] !

M[N ′/x].
(iv) M = (M1 M2)α. Analogous to the previous case.

Corollary 5.3.7 If M ! M ′ and N ! N ′ then, M[N/x] ! M ′[N ′/x].

Proof By Lemma 5.3.4 and Lemma 5.3.6.

Proposition 5.3.8 (local confluence) For any pair of redexes M
R
→

M ′ and M
S
→ M ′′, there exist N and two reductions ρ and σ such that

M ′ σ
! N and M ′′ ρ

→ N.

5.3 Labeling 111

Proof By structural induction on M:

(i) M = xα. This case is vacuous.
(ii) M = (λx.M1)α. Since R and S must be internal to M1, M ′ =

(λx.M ′
1)α, M ′′ = (λx.M ′′

1)α, M1 → M ′
1, and M1 → M ′′

1 . By
induction hypothesis, there exists N1 such that M ′

1 ! N1 and
M ′′

1 ! N1. Taking N = (λx.N1)α we have done.
(iii) M = (M1 M2)α, and both redexes R and S are either internal to

M1 or internal to M2. This case is similar to the previous one.
(iv) M = (M1 M2)α, R is internal to M1 and S is internal to M2 (or

vice versa). In this case, we close the diamond in one step, firing
the unique residuals of R and S in M ′′ and M ′, respectively.

(v) M = ((λy.M1)α M2)β R
→ M ′ = βα · M1[α · M2/y]. We distin-

guish two subcases:

(a) S is internal to M1. Let M ′
1 be the reduct of M1 by S.

Then, M ′′ = ((λy.M ′
1)α M2)β → N = βα ·M ′

1[α ·M2/y].
Since M1 → M ′

1, by Lemma 5.3.4 and Lemma 5.3.5, M ′ =

βα · M1[α · M2/y] → N = βα · M ′
1[α · M2/y].

(b) S is internal to M2. Let M ′
2 be the reduct of M2 by S.

Then, M ′′ = ((λy.M1)α M ′
2)β → N = βα ·M1[α ·M ′

2/y].
Since M2 → M ′

2, by Lemma 5.3.5 and Lemma 5.3.6, M ′ =

βα · M1[α · M2/y] ! N = βα · M1[α · M ′
2/y].

(vi) As in the previous case, inverting R and S.

It is immediate to check that, extending the definitions of residual and
development to the labeled case (see Definition 5.1.2 and Theorem 5.1.3),
we have indeed that ρ = R/S and σ = S/R.

Remark 5.3.9 Let us note again that the ρ and σ are legal for any
predicate P such that both P(R) and P(S) are true. Indeed, since ρ =

R/S and σ = S/R, the degree of all the redexes fired in ρ (σ) is equal to
degree(S) (degree(R)).

It is a well known result of rewriting systems that local confluence
implies confluence for strongly normalizable terms (in the literature,
this property is known as the Newman Lemma). The proof is a simple
induction on the length of the longest normalizing derivation for the
term. So, we have the following corollary.

Proposition 5.3.10 (confluence) Let M be a strongly normalizable
term. If ρ : M ! M ′ and σ : M ! M ′′, then there exist N such that
ρ ′ : M ′ ! N and σ ′ : M ′′ ! N, where ρ ′ = σ/ρ and σ ′ = ρ/σ.

112 5 Redex Families and Optimality

Proof By Newman’s Lemma and Lemma 5.3.8 we have confluence, that
is, the existence of N, ρ ′ : M ′ ! N and σ ′ : M ′′ ! N. Anyhow, since
we want to prove that ρ ′ = σ/ρ and σ ′ = ρ/σ, let us give the proof in
full. Let us define a measure depth(") on terms, such that depth(T) is
the length of the longest reduction of T . The proof is by induction on
depth(M).

(i) depth(M) = 0. M is in normal form. Hence, ρ = σ = ε and
ρ ′ = σ ′ = ε.

(ii) The cases ρ = ε or σ = ε are trivial, since we immediately see that

ρ ′ = σ and σ ′ = ρ. Hence, let us assume ρ = M ′ R
→ P ′

ρ0

! M ′

and ρ = M ′ S
→ P ′′

σ0

! M ′′. By Lemma 5.3.8, there exists Q

such that S/R : T ′ ! Q and R/S : T ′′ ! Q. By definition,
depth(T ′), depth(T ′′) < depth(M). Hence, by induction hypothe-
sis, there are Q ′ and Q ′′ such that ρ0/(S/R) : Q ! Q ′, σ0/(R/S) :

Q ! M ′, (S/R)/ρ0 : M ′ ! Q ′ and (R/S)/σ0 : M ′′ ! Q ′′. Fi-
nally, since depth(Q) ≤ depth(T ′) and depth(Q) ≤ depth(T ′′), by
induction hypothesis we have that (σ0/(R/S))/(ρ0/(S/R)) : Q ′ !

N and (ρ0/(S/R))/(σ0/(R/S)) : Q ′′ ! N, for some N. It is now
an easy exercise to verify that

Rρ0((S/R)/ρ0)((σ0/(R/S))/(ρ0/(S/R))) = σ/ρ

and that

Sσ0((R/S)/σ0)((ρ0/(S/R))/(σ0/(R/S))) = σ/ρ

Exercise 5.3.11 Verify the final two equivalences in the proof of The-
orem 5.3.10. Moreover, we invite the reader to draw the reduction dia-
gram corresponding to the previous proof.

Exercise 5.3.12 We invite the reader to reflect on why the strong nor-
malization hypothesis is mandatory in Newman Lemma. Then, we invite
the reader to prove that the following rewriting system

a → b b → a a → c b → d

(over the set of symbolsa {a, b, c, d}) is not confluent, although it is locally
confluent.

Let us now prove standardization for strongly normalizable terms.

5.3 Labeling 113

The definition of standard and normal (leftmost-outermost) derivations
are as usual:

• A reduction M0
R1→ M1

R2→ · · ·
Rk→ Mk

Rk+1→ · · · is standard when for
any i, j such that 1 ≤ i ≤ j, the redex Rj is not a residual of a redex
in Mi−1 to the left of Ri.

• A reduction M0
R1→ M1

R2→ · · ·
Rk→ Mk

Rk+1→ · · · is normal (or leftmost-
outermost) when for any i ≥ 1 the redex Ri is the leftmost redex in
Mi.

In the following, we shall respectively use M
st
! N and M

norm
! N to

denote standard and normal reductions.
It is immediate that any normal reduction is also standard and that

normal reduction is uniquely determined. Namely, if ρ : M
norm
! N and

ρ ′ : M
norm
! N ′, then ρ is a prefix of ρ ′, or vice versa.

Definition 5.3.13 The function Abs is defined as follows:
(i) Abs((λx.M)α) = (λx.M)α;

(ii) Abs(M N)α) = Abs(αβ · P[β · N/x]) if Abs(M) = (λx.P)α.

So, Abs(M) is the first abstraction obtained by normal reduction of
M. Obviously, Abs is not always defined.

Example 5.3.14 Variables are trivial examples of terms for which Abs

is undefined. Nevertheless, for some terms the reason for which Abs

is undefined are deeper. For instance, let us take again (∆∆). Since,
(∆∆) → (∆∆) is the only contraction of (∆∆), we can never obtain an
abstraction along its reduction.

Lemma 5.3.15 Every standard reduction M
st
! (λx.N)α can be decom-

posed in the following way: M
norm
! Abs(M) ! (λx.N)α

Proof Trivial.

Proposition 5.3.16 Let M be strongly normalizable. For any ρ : M !

N, there exists a corresponding standard reduction σ : M
st
! N, such

that ρ ≡ σ.

Proof Let us call depth(M) the length of the longest normalizing deriva-
tion for M. The proof is by double induction over depth(M) and the

114 5 Redex Families and Optimality

structure of M.
If depth(M) = 0 the result is trivial. If depth(M) > 0, we proceed
instead by structural induction on M:

(i) M = xα. This case is vacuous.

(ii) M = (λx.M1)α. Then, N = (λx.N1)α, and M1 ! N1. Further-
more, M1 is a subterm of M and depth(M1) = depth(M). So, by

induction hypothesis, M1
st
! N1, and M

st
! N.

(iii) M = (M1 M2)α. Let us distinguish two subcases:

(a) N = (N1 N2)α, and the reduction M ! N is composed
of two separate reductions internal to M1 and M2. Then,

by induction hypothesis, M1
st
! N1, M2

st
! N2, and M =

(M1 M2)α
st
! (N1 M2)α

st
! (N1 N2)α = N.

(b) The reduction M ! N can be decomposed in the fol-
lowing way: M = (M1 M2)α ! ((λx.N1)β M2)α →
αβ · N1[β · N2/x] ! N, where M2 ! N2 and M1 !

(λx.N1)β. By induction hypothesis, M1
st
! (λx.N1)β,

and by Lemma 5.3.15, M1
norm
! (λx.M3)

st
! (λx.N1)β,

where Abs(M1) = (λx.M3)β. So, M3 ! N1. More-
over, M2 ! N2, and by Lemma 5.3.5 and Lemma 5.3.6,
αβ · M3[β · M2/x] ! αβ · N1[β · N2/x]. Summing up,

M = (M1 M2)α norm
! ((λx.M3)β M2)α

→ αβ · M3[β · M2/x] ! αβ · N1[β · N2/x] ! N

Let us now note that depth(αβ·M3[β·M2/x]) < depth(M).
Therefore, by induction hypothesis there exists a reduction

αβ · M3[β · M2/x]
st
! N. So, we finally have the standard

reduction:

M = (M1 M2)α norm
! ((λx.M3)β M2)α

→ αβ · M3[β · M2/x]
st
! N.

We leave as an exercise for the reader verification that the reduction σ

built in the proof and ρ are equivalent by permutation.

Remark 5.3.17 The two propositions 5.3.10 and 5.3.16 hold for every
choice of the predicate P . In particular, assuming the usual notion
of β-reduction, they hold for any subset of λ-terms that is strongly
normalizable—for instance, strong normalization might be obtained by

5.3 Labeling 115

restricting our attention to terms typable according to a suitable typing
discipline. Anyhow, we want to prove confluence and standardization for
any λ-term. So, the strategy must be to restrict β-reduction, eliminating
those reductions that cause non-termination. At the same time, we
require that the reductions involved in the theorem remain legal. Hence,
the next step is to find some sufficient conditions on P such that all terms
of labeled λ-calculus become strongly normalizable.

Let us start by introducing some notation and definitions.

Notation 5.3.18 We shall use ,(M) to denote the external label of a
labeled λ-term. In particular, ,(xα) = ,((M N)α) = ,((λx.M)α) = α.

Definition 5.3.19 The height h(α) of a label α is the maximal nesting
depth of overlinings and underlinings in it. Formally:

(i) h(a) = 0, when a is an atomic label;

(ii) h(αβ) = max{h(α), h(β)};

(iii) h(α) = h(α) = 1 + h(α).

Definition 5.3.20 We say that the predicate P has an upper bound, if
the set {h(α) | P(α)} has an upper bound.

Lemma 5.3.21 If M ! M ′, then h(,(M)) ≤ h(,(M ′)).

Proof Obvious.

Lemma 5.3.22 Let T = (. . . ((M N1)β1 N2)β2 . . . Nn)βn . If T !

(λx.N)α, then h(,(M)) ≤ h(α).

Proof By induction on n. When n = 0, the result follows by the previous
lemma. When n > 0, we must have:

• (. . . ((M N1)β1 N2)β2 . . . Nn−1)βn−1 ! (λy.P)γ

• Nn ! N ′
n

• ((λy.P)γN ′
n)β ! βnγ · P[γ · N ′

n] ! (λx.N)α

So, by induction hypothesis,

h(γ) < h(γ) ≤ h(,(βnγ · P[γ · N ′
n])) ≤ h(α)

Lemma 5.3.23 Any standard reduction M[N/x]
st
! (λy.P)α can be de-

composed in one of the following two ways:

116 5 Redex Families and Optimality

(i) M ! (λy.M ′)α and M ′[N/x] ! P.

(ii) M ! M ′ = (. . . ((x M1)β1 M2)β2 . . . Mn)βn and M ′[N/x] !

(λy.P)α.

Proof By induction on the length l of M[N/x]
st
! (λy.P)α.

(i) l = 0. Then M[N/x] = (λy.P)α. This means that either M =

(λy.M ′)α, and M ′[N/x] = P, or M = xβ and xβ[N/x] = (λy.P)α.

(ii) l > 0. We shall distinguish several subcases, according to the
structure of the term M.

(a) If M = (λy.M ′)β, then M[N/x] = (λy.M ′[N/x])β. So,
α = β and M ′[N/x] ! P.

(b) If M = (. . . ((y M1)β1 M2)β2 . . .Mn)βn , then x = y,
since otherwise M[N/x] could not reduce to a lambda ab-
straction. So, M = M ′ and M ′[N/x] ! (λy.P)α.

(c) If M = (. . . ((((λy.A)γ B)β M1)β1 M2)β2 . . .Mn)βn , then
the redex ((λy.A)γ B)β must be contracted along the stan-

dard reduction M[N/x]
st
! (λy.P)α, otherwise we could

not get an abstraction as the result of this reduction. More-
over, since ((λy.A)γ B)β is the leftmost redex in M, it is

the first redex contracted in M[N/x]
st
! (λy.P)α. Hence,

let Q = (. . . (((βγ · A[γ · B/y]) M1)β1 M2)β2 . . . Mn)βn .

We have Q[N/x]
st
! (λy.P)α. But the length of this deriva-

tion is l − 1, so we can apply the induction hypothesis.
Since M → Q, we conclude.

Lemma 5.3.24 If P has an upper bound, and the terms M, N are
strongly normalizing, then M[N/x] also is strongly normalizing.

Proof (We shall abbreviate strongly normalizable to s.n.) Let m be
the upper bound for the predicate P ; depth(M) be the length of the
longest normalizing derivation of M; and ||M|| be the structural size of
M (defined in the obvious way). The proof is by induction on the triple
+m − h(,(N)), depth(M), ||M||,.
(base case) By hypothesis, M = yα. Then, we have two possibilities:
(i) y $= x, in which case M[N/x] = yα is trivially s.n.; (ii) x = y, in
which case, M[N/x] = α · N is s.n., for N is s.n.
(inductive case) Let us classify subcases according to the size of M:

5.3 Labeling 117

(i) M = yα. Similar to the base case. In fact, proving it we did not
use the hypothesis m − h(,(N)) = 0.

(ii) M = (λy.M1)α. Then M[N/x] = (λy.M1[N/x])α. Obviously,
M1 is s.n., depth(M1) ≤ depth(M) and ||M1|| < ||M||. So, by
induction hypothesis, M1[N/x] is s.n. Thus, M[N/x] is s.n.

(iii) M = (M1 M2)α. Then M[N/x] = (M1[N/x] M2[N/x])α. Since
depth(M1) ≤ depth(M) and ||M1|| < ||M||, M1[N/x] is s.n. by
induction hypothesis. Similarly for M2[N/x]. Now, two subcases
are possible:

(a) M1[N/x] never reduces to a lambda abstraction. In this
case the reduction of M[N/x] is the composition of two
independent reductions: a reduction of M1[N/x] and a
reduction of M2[N/x]. So, M[N/x] is s.n. since M1[N/x]

and M2[N/x] are.
(b) M1[N/x] ! (λy.P)β. The case in which P(β) is false is

similar to the previous one. Then, let us assume that P(β)

is true. In this case, M[N/x] = (M1[N/x] M2[N/x])α !

((λy.P)β M2[N/x])α; furthermore, αβ · P[β · M2[N/x]/y]

is s.n. Since M1[N/x] is s.n., we can apply the standard-
ization property of Proposition 5.3.16, getting a standard

derivation M1[N/x]
st
! (λy.P)β. Then, by Lemma 5.3.23,

we have the following cases:

1. M1 ! (λy.M3)β and M3[N/x] ! P. Since the
term M = (M1 M2)α is s.n., also M ′ = αβ ·
M3[β · M2/y] is s.n. Moreover, as M ′[N/x] =

αβ ·M3[N/x][β ·M2[N/x]/y], by Lemma 5.3.4 and
Lemma 5.3.5, we have

M ′[N/x] ! αβ · P[β · M2[N/x]/y]

Moreover, since M ! M ′, h(,(M)) ≤ h(,(M ′)),
and depth(M ′) < depth(M ′), we can apply induc-
tion hypothesis. That is, M ′[N/x] is s.n., as well as
αβ · P[β · M2[N/x]/y].

2. M1 ! M ′
1 = (. . . ((xγA1)α1 A2)α2 . . . An)αn for

some M ′
1 such that M ′

1[N/x] ! (λy.P)β. Since
M1[N/x] is s.n., also P is s.n. Moreover:

M ′
1[N/x] = (. . . ((γ·N) A1[N/x])α1 . . . An[N/x])αn

By Lemma 5.3.21, h(,(γ · N)) ≤ h(β). Therefore,

118 5 Redex Families and Optimality

we have that:

h(,(N)) ≤ h(,(γ · N)) ≤ h(β)

< h(β) ≤ h(,(β · M2[N/x]))

Then, by induction hypothesis, αβ·P[β·M2[N/x]/y]

is s.n.

Proposition 5.3.25 If P has an upper bound, then every term M is
strongly normalizable.

Proof By structural induction on M.

(i) M = xα. Trivial.
(ii) M = (λy.M1)α. M1 is strongly normalizing by induction hy-

pothesis, and so is M.
(iii) M = (M1 M2)α. By induction hypothesis, M1 and M2 are

strongly normalizing. If M1 never reduces to a lambda abstrac-
tion the result is obvious. Otherwise, suppose M1 ! (λx.M3)β;
we must prove that αβ · M3[β · M2/x] is strongly normalizing.
Since M3 and M2 are strongly normalizing, so are αβ · M3 and
β · M2. Thus, by Lemma 5.3.24 we conclude.

Theorem 5.3.26 (Church–Rosser) If σ : M ! N and ρ : M ! P,
then there exists a term Q such that N ! Q and P ! Q.

Proof Let σ : M = M0
R1→ M1

R2→ . . .
Rn→ Mn = N and ρ : M = M0

S1→

P1
S2→ . . .

Sm→ Pm = P. Let Pσ and Pρ be the predicates defined in the
following way:

(i) Pσ(α) if and only if ∃i, 1 ≤ i ≤ n, α = degree(Ri);
(ii) Pρ(α) if and only if ∃j, 1 ≤ j ≤ m, α = degree(Sj).

Let P = Pσ

⋃
Pρ. Obviously, P has an upper bound, and since the two

reductions σ and ρ are legal for P , M is strongly normalizable (with
respect to P). Then, by Proposition 5.3.10, we conclude.

Theorem 5.3.27 (standardization) If M ! N, then M
st
! N.

Proof Similar to the previous one, using Proposition 5.3.16 in the place
of Proposition 5.3.10.

5.3 Labeling 119

Exercise 5.3.28 (difficult) Prove that if σ : M ! N and ρ : M ! P,
then there exists a term Q such that ρ/σ : N ! Q and σ/ρ : P ! Q.

Exercise 5.3.29 (difficult) Prove that if ρ : M ! N, then there exists

a standard reduction ρs : N
st
! Q such that ρ ≡ ρs.

Remark 5.3.30 In the proof of the Church–Rosser property (Theo-
rem 5.3.26) we have not explicitly seen how closing reductions are done.
Anyhow, the previous exercise shows that, similarly to when proving
local confluence, the diamond is closed by the image of the reduction on
the opposite side. Furthermore, let us note that this property is in some
sense encoded into the proof of Theorem 5.3.26: the predicate P that
we choose is exactly the one that enables families that were present in
the initial reductions ρ and σ.

5.3.2 Labeled and unlabeled λ-calculus

We shall now prove one of the most interesting results of the labeled
λ-calculus. As we noted when studying families, in the unlabeled case
there are pairs of reductions starting and ending with the same pair of
terms that cannot be considered equivalent (recall the example (I (I x))).
We pointed out with an example that this is not the case in the labeled
calculus. In this section we will prove that this is a general property of
labeled λ-calculus. In fact, we will see that given two terms M and N

such that M ! N, then there is a unique standard reduction M
st
! N.

Definition 5.3.31 Given a labeled term M, we call τ−1(M) the corre-
sponding unlabeled term obtained by erasing all labels. Formally:

(i) τ−1(xα) = x;

(ii) τ−1((λx.M)α) = λx.τ−1(M);

(iii) τ−1((M N)α) = (τ−1(M) τ−1(N)).

We shall now introduce a new measure for labels that will become
useful in proving the next proposition.

Definition 5.3.32 The size ||α|| of a label α is the sum of the total
number of letters, overlinings and underlinings in α. Formally:

(i) ||a|| = 1 if a is an atomic label;

(ii) ||αβ|| = ||α|| + ||β||;

(iii) ||α|| = ||α|| = ||α|| + 1.

120 5 Redex Families and Optimality

Lemma 5.3.33 If M ! M ′, then ||,(M)|| ≤ ||,(M ′)||.

Proof Immediate.

Proposition 5.3.34 For every pair of labeled terms U, V such that U !

V, there exists exactly one standard reduction U
st
! V.

Proof If U ! V , by the standardization theorem there exists at least
one standard reduction σ : U ! V . We must prove that this is unique.
The proof is by induction on the length l of σ and the structure of U.
(base case) U = V = xα. Then the only standard reduction is the empty
one.
(inductive case)

(i) U = xα. This case has been already considered.

(ii) U = (λx.U1)α. Then V = (λx.V1)α and U1
st
! V1 with a standard

reduction σ ′ of length l. By induction hypothesis σ ′ is unique,
and so is σ.

(iii) U = (U1 U2)α. σ must be either of the kind

U = (U1 U2)α st
! (V1 U2)

st
! (V1 V2)α = V

or

U = (U1 U2)α norm
! ((λx.U3)β U2) → αβ · U3[β · U2/x]

st
! V

where (λx.U3)β = Abs(U1).
We prove first that, in the labeled system, all standard reductions
between U and V are of a same kind. Indeed, suppose we have
two standard reductions ρ and τ of different kinds. If ρ is of the
first kind above, we also have ,(V) = α = ,(U). On the other
side, if τ is of the second kind, by Lemma 5.3.33, we have

||,(U)|| = ||α|| < ||,(αβ · U3[β · U2/x])|| ≤ ||,(V)||

and thus ,(U) $= ,(V).
Coming back to the proof of the proposition, we can thus distin-
guish two subcases, according to the kind of standard reduction
σ.

(a) If σ is of the first kind, the result follows by induction,

since the standard reductions U1
st
! V1 and U2

st
! V2 are

unique.

5.3 Labeling 121

(b) If σ is of the second kind, every other standard reduc-
tion must be of the same kind. Since the initial part of
the derivation is normal, this must be common to every
such reduction. Since, by induction on the length of the
derivation, there exists a unique standard reduction from
αβ · U3[β · U2/x] to V , σ is unique too.

Note that the previous proposition does not hold in the (unlabeled)
λ-calculus (take for instance U = (I(I x)) and V = (I x)). We also invite
the reader no to confuse the previous property with the one that Theo-
rem 5.3.27 induces on the unlabeled λ-calculus. In fact, in the unlabeled
calculus we can still say that given a reduction ρ : M ! N, there is a

unique standard reduction ρs : M
st
! N equivalent to it (see also Exer-

cise 5.3.29). Nevertheless, two non-equivalent reductions connecting the
same pair of terms lead to two distinct standard reductions. This is no
longer true in the labeled calculus where two reductions are equivalent
if and only if they connect the same pair of terms (see next theorem).
In a sense, the labeled λ-calculus does not make syntactical mistakes
identifying terms coming from ‘different’ derivations. This intuition is
formalized by the following theorem.

Theorem 5.3.35 Let U be a labeled λ-term with M = τ−1(U). Let
σ : M ! N and ρ : M ! P. Consider the labeled reductions σ1 : U ! V

and ρ1 : U ! W respectively isomorphic to σ and ρ. Then:
(i) σ ≡ ρ if and only if V = W;

(ii) σ * ρ if and only if V ! W.

Proof

(i) Let σ ′
1 and ρ ′

1 be the standard reductions corresponding to σ1

and ρ1, respectively. Then, σ ≡ τ if and only if σ1 ≡ τ1 if and
only if σ ′

1 = τ ′
1. But for the previous proposition, σ ′

1 = τ ′
1 if and

only if V = W.

(ii) By definition, σ * ρ if and only if there exists τ such that στ ≡ ρ.
Let τ1 : V ! T be the labeled reduction isomorphic to τ. By the
previous item, στ ≡ ρ if and only if T = W. So, σ * τ if and only
if V ! W.

122 5 Redex Families and Optimality

5.3.3 Labeling and families

Proposition 5.3.36 If M ! N in the labeled lambda calculus, and S is
a redex in M, then all residuals of S in N have the same degree as S.

Proof Let us start with the case M
R
→ N. Let R = ((λx.A)α B)β

and S = ((λy.C)γ D)δ. The proof is by cases, according to the mutual
positions of R and S in M.

(i) R and S are disjoint. Trivial.

(ii) If S contains R in C (respectively D), then the (unique) residual of
S in N is of the form ((λy.C ′)γ D)δ (respectively ((λy.C)γ D ′)δ,
which has the same degree as S.

(iii) If R contains S in A, then S has a unique residual in N of the form
((λy.C[α · B/x])γ D[α · B/x])δ ′

, where only the external label δ

can be modified into δ ′ (this happens when A = ((λy.C)γ D)δ).

(iv) If R contains S in B, then all residuals of the redex S in N are of
the form ((λy.C)γ D)δ ′

, where only the external label δ can be
modified into δ ′ (this happens when B = ((λy.C)γ D)δ).

Exercise 5.3.37 Reformulate the proof of the previous proposition in
terms of labeled syntax trees. Note in particular that the four cases in
the proof correspond in order to: (i) the edge of the redexes appear in
disjoint subtrees; (ii) the edge of R is in the subtree of the application
corresponding to S; (iii) the edge of S is in the body of the abstraction
of R; (iv) the edge of S is in the subtree of the argument of R. In
particular, note that the last one is the only case in which the edge of R

is duplicated.

Proposition 5.3.38 If M
R
→ N and S is a redex in N created by R then

||degree(R)|| < ||degree(S)||.

Proof Let R = ((λx.A)α B)β. Three cases are possible:

Upward creation. In M there is a subterm (((λx.A)α B)β D)δ where
A = (λy.C)γ. Then, S = ((βα · A[α · B/x]) D)δ = ((λy.C[α ·
B/x])βαγ D)δ and ||α|| < ||βαγ||.

Downward creation. In A there is a subterm of the form ((x)ε D)δ

and B = (λy.C)γ. Then, S = ((x)ε D)δ[α · (λy.C)γ/x] =

((λy.C)εαγ D)δ, and ||α|| < ||εαγ||.

5.3 Labeling 123

Identity. This is a combination of the two previous cases. Namely,
we have a subterm in M of the form (((λx.A)α B)β D)δ where
A = xε and B = (λy.C)γ. Then, S = ((βα · A[α · B/x]) D)δ =

((λy.C)βαεαγ D)δ and ||α|| < ||βαεαγ||.

Definition 5.3.39 (INIT) We shall say that the predicate INIT(M) is
verified by a labeled term M if and only if the labels of all subterms of
M are atomic and pairwise distinct.

Proposition 5.3.40 Let M be a term such that INIT(M) holds. For
any reduction M ! N, a redex S in N is a residual of a redex R in M if
and only if they have the same degree.

Proof The only if direction is Proposition 5.3.36. For the if direction,
we proceed by induction on the length l of the reduction M ! N. If
l = 0, the result follows by the conditions imposed by INIT(M). If l > 0,

let M ! N ′ P
→ N. By hypothesis, there exists a redex R in M with

the same degree as S. Since, by INIT(M), all redexes in M have atomic
degree, the degree of S must be atomic too. This means that S cannot
be created by the firing of P, since otherwise ||degree(S) > 1||. So, S

must be the residual of a redex S ′ in M ′ with the same degree as R. By
induction hypothesis S ′ is a residual of R, and so is S.

Theorem 5.3.41 Let ρR and σS be two redexes with histories ρ : M !

N and σ : M ! P. Let us take the corresponding isomorphic reductions
ρ1 : U ! V and σ1 : U ! W in the labeled system (the initial labeling
of U can be arbitrary). If ρR " σS, then R and S have the same degree
(in V and W, respectively).

Proof This is an easy corollary of Theorem 5.3.35 and Proposition 5.3.36.

Let us remark again that the previous theorem holds for any labeling of
the initial term M. According to the intended interpretation of labeling
as the name associated to all the edges with the same origin, the previous
theorem states that this interpretation is sound. In fact, all redexes in
the same family with respect to a given initial term are marked by the
same label.

124 5 Redex Families and Optimality

In Chapter 6 we shall prove the converse of Theorem 5.3.41, but under
the (essential) assumption that INIT(U) holds. In fact, according to the
idea that all redexes in the initial term are in different families and
then unsharable, all the edges of the initial term must be marked with
different (atomic) labels—in other words, the initial term is not the
result of some previous computation or equivalently, we do not know
its history. Under this assumption, we will be able to prove that two
redexes are in the same family only if they have the same degree. Let
us note that Proposition 5.3.40 is not enough to give this equivalence
between the equivalence families and degree. In fact, Proposition 5.3.40
proves the result in the case of atomic labels, but does not allow us to
immediately extend it to the case of composite degrees. Let us compare
this with the situation in extraction relation. Also in that case it is
immediate to prove that when a redex R has an ancestor S in the initial
term, then S is the canonical representative of R plus its history (see
Lemma 5.2.8). The difficult part in proving uniqueness of a canonical
representative is when the redex is created along the reduction (see the
rest of section 5.2). In the labeled case, the difficult part will be to show
the uniqueness of this canonical representative in terms of labels, i.e.,
that two canonical representatives for extraction cannot have the same
degree.

5.4 Reduction by Families

In this section we aim to find the syntactic counterpart of an evaluator
never duplicating redexes, according to the notion of duplication induced
by the family relation (i.e., the zig-zag relation defined in Section 5.1).
We introduce a strategy of derivation by families, a parallel reduction in
which at each step several redexes in the same family can be reduced in
parallel. The idea is that by systematically reducing in parallel all the
redexes in a given family, another member of that family cannot appear
later on during the computation. This follows from the interpolation
property of Lemma 5.1.12.

In order to formalize these ‘parallel’ derivations, we first generalize
the finite development theorem.

Definition 5.4.1 Let [ρR] = {σS | σS " ρR} be the family class of ρR.
Let ρ = F1 · · · Fn. Then,

FAM(ρ) = {[F1 · · · FiR] | R ∈ Fi+1, i = 0, 1, . . . , n − 1}

5.4 Reduction by Families 125

is the set of family classes contained in ρ.

Definition 5.4.2 (development of family classes) Let X be a set
of family classes. A derivation ρ is relative to X if FAM(ρ) ⊆ X. A
derivation ρ is a development of X if there is no redex R such that
[ρR] ∈ X .

Theorem 5.4.3 (generalized finite developments) Let X be a (fi-
nite) set of family classes. Then:

(i) There is no infinite derivation relative to X .

(ii) If ρ and σ are two developments of X then, ρ ≡ σ.

Proof

(i) Let X be a finite set of family classes with respect to the ini-
tial term M. Let us assume that INIT(M) is true. Let Γ =

{degree(ρR) | [ρR] ∈ X } and P = {α | h(α) ≤ max{h(β) | β ∈ Γ } }.
By Theorem 5.3.41, any family class has a unique degree. Hence,
Γ is finite and P has an upper bound. By Proposition 5.3.25,
any labeled derivation legal for P is finite. Since any derivation
relative to X is legal for P , we conclude.

(ii) Let us observe that, if ρ and σ are relative to X , then ρ&σ is also
relative to X . Now, by definition, if ρ and σ are two developments
of X , then ρ ≡ ρ& σ and σ ≡ ρ & σ. Thus, ρ ≡ σ by transitivity.

Let us now prove our claim that, after the development of a set of
families X , no redex in a family contained in X can be created along the
reduction. The main lemma is preceded by a more technical property
useful for its proof.

Lemma 5.4.4 Let ρR be the canonical derivation of σS. Then ρ * σ if
and only if ρR ≤ σS.

Proof The if direction follows by definition of copy relation. Let us
focus on the only-if direction. Let τ be the standard derivation of σ.
Then τS # ρR and ρ * τ, since τ ≡ σ. Furthermore, it suffices to prove
ρR ≤ τS. We proceed by induction on |τ|.
If τ = 0, then S # ρR implies ρ = 0 and R = S. Thus, ρR ≤ τS.
Let τ = Tτ ′. Since both ρ and τ are standard, there are two cases:

126 5 Redex Families and Optimality

(i) ρ = Tρ ′ and ρ ′R is the canonical derivation of τ ′S. Then ρ * τ

implies ρ ′ * τ ′ by left cancellation. Therefore, ρR ≤ τS because,
by induction, ρ ′R ≤ τ ′S.

(ii) Tρ ′R ′ # ρR, where ρ ′R ′ is the canonical derivation of τ ′S. Then
ρ ′ * ρ/T , by definition of #. This fact and ρ * τ imply ρ/T *
τ/T = τ ′. Therefore, ρ ′ * ρ/T * τ ′ and, by induction, ρ ′R ′ ≤
τ ′S. By the interpolation property (Lemma 5.1.12), there is S ′

such that ρ ′R ′ ≤ (ρ/T)S ′ ≤ τ ′S. Then, T(ρ/T)S ′ ≤ (Tτ ′)S =

τS. Moreover, ρ(T/ρ)S ′ ≤ τS, for T(ρ/T) ≡ ρ(T/ρ). Finally,
S ∈ R/(T/ρ), since ρR is canonical and ρ(T/ρ)S ′ " ρR. Thus,
ρR ≤ τS.

Lemma 5.4.5 Let ρ be a development of X .
(i) Let σS be the canonical derivation of ρR. Then σS ≤ ρR.

(ii) For every σS such that ρ * σ, [σS] $∈ FAM(ρ).

Proof

(i) By hypothesis, σ is relative to X . Then σ * ρ, since σ can
always be extended to a development στ of X and στ ≡ ρ, by
Theorem 5.4.3. Thus σS ≤ ρR, by Lemma 5.4.4.

(ii) By contradiction. Let σS ∈ FAM(ρ), ρ = ρ1Fρ2 and R ∈ F
such that ρ1R " σS. Let ρ ′R ′ be the canonical derivation of
ρ1R and σS. By definition, ρ ′ is relative to FAM(ρ). Therefore,
ρ ′ * ρ and, by transitivity, ρ ′ * σ. Therefore, ρ ′R ′ ≤ σS, by
Lemma 5.4.4. By the interpolation property (Lemma 5.1.12),
there exists T such that ρ ′R ′ ≤ ρT ≤ σS. But this contradicts
the hypothesis that ρ is a development of X , since under this
hypothesis ρ should also be a development of FAM(ρ).

5.4.1 Complete derivations

We can finally define the reductions by families we are interested in.

Definition 5.4.6 (complete derivation) We say that the derivation
F1 · · · Fn is complete if and only if Fi $= ∅ and Fi is a maximal set of
redexes such that

∀R, S ∈ Fi. F1 · · · Fi−1R " F1 · · · Fi−1S

5.4 Reduction by Families 127

for i = 1, 2, . . . , n.

The following lemma shows that complete derivations are particular
developments.

Lemma 5.4.7 Every complete derivation ρ is a development of FAM(ρ).

Proof By induction on |ρ|. The base case is obvious. Let ρ = σF , where
F is a maximal set of redexes in the same family. Then, by inductive hy-
pothesis, σ is a development of FAM(σ). Therefore, by Lemma 5.4.5(ii),
there is no σ ′S, σ * σ ′, such that [σ ′S] ∈ FAM(σ). By contradiction,
let us assume that there exists R such that ρR " σS. Namely, let us
assume that ρ is not a development of FAM(ρ). Let τS ′ be the canonical
derivation of σS. Then τ * σ * ρ = σF . Moreover, by Lemma 5.4.5(i),
τS ′ ≤ ρR and, by the interpolation lemma (Lemma 5.1.12), there exists
T such that σT ≤ ρR. This means that σT " σS with R ∈ T/F , inval-
idating the hypothesis that F is a maximal set of redexes in the same
family.

Complete derivations contract maximal set of copies of a single redex.
When complete derivations are considered, this means that deciding if
two redexes are in the same family may be safely reduced to checking
the copy-relation.

Lemma 5.4.8 A derivation ρ = F1 · · · Fn is complete if and only if,
for i = 1, . . . , n, Fi is a maximal set of copies. Namely, for any i, there
exist σiSi and τi such that σiτi ≡ ρi and Fi = S/τi.

Proof

(only-if direction) Let ρ be a complete reduction and R be a redex with
history ρ. Let F be the set of redexes T such that ρR " ρT . Let
F ′ be a set of redexes containing R and such that there exist σS

and τ with στ ≡ ρ and F ′ = S/τ. We shall prove that F = F ′.
Surely, F ′ ⊆ F , by definition of ". By the completeness of ρ

and Lemma 5.4.7, ρ is a development of FAM(ρ). Let ρ ′R ′ be the
canonical derivation of ρR. Then ρ ′R ′ ≤ ρR, by Lemma 5.4.5(i).
Therefore, for every S ∈ F , ρ ′R ′ ≤ ρS; which means F ⊆ F ′,
for F ′ is maximal.

(if direction) By contradiction. Let us assume that ρ is complete
and that there exists i such that Fi is not a maximal set of
copies. Let R ∈ Fi. Therefore, there is S $∈ Fi such that, for

128 5 Redex Families and Optimality

some τT , τT ≤ F1 · · · Fi−1R and τT ≤ F1 · · · Fi−1S. Then,
F1 · · · Fi−1R " F1 · · · Fi−1S, which invalidates the hypothesis
that Fi is a maximal set of redexes in the same family.

Exercise 5.4.9 Prove that for any reduction ρ : M ! N there exists a
complete reduction ρc equivalent to ρ (i.e., ρc ≡ ρ).

Proposition 5.4.10 Let ρ be a complete derivation. We have that |ρ| =

!(FAM(ρ)), where !(FAM(ρ)) is the cardinality of FAM(ρ).

Proof Easy consequence of Lemma 5.4.7 and of the requirement that
the steps of complete derivations are non-empty.

Reasoning in graphs, it will be useful to have names for each link
participating in a β-reduction.

Definition 5.4.11 In β-reduction, the links that are consumed by and
created by reducing a redex will be referred to as indicated in Figure 5.8.

'x

M

N

N N

xx

redex

body

variablevariable

M

substitution substitution

result
@

context

argument

Fig. 5.8. Links involved in β-reduction.

Lemma 5.4.12 Let F1 · · · Fn be a complete derivation. Then:
(i) Each new link created by a (parallel) reduction is marked with a

label that did not previously appear in the expression.

(ii) The labels on result links created by Fi are different from the
labels on substitution links. The labels on two result links created
by Fi are identical if and only if the labels on the antecedent
context, redex and body links are respectively equal. The labels

5.5 Completeness of Lamping’s Algorithm 129

on two substitution links created by Fi are identical if and only
if the labels on the antecedent variable, redex and argument links
are respectively equal.

Proof Easy, by definition of labeling and complete derivation.

5.5 Completeness of Lamping’s Algorithm

Lévy’s work concluded in 1980 leaving open the issue of designing a λ-
evaluator implementing complete reductions. This issue lay dormant for
ten years before Lamping awakened it presenting its evaluator in 1989.

Having the formalization of Lévy optimality at hand we can now prove
that the algorithm presented in Chapter 3—a simplified version of Lamp-
ing’s theorem—fits Lévy’s completeness requirement. Most of the defi-
nitions and results in this section are due to Lamping [Lam89].

In order to prove that Lamping’s algorithm is complete, it suffices to
show that all the redexes in a maximal set have a unique representation
in the sharing graphs. Let us be more precise on this point.

Let G be a sharing graph obtained along the reduction of [M]. Let T

be the λ-term that matches with G (see Definition 3.5.13). Correctness
implies that ρ : M ! T (see Theorem 3.5.15). Furthermore, let ρc be a
complete reduction equivalent to ρ (see Exercise 5.4.9), we have to prove
that in G all the redexes in the same family have a unique representation,
in this way contracting such a shared redex we would contract a maximal
set of redexes. In terms of labels, to prove completeness means showing
that any β-redex edge in G represents only and all β-redexes of T with
the same label.

The proof will be pursued exploiting the latter correspondence of la-
bels. Nevertheless, it is not trivial, for the correspondence between edges
and connections in the sharing graph is not a function from labels to
identity connections (i.e., sequences of edges crossing fans or brackets
only). Namely, uniqueness of representation might not hold for edges
with the same label that are not β-redexes.

For instance, let us consider the example in Figure 5.9. The edge
marked u in the sharing graph in Figure 5.9(1) represents a set of edges in
the syntax tree associated to the graph, all with the same label. However,
as soon as the fan-@ interaction is contracted (see Figure 5.9(2)), the
edge u is split into the two (distinct) paths u ′ · v and u ′ · w. The
representations of these paths in the syntax tree are the same as u, since
a fan-@ interaction does not change the syntax tree matching the sharing

