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Résumé

Cette thése propose plusieurs résultats sur les co-k-plexes, qui sont des ensembles
de sommets induisant un graphe avec un degré maximum k — 1.

La premiére partie de la thése explore plusieurs caractérisations d’une nou-
velle sous-classe de graphes parfaits, appelés graphes contraction parfaits. Ce
sont I’ensemble des graphes parfaits restant parfaits aprés contraction de n’importe
quel ensemble d’arétes. Cette classe de graphes est caractérisée de quatre
maniéres différentes. Parmi ces résultats, un graphe est contraction parfait si et
seulement s’il est parfait et que la contraction de n’importe quelle aréte préserve
sa perfection. Cela permet une caractérisation des graphes contraction parfait
en termes de sous-graphes induits interdits, ainsi qu’un algorithme polynomial
pour leur reconnaissance. Le utter graphe u(G) d’un graphe G est un graphe
dont les stables sont en bijection avec les co-2-plexes de G. Il est démontré que
u(G) est parfait si et seulement si G est contraction parfait. Puisque le probléme
de stable de poids maximum est solvable en temps polynomial sur les graphes
parfaits, il en va de méme pour le probléme de co-2-plex de poids max sur les
graphes contraction parfait. Une formulation étendue pour le polytope co-2-
plex des graphes contraction parfait est obtenue en considérant le polytope de
I’ensemble des stable de son utter graphe. Notez que cette formulation devient
compacte pour les graphes chordaux. De plus, avec des contraintes d’intégrité,
cette formulation devient une formulation ILP valide pour n’importe quel graphe
(, conduisant & une comparaison entre cette formulation ILP étendue et la for-
mulation classique de la littérature. D’un point de vue théorique, cette nouvelle
formulation a une relaxation linéaire de meilleure qualité, et d’un point de vue
expérimental, plusieurs implémentations de cette nouvelle formulation sont pro-
posées et se révélent compétitives.

La deuxiéme partie de la thése concerne le probléme k-defective coloring qui
consiste a recouvrir les sommets d’un graphe avec un nombre minimum de co-k-
plexes. Ce probléme est formulé comme une formulation set covering contenant
une variable par co-k-plex, et résolu en utilisant une méthode de branch and
price. Un algorithme de branch and price pour le k-defective coloring proposé
par Furini et al. est d’abord décrit et mis en ceuvre en utilisant le framework
SCIP, et plusieurs améliorations sont proposées pour les cas k = 1,2. Pour k =
1, des inégalité de rang un de Chvatal-Gomory sont d’abord ajoutées de maniere
dynamique lors de la résolution de la relaxation linéaire a chaque noeud de ’arbre
de branchement. L’ajout de contraintes dans un cadre de génération de colonnes
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est généralement réalisé lorsque le critére de convergence de la génération de
colonnes est atteint, ce qui donne la priorité a la génération de nouvelles colonnes
plutot qu’a de nouvelles lignes. D’autre part, la génération de colonnes est
connue pour souffrir du tailing off effect qui consiste en une séquence d’ajout de
variables non améliorantes. Pour résoudre ce probléme, plusieurs alternances
entre les phases de cutting et de pricing sont étudiées et en particulier deux
stratégies paramétrées sont congues pour se débarrasser du tailing off effect. La
génération de colonnes peut étre stabilisée en utilisant des inégalités optimales
duales. Cette technique consiste & ajouter au RMP un ensemble de colonnes
supplémentaires correspondant a des inégalités ne coupant aucun point optimal
du probléme dual. Cette méthode est expérimentalement efficace pour stabiliser
la génération de colonnes a chaque nceud de ’arbre de branchement. Différentes
facons de combiner les inégalités de renforcement et les inégalités optimales
duales sont étudiées. Pour k = 2, le probléme de pricing se réduit a calculer un
probléme de co-2-plex pondéré maximum. Par conséquent, une variante de la
méthode de branch and price dans laquelle le pricing est résolu en utilisant la
formulation ILP de la premiére partie de la thése est évaluée expérimentalement.
De nouvelles inégalités duales sont proposées pour la stabilisation du cas k=2.
Contrairement a ce qui existe dans la littérature, les inégalités duales proposées
peuvent couper chaque solution optimale du dual. Cependant, chaque solution
primale entiére avec des valeurs positives dans les colonnes supplémentaires peut
étre transformée en une solution entiére du probléme d’origine avec la méme
valeur optimale. Une amélioration expérimentale significative est observée pour
le probléme de 2-defective coloring.



Extended abstract

This thesis proposes several results about co-k-plexes, which are vertex sets in-
ducing a graph with maximum degree k — 1 and the k-defective coloring which
consists in covering the vertices of a graph with a minimum number of co-k-
plexes. The thesis is split into two parts, each starting with a dedicated state-
of-the-art chapter.

The first part investigates several characterizations of a new subclass of per-
fect graphs that we call contraction-perfect graphs, which is the set of perfect
graphs remaining perfect after the contraction of any edge set.

Contractions in perfect graphs We characterize this graph class in four
different manners. Among those results, we prove that a graph is contraction-
perfect if and only if it is perfect and the contraction of any single edge preserves
its perfection. This yields a characterization of contraction-perfect graphs in
terms of forbidden induced subgraphs, and a polynomial algorithm to recognize
them. On such graphs, solving the maximum weighted co-2-plex problem is
doable in polynomial time. This is done by considering what we call the utter
graph u(Q@) of a graph G, whose stable sets are in bijection with the co-2-plexes
of G. We show that u(G) is perfect if and only if G is contraction-perfect and
as the maximum stable set problem is solvable in polynomial time on perfect
graphs [I] we obtain the polynomiality result of the maximum weighted co-2-
plex problem on contraction-perfect graphs.

The maximum weighted co-2-plex problem We investigate an ex-
tended formulation for the co-2-plex polytope of contraction-perfect graphs ob-
tained by considering the stable set polytope of its utter graph. Note that this
formulation becomes compact for chordal graphs. Moreover, with additional
integrity constraints, this formulation becomes a valid ILP formulation for any
graph G, leading to a comparison between this extended ILP formulation with
a formulation of the literature. From a theoretical point of view, our formu-
lation has a better relaxation value than the formulation of the literature, by
considering a subset of inequalities obtained when projecting our formulation
on the natural variable set. From an experimental point of view, we propose
different implementation variants of our formulation and conclude that they are
competitive with the one from the literature.
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The second part of the thesis is about column generation: this method
permits to solve exponential variable set-sized ILPs, by considering a sequence
of subsets of variables and recursively solving the associated restricted master
problem (RMP) until a convergence criterion is met. We first describe a general
column generation method from the literature solving the k-defective coloring
proposed by Furini et al. [2]. We then implement this method within the SCIP
framework to let us add new techniques. This method is based on a set covering
formulation, that is an Integer Linear Programming Formulation obtained by
considering a 0/1 matrix M and that has the following form where 1 is a column
vector of ones:

minl Tz
Mx > 1
r < 1
z > 0

We investigate how the results on set covering polytopes behave within this
framework for the k-defective coloring for k € {1,2}. Note that, for k = 1, this
problem is the well-known graph coloring problem.

The graph coloring problem and alternation strategies The latter
meets an algorithm proposed by Mehrotra and Trick for the coloring problem [3]
in the case k = 1. The study of covering polytopes leads us to consider Chvéatal-
Gomory constraints to improve the case £ = 1. Adding constraints within a
column generation framework is often done in the literature when the column
generation convergence criterion is met, which set a priority to generate new
columns instead of new rows. On the other hand, column generation is known
to suffer from the tailing off effect that consists of a sequence of non-improving
subsets of variables. To tackle this issue, we tried to alternate between cutting
and pricing and in particular proposed two parameterized strategies hoping that
cutting earlier would help to get rid of the tailing-off effect. The second improve-
ment of this framework has been proposed in the literature [4] under the name
of dual optimal inequalities: this technique consists in adding to the RMP a
set of columns that are inequalities cutting no optimal points of the dual RMP.
This method has been experimentally successful in stabilizing the column gen-
eration for the case k = 1, we hence tried to combine primal/dual inequalities
and alternation strategies in several manners.

Defective colorings and integer linear programming Finally, we in-
vestigate whether the results of the first part of the thesis give improvements
on this framework for the case & = 2. Note that, for a given k, the general
framework needs an efficient algorithm to compute an exact maximum weighted
co-k-plex: we then use our ILP formulation for solving the co-2-plex problems.
For k = 2, Chvatal-Gomory constraints do not improve the relaxation value of
the associated formulation, but, we propose to use dedicated valid inequalities,
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called triangle constraints. We also propose a set of dual inequalities for any
k and showed that it implied significant improvements for the case k = 2. We
then applied a technique similar to our work on the case k = 1 combining pri-
mal and dual inequalities, for the case k = 2. Note that the dual inequalities
we propose are of a new type that has not been investigated in the literature:
they may cut every dual optimal point but, when considered as variables of the
primal, they never add integer solutions that cannot be mapped into an integer
solution of the original problem with the same optimum value. Surprisingly,
these variables interact well with SCIP’s primal heuristics. We then obtain a
significant experimental improvement for the 2-defective coloring problem.

Finally, we recap the results of the thesis and give perspectives for each of
the chapters.
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Notations, definitions and
mathematical tools

Graph definitions

A graph is a mathematical structure composed of a set of vertices, some linked
by edges and some not. We denote such a structure by G = (V, F) meaning
that the graph G has vertex set V and edge set E. All the graphs in this thesis
are simple and connected meaning that every edge is unique (F is a set) and a
path exists between all pair of vertices. Given a graph G = (V, E), we denote
its complement by G = (V,E), where E = {uv € E : wv ¢ E, u # v}. We
denote by V(G) (resp. E(G)) the vertex (resp. edge) set of G. Two vertices u
and v are adjacent if uv € E(G). A vertex is universal if it is adjacent to all
the other vertices. Given a subset of vertices W C V, let E(WW) denote the set
of edges of G having both endpoints in W and 6(W) the set of all edges having
exactly one endpoint in W. When W is a singleton {w}, we will simply write
d(w). We say that the edges in §(w) are incident to w, and two edges sharing
an endpoint are also said incident. A matching is a set of pairwise nonincident
edges. For F' C E, let V(F') denote the set of vertices incident to any edge of
F. Given W C V, the graph G[W| = (W, E(W)) is the subgraph induced by W
in G. When H is an induced subgraph of G, we say that G contains H. Given
a vertex u € V, we denote by N, = {w € V : vw € E} its neighborhood in G,
and by N, = N, U {u} its closed neighborhood. Two vertices u and v are false
twins if N,, = N, and true twins if N, = N,.

A clique (resp. stable set) is a set of pairwise adjacent (resp. nonadjacent)
vertices. A coloring consists in associating a color with every vertex such that no
two adjacent vertices have the same color. To cover any clique K, it is necessary
to use at least | K| colors, which implies that for any graph G, w(G) < x(G). We
denote by w(G) (resp. a(G)) the size of the largest clique (resp. stable set) of G
and the chromatic number x(G) is the minimum number of colors of a coloring.
A path (resp. hole) is a graph induced by a set of vertices {v1,...,v,} whose
edge set is {v;vi41: i=1,...,p—1} (vesp. {vivir1: i=1,....,p—1}U{viv,}
with p > 4). Note that this definition usually corresponds to induced paths. A
subset of vertices induces a path (resp. hole) if its elements can be ordered into
a sequence inducing a path (resp. hole). An antipath (resp. antihole) of G is a

11
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path (resp. hole) of G. The size of a graph H is |V (H)|, and its parity is the
parity of |V (H)|.

The contraction of an edge uv in G consists of deleting v and v, and adding
a new vertex w and the edges wz for all z € N, U N,. This new graph is
denoted by G/uv. For F C E, we denote by G/F the graph obtained from G
by contracting all the edges in F. The image of a vertex v of G in G/F is the
vertex of G/F to which v is contracted, and the image of a set of edges L is
the set of the images of the vertices of V(L) in G/F. An edge uv and a vertex
w are adjacent by contraction if w is adjacent to ., in G/uv, where x,, is the
image of uv in G/uv. In other words, at least one of uw and vw is in E. Two
nonadjacent edges uv and xy are adjacent by contraction if contracting both
edges results in two adjacent vertices, that is, d({u,v})Né({z,y}) # 0. A minor
of a graph is a subgraph obtained by deleting vertices, edges, or contracting
edges.

Given a total order on a finite set of elements, an interval is a subset of
consecutive elements following that order. The interval graph G of a given
finite set of intervals 7 is the graph having one vertex per interval in Z and
an edge between two vertices if their corresponding intervals have a nonempty
intersection. A set of intervals is nested if every couple of intervals either has
an empty intersection or one is contained in the other. A minor of a graph is
obtained by deleting vertices, edges, and/or contracting edges.

A split graph is a graph whose vertex set can be partitioned into a stable
set and a clique. A graph is split if and only if it does not contain Cy or its
complement as an induced subgraph. A trivially perfect graph is an interval
graph built from a nested interval set. Equivalently, a trivially perfect graph is
a graph with no hole or path of size 4 as an induced subgraph. For k > 3, a
k-hole-free graph is a graph whose holes are all of size at most k£ as an induced
subgraph. The 3-hole-free graphs are referred to as chordal graphs.

A graph G is called perfect if w(H) = x(H) for every induced subgraph
H of G. Perfect graphs are recognizable in polynomial time [5]. The strong
perfect graph theorem characterizes perfect graphs in terms of forbidden induced
subgraphs and will be described in the first chapter of Part [I]

A series-parallel graph is a graph that is obtained from a single edge by
applying recursively one of the two following operations: add a parallel edge to
an existing one, replace an edge uv by a new vertex w and two edges uw and
vw. The graphs are characterized as those having no clique of size 4 as a minor.

The notion of k-plexes and co-k-plexes will be present in all the thesis so we
give it particular attention.

Definition 0.0.1. A k-plex is a set W of vertices inducing a graph where every
vertex has a degree at least |W| — k.

Cliques are 1-plexes. This notion was introduced in 1978 by Seidman and
Foster [6] to seek communities in a graph with more freedom than when looking
for cliques.

12
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Definition 0.0.2. A co-k-plex is the complement of a k-plex. Accordingly, a
co-2-plex is a set of vertices inducing a subgraph of maximum degree at most
one.

Analogously, stable sets are co-1-plex. The underlying optimization problem
is to find a maximum weight k-plex in a given weighted graph. For any fixed
k and hence for k = 1, this problem is NP-hard [7]. Hence, by complementing
the graph, so is the problem of finding a maximum co-2-plex.

Polyhedral definitions

A half-space H is a set of points of a d-dimensional space respecting a single
linear constraint, i.e. H = {z € R¥aTx < b} for a € R? and b € R. A polyhe-
dron P is the intersection of a finite set of half-spaces {Hq, ..., Hx} where H; =
{z € R¥a;x < b;}, i.e. if A is the matrix whose lines are a; for i € {1,... k},
and b the vector of b; for all i € {1,...,k}, then P = {z € R Az < b}. The
system Ax < b is called the H-representation of P. A bounded polyhedron is
a polytope. The dimension of a polytope is the dimension of the smallest affine
space which contains it.

Let P = {x € R Az < b} be a d-dimensional polyhedron, if d = ¢, we say
that P is full-dimensional. An inequality ax < «q is called a facet defining
inequality if PN {x € R? | ax = ap} is a (d — 1)-dimensional polyhedron.
Given z* € P, let Az < b be the maximal set of linear constraints of the H-
representation of P such that Az* = b, if A has rank d, then z* is a vertezx of
P. A polytope P can equivalently be described as the convex hull of a finite set
of points, we call such a description a V-representation of P.

A cone C is a set of points satisfying the property that x € C implies that
M € C VA € RT. A polyhedron whose H-description is Az < 0 is called a
polyhedral cone. In this thesis, all cones will be polyhedral.

Given a set of points z1,...,x, € R", a linear combination is a weighted
sum of such points: Zle Aix; where \; € R. A conic combination is a linear
combination where each \; is nonnegative. A convexr combination is a linear
combination where each \; is nonnegative and Zle A = 1.

Integer linear programming

An integer linear program (ILP) is defined by a set of variables z; i € {1,...,q} =
1, linear constraints on variables x, a linear function to maximize /minimize, and
integrality constraints on variables x:

max wx
Axr < b
v, €Zt Viel

Optimizing a linear function over an H-polyhedron is known to be polynomial
in the size of A using the ellipsoid method [8], but optimizing over such a discrete
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set is much more complicated since the optimal given by the ellipsoid method
may not be an integer. It is, actually, NP-hard since knowing if a polyhedron
contains an integer point is already NP-complete as 3-CNF-SAT can be reduced
to it [9]. We recall that 3-CNF-SAT is the problem of finding an assignment of
binary variables verifying a binary formula in conjunctive natural form with at
most 3 literals by clauses.

Since a polyhedron P is a convex set, the optimum of a linear function over
P is attained on one of its vertices. This implies that when all vertices of P have
integer I components, solving any MILP on P is polynomial with the ellipsoid
method.

A linear system Ax < b is Totally Dual Integral (TDI) if for all ¢ € Z™

min by
such that { 5% g bounded, the dual of such program ATy =c has
Ax <b y>0

an integer optimal solution. It is an important concept in MILP since such a
system satisfying b € Z™ induces an integer polyhedron [I0] that is a polyhedron
having integer valuated vertices.

A totally unimodular matriz is a matrix whose determinant and subdetermi-
nants are all 1,-1 or 0. It is well known that totally unimodular matrices yield
TDI systems [I1].

When solving an ILP, we often try to find valid inequalities that are inequal-
ities cutting no integer points to the constraint set Az < b to try cutting its
fractional extreme points. Any conic combination of the constraints Az < b is
always dominated: it is verified by all points satisfying Az < b, but when it
contains fractional coefficients it can be strengthened as follows: let ax < « be
such a combination, |a|z < « is also a valid inequality, knowing that x must
be integer, |a]x < |a] also gives a valid inequality. This constraint is then
called a Chvdtal-Gomory constraint. The (finite) set of all non-dominated such
constraints is called the elementary Chvdtal closure. Chvatal [12] proved that by
applying iteratively a finite number of times this procedure, one always obtains
the convex-hull of the integer set of points.

Given an ILP formulation F, we call the polytope obtained by replacing
integrality constraints by bounds on variables, the polytope subjacent to F.

Branch and Bound

A Branch and Bound is an exact algorithm solving an optimization problem, it
is an enumeration algorithm based on a branching tree whose leaves correspond
to solutions of the problem. To avoid enumerating all the solutions, at each node
of the tree, local and upper bounds on the optimal solution should be computed.
Let us consider a maximization problem: when the local upper bound of some
node np is lower or equal to the lower bound of ns, all the solutions associated
with leaves having n; as a parent will be dominated by a solution associated
with a leaf having no as a parent, the subtree starting at node n; can hence be
safely pruned.
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For such an algorithm to be efficient, it is important to compute good-quality
upper-lower bounds. When solving a MILP formulation, the linear relaxation
objective value given by any exact linear optimization algorithm (meaning that
we ignore the integrality constraints) gives a valid upper bound, while every
feasible solution yields a valid lower bound. For this reason, one may be inter-
ested in having a linear relaxation objective value close to the objective value of
the optimal point satisfying integrality constraints. To do so, additional rein-
forcement constraints may be added to the MILP to cut the fractional optimal
points and hence improve the local upper bounds.

Branch and Cut

A Branch and Cut algorithm is used when the MILP formulation we want to
solve has an exponential number of constraints or when we want to add rein-
forcement cuts such as Chvatal-Gomory constraints for example, it is a branch
and bound approach to which we add separation rounds. In that case, a subset
of constraints is considered until an optimal fractional point x* for that subset
is found. After that, the separation round is launched: it consists of finding an
inequality (among the ones unconsidered) that is violated by z*. If no inequality
cutting x* is found, and if z* does not satisfy the integrality constraints, then it
is necessary to branch: choose a fractional component z, of x* that should be
integer, create a subproblem solving the same formulation with the additional
constraint z,, < |z} | and another subproblem with the additional constraint
@y, > [z%]. This can be iterated until the best solution is found.

Sometimes, a polynomial set of constraints/variables and integrality con-
straints may be sufficient to describe the solution set. But such a formulation,
called compact, may have a bad relaxation value: the fractional optimum is
far from the integer optimum. Considering extended space formulation (adding
variables) can sometimes help to have strong formulations by making it easier to
formulate strong constraints. It also happens that considering exponential-sized
variable sets yields the best exact approach for some problems. The second part
of this thesis will highlight a family of problems for which it is the case.

Column generation

When the variable space has an exponential size in the size of the input of a
problem, it is classic to use column generation. A solution for such a MILP often
has a lot of zero components. This remark leads to considering only a subset of
variables and iteratively adding new variables until reaching the optimum. The
linear program associated with such a subset of variables is called Restricted
Master Problem. After each resolution of an RMP, a pricing subproblem will be
solved, consisting of finding an improving variable, which will be added to the
RMP. If no improving variable exists, then the optimal of the current RMP is
optimal for the original problem. This method works analogously to the simplex
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method, which adds an improving variable to the current variable base if it exists
until no such variable exists; the only difference is that for the simplex method,
finding such a variable corresponds to iterating over the variable array. With
column generation, this "variable array" has exponential size, which implies
solving an optimization problem, and hence, it is necessary to have a dedicated
method to find an improving variable that will try not to enumerate all the
possible variables. This technique will be described by an example in the first
chapter of Part [[I}

Fourier-Motzkin elimination procedure

The Fourier-Motzkin elimination procedure is an algorithm that, given the H-
representation of a polytope P = {(z,y) € RP*? Az + By < u}, permits to
compute the H-representation of proj,(P), where proj,(P) is the orthogonal
projection of P onto the subspace associated with z. The method consists of
recursively removing one variable at a time.

Projecting a single variable

Let us consider that P = {(z,y) € R? x R|Az + yb < u} where b is a column
vector. Let us partition the indices of A’s rows into three sets, I, I, I°
where IT contains the indices ¢ where b; > 0, I~ where b; < 0 and I° where
b; = 0. Let AT, A~, and A° be the submatrices of A whose rows are respectively
indexed by I, I—, I° and u™, u~, u® their rights hand sides. Let us now
consider the matrix A* whose rows are |b;| A + biAy, VieIt,jel . By
construction, b;|b;|y+b;b;y = 0, hence, A* is obtained from (A, b) by combining
the inequalities two by two and such that the y variable disappears. Let us also
consider the vector u™ whose components are equal to |b;|u;+bu;, Vi € I, j €
I~. The Fourier-Motzkin elimination procedure tells us that:

s 1)

u

A%z

y — 4
proj.(P) = {x €R A

INIA

This method removes |IT| + |[I~| rows but adds [IT| x [I7| new rows. It
linearly combines every row in I with every row in I~ such that the y variable
vanishes. Another way to understand it comes with the following rewriting:

proj.(P) = {:E eRP|Iy eR

ybt < ut — Aty 2)
yb~ > ATz —u" [
Considering two inequalities of the upside system ybj' < ul - A;-"z and

i
yb; > A7 x — uj, respectively combining them with coefficient b}, bj‘ yields

a valid inequality for proj,(P) whose only nonzeros coefficient are associated
with x variables:

+ 4= +,,— +op= — p—apt -+ _p— At
b Ay x — bl uy <bfyb; =brybl <bjui — b Alw.
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Projecting several variables

Similarly, when considering a multidimensional y, proj,(P) will be obtained
by taking any linear positive combinations of rows such that the y variables
disappear, i.e.:

proj.(P) = {x € RP|cAz < ¢b,Ve € Q4 such that ¢B = 0}. (3)

This is more complicated to consider since ¢ can have many non-zero coeffi-
cients (when y is one dimensional, it is sufficient to consider ¢ with two non-zero
coefficients). This means that the combinations we consider are no longer com-
binations of only two rows. The set of vectors ¢ form the following projection
cone where m is the number of rows of B:

Cg = {C S QT‘CB = 0}

To every coeflicient in Cp corresponds a valid inequality for proj,(P), but the
non-dominated inequalities are associated with extreme rays of C. Each element
in C is a conic combination of its generators. This implies that each inequality
associated with an interior point of Cp is dominated by the inequalities associ-
ated with its generators. Note that the number of facets defining inequalities of
proj.(P) can be exponential in the dimension of y in the worst case. Sometimes,
it still results in a polynomial number of constraints. Consider the trivial case of
projecting a hypercube of dimension n (2n variables) on a subset of m variables,
it results in a hypercube of dimension m (2m constraints when the worst case
is 2"~™). We will show an example of a projection cone in Section

Balas’s Theorem

Balas’s Theorem is used to obtain an extended formulation of the convex hull
of a finite union of polyhedrons. We give the theorem in the case of the union
of two polytopes.

Theorem 0.0.3 ([13]). Let P, = {z! € RYAlz! < b} and P, = {2? €
RZ|A%22 < b2} be two non-empty polytopes:

conv(PUP,) = proj.{z € Rd|x =ala?, Al < A% < (1M, 0< A< 1}

In practice, if P; and P, are not defined with the same number of variables,
0 components can be added to the solutions of the polytope defined with the
lowest variables set’s size.

This theorem can be generalized to the union of k polytopes Pi,..., P; by
introducing k variables, A1, ..., Ax such that Zle \; = 1 and k points 2!, ..., ¥
such that z* € \;P; for all i € {1,...,k} and then » = Ele x; belongs to

k
conv(J;_, P;)-
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The graph coloring problem

This problem is NP-hard [9]. The coloring problem has historically been among
the most important in graph theory because of two beautiful theorems that
remained conjectures for a long time: the 4 color theorem and the strong perfect
graph theorem. I will present the latter in Chapter

The four-color theorem

The 4 color theorem states that every planar graph, a graph one can draw on a
plane without crossing edges, can be colored with at most 4 colors. This result
was conjectured by Francis Guthrie in 1852. Several famous proofs turned out to
be false. In 1976, Kenneth Appel and Wolfgang Haken gave a computer-assisted
proof [14]. It was one of the first times that this type of proof was used and it
raised the question of whether a short proof exists for each provable statement.
Since then, people have been looking for a non-computer-assisted proof with no
success so far.

A few words on parameterized complexity

Tackling the graph coloring problem is a particularly hard challenge from a
computational point of view. It has been studied under the spectrum of pa-
rameterized complexity. Parameterized complexity is a field of research that
aims to find the combinatorial barrier to solve some instances by bounding a
parameter of the instance of a problem. We say that a parameterized problem
is FPT if there exists an algorithm solving this parameterized problem in time
f(k)|z|°™ where f is a computable function, |z| is the input size of the instance
and k the size of the parameter. A parameter commonly used is the size of the
solution, for example, if we consider the set of graphs for which the optimal
vertex cover has size at most k, there exists a simple algorithm finding such a
cover in time 2¢|z|9(Y) (as every edge is covered by one of its extremities, it
is sufficient to make the arbitrary disjunction on k vertices). This proves that
the problem of vertex cover parameterized by the size of the cover is Fixed-
Parameter Tractable. XP is the set of parameterized problems solvable in time
|z|/*) for some computable f, it is known to strictly contain FPT. Note that
knowing if a graph is 3-colorable is already NP-hard. In particular, if P # NP,
there exists no algorithm deciding whether a graph is k colorable in time |z|/ (k).
This problem is hence para-NP-hard which stands for parameterized NP-hard,
meaning that it is NP-hard even when the parameter (number of colors in this
case) is fixed. This shows that the coloring problem is particularly hard.
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Chapter 1

Literature review on
co-k-plexes formulations and
polytopes

Given a network, it is classic to seek "communities." When it is a social network,
these communities refer to sets of individuals that share characteristics i.e. there
exists a relation between the individuals of a same community. This problem
also finds applications in other fields, such as biological network analysis, see [15]
where two prominent examples are given: protein interaction network where
each node is a protein, and two proteins are adjacent if they are known to
interact; and gene co-expression network where each node is a gene and two
genes are adjacent if their expression is sufficiently correlated (the correlation of
co-expression is higher than a given threshold). In graph theory, cliques are the
first objects one would think about to represent communities, but the fact that
each pair of vertices must be adjacent is often too restrictive. For example, given
a sports club, the set of its members can be called a community because most
of its members know each other. This remark leads to many "relaxed" clique
definitions to accept a few "missing edges" between the vertices associated with
individuals of a community, the k-plexes are one of these relaxed cliques. In
this chapter, we recall the literature on perfect graphs and the integer linear
programming (ILP) models used to compute a maximum weighted co-k-plex.
As stable sets are co-1-plexes, we start with results for the maximum weighted
stable set problem and discuss how they extend to the maximum weighted co-
k-plex problem. On the other hand, we recall the polyhedral results associated
with the subjacent polytope of these ILP formulations.

Finding a maximum weight k-plex is a topic that has been especially lively
for the past few years. For this problem, there are algorithms based on local
search [I6] (17, [I8] 19 20], heuristics [21], branch and bound algorithms, some
of which incorporate machine learning ingredients [7], 22} 23] 24], 25 26} [27], and
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quadratic models [28]. The problem of enumerating the k-plexes also received
some attention [29] [30, B1]. We focus in this literature review on results con-
cerning integer programming formulations, and polyhedral theory. We present
the results on perfect graphs with a focus on the clique polytope but the results
on the stable sets polytope are obtained by complementing the graph. This
choice has been made because of its links with the coloring problem, these will
be detailed in Section

Let us recall the complexity of finding a maximum weighted co-k-plex prob-
lem. Balasundaram et al. [7] showed that finding a maximum k-plex is NP-hard
by reducing the existence of a clique of size ¢ to the existence of a k-plex of size
kt in another polynomial-sized graph. We translate their results to the case of
co-k-plex by complementing the graph.

Theorem 1.0.1 ([7]). For any k € Z1 \ {0}, the mazimum weighted co-k-plex
problem is NP-hard.

1.1 Integer programming for the maximal
w-weighted co-k-plex problem

In this section, we present several existing ILP formulations and their reinforce-
ment inequalities for the maximum weighted co-k-plex problem. Variables z
are always associated with vertices of a graph. First, we recall a basic ILP
formulation solving the maximum weighted stable set problem.

Proposition 1.1.1. The following formulation is valid for solving the maximum
w-weighted stable set problem of a graph G(V, E) :

maxw ' x (1.1)
Ty + 2, <1 Yuv € E,
z, € {0,1} Yu e V.

Inequalities ensure that at most one extremity of each edge is chosen.
However, they can also be interpreted as: for each vertex v and each subset of
size 1 of its neighborhood at most one vertex is taken. Analogously, one can
formulate the problem of finding a maximum co-k-plex using constraints with
vertices v and subsets of its neighborhood of size k.

Proposition 1.1.2. The following formulation is valid for solving the mazimum
w-weighted k-plex problem of a graph G(V, E) :

mawax (14)
Tu+2(U) < k Yu eV, UC N, with [U| =k, (1.5)
z, €{0,1} Vuev. (1.6)
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This formulation is not satisfying as its number of inequalities is O(|V|¥)
and it is unclear whether these constraints are strong (we will see in Chapter
later that a very few of them define facets). Balasundaram et al. [7] proposed a
formulation with |V linear inequalities for finding a k-plex. By complementing
the graph, we obtain the following.

Theorem 1.1.3 ([7]). The following formulation Ny, is valid for finding a maz-
imum w-weighted co-k-plex of a graph G = (V, E):

maxw ' (1.7)
z, € {0,1} Vu € V. (1.9)

Constraints (|1.8]) correspond to the fact that in any co-k-plex S, if v belongs
to S, at most k — 1 of its neighbors belong to S. Adding such a linear set of
constraints is sufficient to formulate the problem.

The stable set formulation (|1.2)) (1.3) can be reinforced using the following
clique inequalities.

z(K) <1 Vclique K of G. (1.10)
Analogously, cliques yield valid inequalities for V.

Theorem 1.1.4 ([7]). The following inequalities are valid for the co-k-plex
polytope:

z(K) <k Y cliqgue K of G. (1.11)

As cliques are complements of stable sets and yield strong inequalities for for-
mulation (1.2]) (1.3]), k-plexes that are complements of co-k-plexes, yield strong
inequalities for Ny as stated in the following theorem.

Theorem 1.1.5 ([7]). The following inequalities are valid for the co-k-plex
polytope:

2(K)<2k—24(k mod?2) V k-plex of K of G with |K|>3. (1.12)

Note that for the case k = 2, Constraints ([1.12)) are sufficient to yield a valid
formulation.

Theorem 1.1.6 ([32]). The following formulation is valid for the mazimum
weighted co-2-plex problem of a graph G = (V, E):

maxw' (1.13)
z(K) <2 Y 2-plex K of G (1.14)
z, € {0,1} YueV (1.15)
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One could naively think that Theorem can be generalized to give a
formulation for the co-k-plex with constraints of the type z(K) < k where K is
a k-plex(, but these constraints are not valid in general: the hole of size 4 has 4
vertices and is both a 3-plex and a co-3-plex. Note that Theorem [L.1.6|coincides
with Theorem for paths as each vertex and its neighborhood form a 2-plex
of size at most 3.

Finally, another family of valid inequality associated with holes has been
given.

Theorem 1.1.7 ([7]). Let H be an antihole of size at least k + 3 of G, the
following inequality is valid for the co-k-plex polytope:

z(H)<k+1 (1.16)
On the other hand, Stetsyuk [28] et, al. gave an integer quadratic program-
ming formulation for the maximum weighted co-k-plex problem.

Theorem 1.1.8 ([28]). The following quadratic formulation Qy is valid for the
mazimum w-weighted co-k-plex problem:

maxw ' T (1.17)
Ty X T(Ny) <k —1 YoeV (1.18)
o € {0,1} Yoev (1.19)

1.2 Polyhedral results

In this section, we recall the literature on the co-1-plex, co-2-plex, and co-k-plex
polytopes. The study of the co-1-plex polytope goes through the links between
the packing polytope and perfect graphs and ends with the strong perfect graph
theorem.

For any graph G = (V, E), let PE be the co-k-plex polytope, that is the
convex hull of the incidence vectors of the co-k-plexes of G:

PE = conv({x® | S is a co-k-plex of G}).

Clique polytope and strong perfect graph theorem

First, note that if a graph contains a clique of size k, then its smallest coloring
needs at least k colors. The "Strong perfect Graph conjecture" enunciated
by Claude Berge states that the graphs for which the chromatic number is
equal to the size of its largest clique and for which this property is true for
every induced subgraph are precisely the graphs containing no odd hole nor odd
antihole as an induced subgraph. This conjecture is essential, in particular for
its polyhedral aspects. Let M be a 0/1 matrix, M is perfect if the polyhedron
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Py ={x € R" | Mz < 1,z > 0} has only integer vertices. A packing polytope
is a polytope that can be described as conv{z € {0,1}" | Mz < 1,z > 0} for
some 0/1 matrix M. In 1972, Lovasz [33] proved that the matrix M is perfect
if and only if {maxw 'z | € Py} has an integral optimum solution x for all
w € {0,1}!V] and from this result we start to understand the beautiful hidden
link between graph theory and polyhedral theory under this conjecture.

Theorem 1.2.1 ([33]). For a 0/1 matriz M of size n x m with no column of
0’s, the following statements are equivalent:

(i) M is perfect
(i) max{w'z | x € Pas} has an integral optimal solution x for allw € {0,1}"
(iii) the linear system Mz <1, x >0 is TDIL

Given a graph G, its stable set incidence matrix is a 0/1 matrix whose
columns are associated with vertices of G and the rows with inclusion-wise
maximal stable sets of GG. The coefficient associated v € V and S C V is 1 if
v € S and 0 otherwise. Let us highlight the link between Theorem and
perfect graphs by showing that when M is the stable set incidence matrix of a
perfect graph, max{w 'z | z € Py} has an integral optimal solution z for all
w € {0,1}™.

Finding a maximum w-weighted clique of a graph G with weights 0/1 cor-
responds to finding the maximum cardinality clique problem in the subgraph
induced by the vertices of cost 1, say G’. It is equivalent to solving:

max{w 'z | x € Py NZ7}

where M is the stable set incidence matrix of G. Every integer point of Py,
corresponds to a clique of G whose vertices of weight 1 form a clique of G’. Also,
by linear programming duality, the dual of {maxw x|z € Py} is:

(D) {min Z Ys

Ses

Y ys>wwweV, ySEOVSeS}
SES,

where S is the set of maximal stable sets of G and S, is the set of stable sets
of G containing v. D is a linear program whose variables are associated with
inclusion-wise maximal stable set and each constraint to a vertex of GG, requiring
that the sum of the variables associated with stable sets containing v is greater
or equal to 1 when w,, = 1, i.e. when v is a vertex of G’. An integer solution of
this dual corresponds to a covering of the vertices of G’ by stable sets, it hence
corresponds to a coloring of G’. Hence, if G is perfect, the maximal clique and
the minimal coloring of G’ coincide, which implies that the primal’s optimal
integer solution coincides with the dual’s optimal integer solution which implies
that Pjs has an optimal integer vertex for w.

By Theorem [I.2.3] it follows that if G is a perfect graph, then its stable
set incidence matrix M is perfect. This gives one side of Chvéatal’s Theorem: a
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graph is perfect if and only if its clique polytope is described by clique and trivial
inequalities 1975 [34]. The other side of the proof uses the following proposition
by Edmonds, the replication lemma: "Adding twins preserves perfection" and
the characterization of imperfect graphs from Lovasz.

Proposition 1.2.2 ([35]). Let T be the set of integer solutions of a system
T ={Az <b, x >0}, T yields an integer polytope if and only if for all integer
vector ¢

max{c' I | T €T} =min{b'y | y"A>¢, y>0}

Theorem 1.2.3 ([36]). An imperfect graph contains an induced subgraph G =
(V, E) such that w(G) x a(G) < |V|.

Note that Theorem also proves that G is perfect if and only if its
complement is. Finally, another alternative proof of Chvéatal’ is given by Cor-
nuéjols [37]. This proof is the strongest I know in the sense that it additionally
proves that G is perfect if and only if its complement also is perfect. Moreover,
this proof does not make use of Theorem [1.2.1| nor Proposition but exten-
sively uses the replication lemma. It shows that every fractional point of Py is
a convex combination of integer points.

Theorem 1.2.4 ([34]). Let G = (V, E) be a graph and M be its incidence stable
set matriz. Then G is perfect if and only if Py is integer.

This beautiful theorem characterizes the packing polyhedra defined by trivial
inequalities and facets with right-hand side 1. In fact, for any 0/1 matrix M, if
it is not the incidence matrix of the stable sets of some graph, Py, is not integer
by using the following characterization. We denote by J the matrix of all ones
and I the identity matrix.

Theorem 1.2.5 ([37]). Let M be a 0/1 matriz with no column of 0. The
following statements are equivalent:

(i) M is the incidence matriz of the stable sets of a graph.

0 1 1 1 1
() If | 1 0 1 1 1 | is a submatriz of M with columns S1, ..., Sy,
1 1.0 1 ... 1

then M contains a row v such that M5 =1 Vi e {1,...,p}.

(iei) If J — 1 is a p X p submatriz of M where p > 3, then M contains a row v
satisfying M7 =1 for all columns j of J —I.

Theorem has been told to G. Cornuéjols by M. Conforti in private
communications.

Theorem [T.2:1] also states that P¢ is integer if and only if the linear system
Mz < 1, x > 0 is TDI, which gives a surprising result: integrality of the
polytope and TDI-ness of its natural H-representation coincide.
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Later on, in 1984, Martin Grotschel, Laszlo Lovész, and Alexander Schri-
jver [1] proved using the ellipsoid method that the maximum clique and minimal
coloring problem are solvable in polynomial time on perfect graphs.

And finally, the Strong Perfect Graph Theorem was proven by Maria Chud-
novsky, Neil Robertson, Paul Seymour, and Robin Thomas in 2006 [38], which
proves Berge’s conjecture.

Theorem 1.2.6 ([38]). A graph is perfect if and only if it does not contain any
odd hole or odd antihole as an induced subgraph.

I suggest "Packing and Covering" by Gérard Cornuéjols [37] for a survey on
this topic. It has been such an inspiring book.
Co-k-plex polytope
In this section, we present the known facial results on the co-k-plex polytope.

Theorem 1.2.7 ([7]). For k € Z* \ {0}, and the co-k-plex polytope P of G,
the following hold:

) Pg is full dimensional

o 1, >0 defines a facet of ’Pg

o 1z, <1 defines a facet of ’P’CZ ifk>2
Theorem 1.2.8 ([7]). For a subset K CV with |K| > 3, the inequality (K) <
2k — 2+ (k mod 2) defines a facet of PE if and only if K is a maximal k-plex
of G.
Co-2-plex polytope

Benjamin McClosky and Illya V. Hicks investigated when the following polytope
is integer:

QG:{JJERV | 2(K) < 2 VK 2-plex of G, OSxSl}
Theorem 1.2.9 (|32]). Q¢ is integer if and only if G is a:
e path
e co-2-plex
o 2-plex
e chordless cycle with size equal to 0 mod 3.

Note that the proof of Theorem [1.2.9] proves that the constraints matrix is
totally unimodular for paths, co-2-plexes, and 2-plexes. This remark yields a
variant of perfect graphs: paths, co-2-plexes, and 2-plexes are the graphs for
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which the smallest covering by 2-plexes coincide with the largest co-2-plex and
for which this property is true in each induced subgraph.

An edge e € E of G = (V, E) is k-critical if the largest co-k-plex of G \ e is
strictly bigger than the largest co-k-plex of G. Let E} be the set of k-critical
edges, and &% be the size of the largest co-k-plex of G. This definition looks
like the definition of critical graphs recalled in Chapter [5] for the proofs of rank
facets for the covering polytope, and seems to be standard in polyhedral studies
to prove the facial structure of rank inequalities.

Theorem 1.2.10 ([32]). If (V, E}) is connected, then the inequality z(V) < €&,
defines a facet of Pg.

Benjamin McClosky and Illya V. Hicks [32] use Theoremto give facets
when G is a wheel or a web or a hole whose size differs from 0 mod 3. This
article shows that describing the co-2-plex polytope in the natural space variable
is pretty hard. By analogy with the stable set polytope, when formulating it
with inequalities associated with complements of stable sets that are cliques,
we describe the stable set polytope of perfect graphs. When we consider a
similar approach for the co-2-plex polytope, that is, formulating it with 2-plex
inequalities, we obtain a much smaller graph class. For this reason, it seems
relevant to investigate extended formulations. This is done in Chapter 3.
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Chapter 2

Contractions in perfect
graphs

Contractions in perfect graphs already have been studied under nonedge con-
tractions. The contraction of nonedges corresponds to merging the extremities
of nonedges of a graph. This topic yielded a subclass of perfect graphs called
perfectly contractile. Two nonadjacent vertices in a graph form an even pair if
every induced path between them has an even number of edges. Fonlupt and
Uhry [39] proved that contracting an even pair in a perfect graph preserves
perfection, and Meyniel proved what is called the Even Pair Lemma [40]: no
minimally imperfect graph contains an even pair. Bienstock [41] proved that
the following decision problems are CoNP-complete in the general case: decid-
ing whether a given pair of vertices of a graph forms an even pair, and deciding
whether a given graph contains an even pair. Nevertheless, in perfect graphs,
both problems become solvable in polynomial time [42].

A graph is perfectly contractile if, for every induced subgraph, a sequence of
even pair contractions yields a clique. In [43], a subclass of perfectly contractile
graphs is given, leading to a polynomial combinatorial algorithm for the coloring
problem for that class.

In this chapter, instead of contracting nonedges, we investigate contracting
edges in perfect graphs. Contracting any pair of vertices, that is, identifying
both vertices, does not always preserve perfection. In Section [2.1] we first pro-
vide a forbidden induced subgraph characterization for the graphs remaining
perfect after the contraction of any single edge. We show that these graphs are
exactly contraction perfect graphs in Section[2.1.2] This yields the forbidden in-
duced subgraph characterization of contraction perfect graphs in Section [2.1.3]
Consequently, deciding if a graph is contraction perfect can be done in polyno-
mial time.

In Section we introduce the utter graph of a graph. This yields another
characterization of contraction perfect graphs in Section [2.2.1] as those whose
utter graphs are perfect. As a byproduct, a maximum weight co-2-plex can
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be found in polynomial time in contraction perfect graphs. In Section [2:2.2]
we strengthen the link with the utter graph for a few subclasses of contraction
perfect graphs.

This chapter is overall independent of the state of the art given previously
in Chapter [1] but is the first mandatory step for us to design new algorithms to
solve the maximum weighted co-k-plex problem. Still, this chapter makes use
of the strong perfect graph theorem characterizing perfect graphs in terms of
forbidden induced subgraphs.

2.1 Contraction perfect graphs

This section investigates how contracting edges in a perfect graph impacts its
perfection. It relies on the strong perfect graph theorem [38], which states that
perfect graphs are the graphs that contain neither odd holes nor odd antiholes.
We start by characterizing when the contraction of an edge destroys the per-
fection of a graph. We define contraction perfect graphs as the perfect graphs
remaining perfect under the contraction of any edge set. In the second and third
subsections, we provide two characterizations of contraction perfect graphs: the
first one compares contractions of single edges with contractions of sets of edges,
and the second one is in terms of forbidden induced subgraphs.

We start by proving a parity result about interval graphs that will be used in
Section [2.1.1] but might be of independent interest. A set of intervals is an odd
intersection interval set if the non-empty intersection of any subset of intervals
is an interval of odd cardinality.

Lemma 2.1.1. Given an odd intersection interval set I, the union of the in-
tervals associated with every connected component of Gz has odd cardinality.

Proof. It is enough to prove the result when Gz is connected. We proceed
by induction on |Z|, the case |Z| = 1 being immediate. Let I and I’ be two
intersecting intervals of Z. Hence, I U I’ is an interval. Let Z’ be obtained from
T by replacing I and I’ by T UI’. Since Z is an odd intersection interval set,
|(TUINK| = |[INK|+|I'NK|—|INI'NK]| is odd or zero for each intersection K
of any subset of intervals of Z. Hence, 7' is also an odd intersection interval set.
Moreover, G'z/ is connected as it is obtained from Gz by contracting the edge
whose extremities are the vertices associated with I and I’. Since |Z'| < |Z], the
induction hypothesis implies that the union of intervals of Z’ has odd cardinality.
By definition, the latter set is equal to the union of the intervals of Z, which
ends the proof. O

2.1.1 When does the contraction of an edge destroy per-
fection?

By the strong perfect graph theorem, if the contraction of an edge e in a perfect
graph G destroys its perfection, this implies that G/e contains an odd hole or
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an odd antihole. Moreover, since G is perfect, the image of e must be a vertex of
such a forbidden induced subgraph. Lemmas [2.1.2) and [2.1.4] characterize when
contracting an edge yields an odd hole or an odd antihole, respectively. Both
results will be used in the proof of Theorem which characterizes when the
contraction of an edge destroys the perfection of a graph.

Lemma 2.1.2. If G/F contains a hole H for some edge set F, then G contains
a hole of size at least |V (H)|.

Proof. We proceed by induction on |F|. The result holds if |F| = 0. Otherwise,
some vertex v of H is obtained by contracting the edges of a connected subgraph
(V',F") of G with ) # F/ C F. Let a and b be the neighbors of V' in H, and
let P be an ab-path in G[V' U {a,b}]. Then, V(H) \ {v} UV (P) induces a hole
of G/(F \ F') of size at least |V(H)|, and induction concludes. O

As we shall see in Lemma [2.1.4] when the contraction of an edge destroys
the perfection of G by creating an odd antihole, this implies that G contains
the following specific structure.

Definition 2.1.3. An edge e and an even antipath P induced by (w1, ..., wp)
with p > 6 form an expanded antihole if one extremity of e is adjacent to all
vertices of P except wi,wp—1,wp, and the other extremity is adjacent to all
vertices of P except wi, wa, wp.

Figure represents an expanded antihole where (w1, ...,w,) induces an
even antipath. An edge e is involved in an expanded antihole if there exists an
even antipath forming with e an expanded antihole. Note that, by definition of
an expanded antihole, the extremities of e are not vertices of P, and contracting
wv yields an odd antihole. Moreover, if e = uv, either (u,ws,...,wp_1,v) or
(v,wa, ..., wp—1,u) induces an even antipath that forms an expanded antihole
with edge wiwy.

Note that if one relaxes the adjacency requirement in the definition an ex-
panded antihole to: "each vertex ws,...,w,—1 is adjacent to one extremity of
e", contracting e still yields an odd antihole of G/e. However, in this case, G is
not necessarily perfect. The following lemma asserts that the only case where G
is perfect and G/e contains an odd antihole of size at least 7 is when G contains
an expanded antihole.

Lemma 2.1.4. Let G be a perfect graph, H a subgraph of G, and uwv an edge
of E(H). H/uv is an odd antihole of G /uv of size at least 7 if and only if H is
an expanded antihole formed by uv and the antipath induced by V(H) \ {u,v}.

Proof. (<) By definition, if H is an expanded antihole involving wv, then H/uv
is an odd antihole of G/uw.

(=) Let us denote by w,, the vertex obtained by contracting uv. Since H/uv
is an antihole, V' (H)\ {u, v} can be ordered into the sequence (ws, ..., w,) with
p > 6 inducing an even antipath in G. The set of vertices of a maximal antipath
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Figure 2.1: An expanded antihole.

of H[N, \ v] (resp. H[N, \ u]) forms an interval of (ws,...,wp—1). Let P*
(resp. PV) be the set of these intervals, and Z = P*UP?. Since G is perfect, H
contains no antihole and then, the interval (ws, ..., wp—1) does not belong to 7.

Suppose that interval graph Gz associated to Z is not connected. Then,
there exists 7 € {2,...,p — 2} such that no interval of Z contains both w; and
wit+1. By definition of Z, {u, v, w;, w;4+1} induces a path of H with extremities
w; and w;t1. Since p > 6, there exists z € {w, w,} adjacent to both w; and
wit+1. As z is adjacent to neither u nor v, {2z, w;, u, v, w;11} induces an odd hole
of GG, a contradiction to its perfection. Hence, Gz is connected.

Note that every interval I = {w;,...,w;} of Z has odd cardinality, as oth-
erwise {w;_1,w;, ..., w;j, wjt1} would induce, together with u if I € P* or v
if I € PY, an odd antihole of G, contradicting its perfection. By Lemma [2.1.1]
since p is even and Gz is connected, Z is not an odd intersection interval set.
Moreover, the intersection of more than two intervals of Z is empty by definition
of P* and PV. Hence, there exists I € P* and I’ € PY whose intersection is
nonempty and has even cardinality. Let I = {w;,...,wg} and I' = {wy, ..., w,}
with 2 <i<j<k</{¢<p-1, Figure gives an illustration. Since |I| and
|I'| are odd and |[I NI'| iseven, 2 < i < j <k < ¢ < p—1. Suppose that
j > 3. Then, w; is adjacent to w;_1,...,Wk41 80 {w1,v,Wj_1,..., W41, U}
induces an odd antihole of GG, a contradiction. Hence, 7 = 3. Similarly, one can
prove that k = p — 2. Hence, u is adjacent to ws,...,w,_2 and v is adjacent
to ws,...,wp—1. Therefore, (w1,...,w,) and the edge uv form an expanded
antihole. O
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Figure 2.2: Illustration of the proof of Lemma (the doted lines
represent nonedges and dots the remaining vertices of the antipath).

Theorem 2.1.5. Let G = (V, E) be a perfect graph and uv € E. The graph
G/uv is not perfect if and only if G contains an even hole of size at least 6
containing uv or an expanded antihole involving uv.

Proof. (<) In both cases, contracting uv destroys perfection.

(=) Suppose that G/uv is not perfect. If G/uv contains an odd hole H, then G
contains a hole H' of size at least |V (H)| by Lemma[2.1.2] Since G is perfect,
|V (H')| is even and at least 6, and contains wv. Otherwise, G/uv contains an
odd antihole hence, by Lemma[2.1.4] G contains an expanded antihole involving
uv. O

2.1.2 Contracting an edge or a set of edges?

We prove that contraction perfect graphs are characterized by the contraction
of single edges.

Theorem 2.1.6. A perfect graph is contraction perfect if and only if it remains
perfect by the contraction of any single edge.

Proof. To prove the nontrivial direction, let G = (V, E) be a perfect graph and
F C E be such that G/F is not perfect. We will prove that G/e is not perfect
for some e € E. Without loss of generality, suppose that F' has minimum size,
that is, G/F’ is perfect for all I C E such that |F'| < |F|. Since G/F is not
perfect, it contains an odd hole or an odd antihole. Suppose that G/F contains
an odd hole C. By Lemma G contains a hole D with [V(D)| > |[V/(O)|.
Since G is perfect, |V (D)| is even and at least 6. Then, G/e contains the odd
hole D/e for any e € E(D) and thus is not perfect.
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From now on, we may assume that G and G/F’ for all F’ C E contain no
hole of size at least 5. Hence, G/F contains odd antiholes and let us denote by
(wo, ..., wp) one of them where p > 6.

We will first prove that F' is a matching. To do this, let us suppose that
F contains two adjacent edges uv and vw whose image in G/F is wgy. Let
G' = G/(F\ {uv,vw}). Since G'/{uv,vw} contains an odd antihole, and since
G’ /uv is perfect by minimality of F' and has no hole of size at least 5, then,
by Theorem G’ /uv contains an expanded antihole formed by the even
antipath Py = (wy,...wp), and the edge z,,w where z,, is the image of wv in
G

Without loss of generality suppose that z,, is adjacent to {ws, ..., wp_2}
and w is adjacent to {ws,...,w,—1}. Note that v is not adjacent to ws in
G, as otherwise G’ /vw contains the odd antihole induced by {@yw, w1, ..., wp}

—where x,,, is the image vw in G’/vw— which contradicts the minimality
assumption on F. Now, G’ contains uw as otherwise {u, v, w, w,_1,ws} induces
an odd hole of G’, contradicting its perfection. But now, G’ /uw contains the
odd antihole induced by {zy.w, w1, ..., w,} where z,,, is the vertex obtained by
contracting edge uw. This contradicts the minimality assumption on F', hence
F' is a matching.

We now prove that F' only contains one edge. Let wv and u'v’ be two edges
of F. By the minimality assumption, their images are vertices of {wy,...,wp},
and up to node relabelling, let us suppose that the image of wv is wy and
the one of v/'v’ is w; with ¢ € {1,...,p/2}. Set G = G/(F \ {uv,u'v'}). By
Lemma wv forms with Py = {w1, ..., w,} an expanded antihole of G’ /u'v’.
Similarly, v'v’ forms with P; = {w;11,...,wp, wo,...,w;—1} an expanded anti-
hole of G’ /uv. By definition of expanded antiholes, we suppose without loss of
generality that u (resp. u’) is adjacent to we (resp. w;—2) but not to wy,_1 (resp.
w;+2). Hence, H, = {u,w1,...,wp_1} induces an even antihole of G’ /u'v’, sim-
ilarly {wo, ..., wi—1,%,wiy2,...,wp, } induces an even antihole of G’ /uv. Fig-
ure gives an illustration of H, Uu’\ {w;, w;11}, which induces an antihole in
G’ of size p — 1, and hence is odd. This contradicts the minimality assumption
on F. Therefore F' cannot contain two edges, so G does not remain perfect by
the contraction of the edge of F. O

2.1.3 Characterization by forbidden induced subgraphs

By definition, a perfect graph remains perfect by any vertex set deletion. Thus, a
forbidden induced subgraph characterization may be hoped for, and this tremen-
dous result is the strong perfect graph theorem. Since perfect graphs do not
remain perfect by any edge set contraction (a hole of size 6—which is perfect—
does not remain perfect by the contraction of a single edge), there is no charac-
terization of perfect graphs by forbidden induced minors.

By definition of contraction perfect graphs, a characterization in terms of
forbidden induced minors can be directly deduced from the strong perfect graph
theorem. Indeed, if a graph is not contraction perfect, then there exists an edge
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Figure 2.3: Illustration for the proof of Theorem m
the odd antihole H, Uu'\ {w;, w;+1} of G’ is given in light green

set contraction and a vertex set deletion that gives an odd hole or an odd
antihole. Therefore, odd hole and odd antiholes are the induced minors to
be forbidden in order to ensure contraction perfection. This list of forbidden
induced minors is inclusionwise minimal because of the strong perfect graph
theorem.

A list of forbidden induced subgraphs that characterizes contraction perfect
graphs would be the set of graphs that yield an odd hole or an odd antihole
by an edge set contraction. Using Theorem [2.1.6] which limits the set of such
candidates, this section gives the minimal forbidden induced subgraph charac-
terization of contraction perfect graphs.

Corollary 2.1.7. A graph is contraction perfect if and only if it contains no
hole of size at least 5, no odd antihole, and no expanded antihole as an induced
subgraph.

Proof. (=) By Theorem and the strong perfect graph theorem, a graph
containing one of these structures is not contraction perfect.

(«=) If the graph is not perfect, then it contains an odd hole or an odd antihole.
If the graph is perfect but not contraction perfect, then there exists an edge
whose contraction destroys the perfection of the graph by Theorem [2.1.6| By
Theorem this implies that the graph contains an even hole of size at least
6 or an expanded antihole. O

The next lemma gives an example of a non trivial contraction perfect graph
class and will be used as a technical lemma. Remark that H is an induced
subgraph of G if and only if H is an induced subgraph of G.

34



CHAPTER 2. CONTRACTIONS IN PERFECT GRAPHS

Lemma 2.1.8. Antipaths are contraction perfect.

Proof. The complement P of an antipath P is a path. Since the path P is
perfect, P is perfect by the weak perfect graph theorem [44]. An antipath
only contains holes of size at most 4. An antipath contains no antihole since P
contains no hole. Moreover, an antipath contains no expanded antihole. Indeed,
any contraction of an edge uv in P yields a vertex whose neighborhood has size
at least |[V(P)| — 2. Hence the degree of such a vertex is too large for the
latter to belong to an antihole. Hence, by Lemma[2.1.4] P does not contain any
expanded antihole involving uv. The result holds by Corollary 2.1.7] O

Note that that the list of forbidden induced subgraphs of Corollary
is inclusionwise minimal. Indeed, if it were not the case, then one forbidden
induced subgraph of Corollary would contain another one as a proper
induced subgraph, which is not the case as shown in the next observation.

A graph is minimally non contraction perfect if it is not contraction perfect
and each of its proper induced subgraphs is contraction perfect.

Observation 1. Ezpanded antiholes, odd antiholes and holes of size at least 5
are minimally non contraction perfect.

Proof. Every proper induced subgraph of a hole is a set of disjoint paths and
hence is contraction perfect. Every proper induced subgraph of an odd antihole
is a set of fully connected antipaths, the complement of such a graph is a set of
disjoint paths that is contraction perfect.

We will show that expanded antiholes are minimally non contraction perfect
by considering the complement of an expanded antihole. Let us consider G
an expanded antihole. Note that, G contains no antihole of size more than 6
since it contains precisely 6 vertices whose degree is greater or equal to 3, that
are W = {u,v, w1, ws, wp_1,wp}. Indeed, since an antihole of size at least 6
is a regular graph whose vertices have degree at least 3, these are the only
candidates that may belong to such an antihole. Since G[W] is not regular, it
is not an antihole of size 6, this proves that G does not contain any holes of
size at least 6. Obviously, G does not contain any complement of an expanded
antihole as proper induced subgraphs. Now, note that the holes of G are even,
which means that G only contains even antiholes and hence, no hole of size 5.
By Corollary expanded antiholes are contraction perfect. O

Corollary 2.1.9. Recognizing contraction perfect graphs can be done in poly-
nomial time.

Proof. By Theorem deciding whether a graph G = (V, F) is contraction
perfect amounts to check whether G is perfect and if, for each contraction of a
single edge, the resulting graph is perfect. Each of these |E|+ 1 perfection tests
can be done in polynomial time [5]. O
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2.2 Utter graph and co-2-plexes

2.2.1 Perfection of the utter graph

Let S be a co-2-plex. The vertex edge representation of a S is a pair (W, F)
where W are the isolated vertices of G[S] and F are its isolated edges. Then, by
definition of co-2-plexes, F' is a matching and contracting F gives |F| isolated
vertices nonadjacent to W. In other words, W and the image of F in G/F form
a stable set of G/F of size |W|+ |F|.

We use this remark to define the utter graph of a graph G in which the
stable sets are in bijection with the co-2-plexes of G. The utter graph u(G) of a
graph G = (V, E) has vertex set V U F and two vertices in u(G) are adjacent if
and only if their corresponding elements in G are either adjacent, incident, or
adjacent by contraction in G (defined in the introduction). Figure gives an
illustration of this definition where the vertices 12 and 23 of u(G) respectively
correspond to the edges 12 and 23 of G. For each edge uv of G, G/uv is the
subgraph of (@) induced by V \ {u,v} U uv where uv denotes the vertex of
u(@) associated with edges uv. More generally, for a matching FF C E, G/F is
the subgraph of u(G) induced by V' \ V(F) and the vertices of u(G) associated
with edges in F.

The utter graph is a new type of graph that is inspired by the total graph.
The total graph of G = (V, E) also has vertex set V U E. Still, its edge set
is quite different: two elements are adjacent if they are incident edges of G,
adjacents vertices of G, a vertex of GG, and an edge of G incident to it. Let us
give an example, let G = ({u, v, w}, {uv,vw}), in its utter graph, u and vw are
adjacent, which is not the case in its total graph. These two graphs, even if
they look alike, permit us to tackle different problems; the total graph permits
to tackle a problem called total coloring, where we try to color every element of
G, that is, its edge set and vertex set such that two edges have different colors
if they are incident, two vertices have different colors if they are adjacent and
a vertex and its incident edges have different colors and such with a minimum
number of colors. It corresponds to a classic graph coloring of the total graph.

Lemma 2.2.1. There is a bijection between the co-2-plexes of G and the stable
sets of u(QG).

Proof. By definition of utter graphs, a vertex subset W and an edge set F' is a
vertex edge representation (W, F) if and only if WUT is a stable set of u(G). O

Note that by definition of contraction perfect graphs, adding a true twin to
any vertex preserves contraction perfection. Moreover, the forbidden induced
subgraph characterization also proves that adding false twins preserves contrac-
tion perfection. Indeed, none of these forbidden induced subgraphs contain false
twins. This gives the following replication lemma for contraction perfect graphs.

Lemma 2.2.2. Adding true or false twins preserves contraction perfection.
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(a) G (b) w(G)

Figure 2.4: A graph G and its utter graph u(G).

We say that a graph class is replicable if adding true twins to any graph of
that class yields another graph of that class.

Theorem 2.2.3. Let C be an induced minor closed and replicable graph class,
then G € C if and only if u(G) € C.

Proof. (<) Since G is an induced subgraph of u(G), the result follows from the
assumptions on C.

(=) Let G be obtained from G by adding, for every edge uwv € E, a twin o/
(resp. v') to u (resp. v). By construction, G contains the edge w/v'. Let F
be the set of such edges for every edge wv € E. Note that, G/F = u(G) and
that G /F is obtained by adding true twins and contracting edges. Since C is
replicable and induced minor closed, u(G) belongs to C. O

Observation 2. The conditions given in Theorem [2.2.3 are not necessary.

Proof. Consider the sequence G;y1 = u(G;), for i € ZT, where Go = Cy. Let C
be the set of all G; completed by induction with the graphs whose utter graph
is in C. Then, for any graph G and its utter graph u(G), we have that G € C
if and only if u(G) € C. Note that each G; contains a Cy and by construction,
if G is in C, then there exists i € Zt such that, G = G; or there exists k € Z+
such that u*(G) = G;. Since G is a clique if and only if u(G) is a clique, no
element of C is a clique, in particular Ko = ({v1,v2}, {viv2}) is not in C but
is an induced subgraph of every element in C. Hence C is not induced minor
closed. O

Since the class of contraction perfect graphs is replicable by Lemma [2.2.2
and induced minor closed by definition, the following equivalence i) < ii) can
be deduced from Theorem [2:2.3] We show that contraction perfect graphs are
precisely those for which the utter graph is perfect. This means that every
perfect utter graph is also contraction perfect.
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Corollary 2.2.4. The following statement are equivalent:
i) G is contraction perfect

it) u(G) is contraction perfect

it1) u(Q) is perfect

Proof. Let G = (V, E) be a graph.

(<) By definition of utter graphs, G and G/e for e € E are induced subgraphs
of u(G). Hence, all those graphs are perfect since «(G) is. By Theorem
this implies that G is contraction perfect.

(=) If G is contraction perfect, then so is u(G) by Corollary[2.2.4] By definition
of contraction perfect graphs, this implies that «(G) is perfect. O

Given a cost function ¢ on the vertices of G, let ¢, = ¢, for all u € V', and
Cuv = Cy + Cy, for all uv € E. Then finding a maximum c-weighted co-2-plex
in G is equivalent to finding a maximum c-weighted stable set in «(G), and
this can be done in polynomial time [I]. This gives the following corollary by

Theorem 2.2.41

Corollary 2.2.5. Finding a maximum weight co-2-plex in a contraction perfect
graph is solvable in polynomial time.

Therefore when «(G) is perfect, computing a minimum covering by stable
sets in u(G) can be done in polynomial time. Note that a minimum cover of a
graph by stable sets is exactly a graph coloring. A further question is whether a
graph coloring of u(G) helps us to find a minimum covering of G by co-2-plexes.
However, coloring the utter graph yields several coverings of G. Two opposite
examples can be obtained as follows: a covering using only the stable sets of
u(G)[V], which are stable sets of G; and a covering using the stables of u(G)[E]
which are sets of edges of G pairwise nonadjacent by contraction.

In Figure[2.4] a covering of G by co-2-plexes involves two co-2-plexes, whereas
a coloring of u(G) is composed of four stables sets. Hence the two problems are
not equivalent. An open question is whether a minimum co-2-plex covering
of G can be deduced from a given coloring of w(G). Indeed, in Figure
both examples given in the previous paragraphs yield minimal coverings of G

{{1,3},{2}} and {{12},{23}}.

2.2.2 Subclasses of perfect graphs

This section shows how Theorem [2.2.3| applies to other graph classes.

Trivially perfect graphs are interval graphs, split and interval graphs are
chordal. All these graph classes are contraction perfect, which is not the case
for k-hole-free graphs with k& > 4.

A graph class C is said stable by utter graphsif: G € C if and only if u(G) € C.
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Corollary 2.2.6. The split (resp. trivially perfect, interval, chordal, k-hole-
free) graphs are stable by utter graphs. However, perfect graphs are not stable
by utter graphs.

Proof. One can show that all these graph classes are induced minor closed and
replicable. We only detail the case of interval graphs.

Every induced subgraph Gz[W] of an interval graph Gz is the interval graph
built from the interval set containing intervals of Z associated with W. Con-
tracting an edge uv in Gz corresponds to replacing the intervals associated with
u and v in Z by the union of both intervals. Adding a true twin to a vertex v
in an interval graph Gz corresponds to duplicating the interval associated with
v in Z. Then, from Theorem [2.2.3] interval graphs are stable by utter graphs.

Note that, for the k-hole-free graphs, the induced minor closeness follows
from their definition and Lemma [2.1.2] A counter example for a perfect graph
to be not stable by utter graphs is Cg which is perfect, but whose utter graph
contains many Cj. O

Since the complements of perfect graphs are perfect, a natural question is
to investigate the complement of contraction perfect graphs. However, Cg is an
antihole of size 6, hence contraction perfect, but Cg is not.

Observation 3. The complement of a contraction perfect graph is not neces-
sarily contraction perfect.

Conclusion

In this chapter, we approach edge contraction in perfect graphs by character-
izing the contraction perfect graphs in several manners: by contracting either
a single edge or an edge set, by forbidden induced subgraphs and by the utter
graph perfection. As a byproduct, the recognition of contraction perfect graphs
is polynomial. Moreover, using utter graphs, the maximum weight co-2-plex
problem becomes solvable in polynomial time in contraction perfect graphs.
Finally, we focus on particular subclasses of perfect graphs.

For k = 2, it remains an intriguing question whether a coloring of the utter
graph can be used to get a minimal covering of the starting graph with co-2-
plexes. When k > 2, another interesting question is whether some extension
of utter graphs could capture co-k-plexes as familiar combinatorial objects, like
stable sets in utter graphs do for co-2-plexes. From a polyhedral point of view,
the equivalence between co-2-plexes of a graph and stable sets of its utter graph
will give extended formulations for the co-2-plexe polytope from the stable set
polytope.

Contraction perfect graphs being a new subclass of perfect graphs, one may
also be interested in combinatorial algorithms to find a maximum clique/stable
set or a minimum coloring on such graphs. Since, unlike for perfect graphs, the
complement of a contraction perfect graph is not necessarily contraction perfect,
finding a maximum clique or a stable set may lead to distinct studies.
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Chapter 3

The maximum weighted
co-2-plex problem

In this chapter, we first present a new ILP formulation for the maximum
weighted co-2-plex problem. This formulation can be seen as an improvement
of a linearization of the quadratic model Q5. We show that this formulation
provides a tighter linear relaxation than the formulation N> of Balasundaram [7]
that we will denote by A/ as we focus on the case k = 2.

We present a second formulation using the bijection of Lemma [2.2.1] between
the co-2-plexes of a graph and the stable sets of its utter graph. The inequali-
ties of this second formulation yield valid inequalities for the first formulation.
Adding these inequalities gives a formulation with a tighter linear relaxation
than the one of Balasundaram strengthened by 2-plex constraints .

The second part of this chapter is dedicated to the study of the co-2-plex
polytope. As a direct consequence of the previous chapter, we get an extended
formulation for the co-2-plex polytope of contraction perfect graphs. This ex-
tended formulation becomes compact for chordal graphs. By projecting it onto
the natural variable’s space we obtain a complete description of the co-2-plex
polytope of trees. Finally, we present our tries at projecting this formulation
onto the natural variable’s space for split graphs.

In the last part of this chapter, we compare different implementations of our
formulations and compare them with A reinforced by 2-plex inequalities.

3.1 Integer linear programming models

In this section, we exhibit new extended space ILP formulations for the maxi-
mum co-2-plex problem and compare them from a theoretical point of view.
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3.1.1 Linearizing the quadratic model

A way to obtain an integer linear programming model for the max co-2-plex
problem is to apply the classic Reformulation-Linearization Technique (RLT) [45]
on the quadratic model Qs introduced in Chapter [1| page Since a quadratic
term x,x, appears in this formulation for each edge uv, the linearization con-
sists of adding binary y variables associated with the edges of the graph and
ensuring that y,, = x,x, with the following RLT inequalities [45]:

Ty + Xy — Yuv < 1 Yuv € F (31)
Yuv < Ty Yu € V,Vuv € §, (3.2)

Replacing the quadratic terms of inequalities (1.18]) by variables y yields the
following inequalities:
y(o,) <1 YveV (3.3)

The model maximizing w 'z with x,y binary variables satisfying inequali-
ties (3.1))-(3.2) is a valid ILP model for the maximum weighted co-2-plex. How-
ever, it can be strengthened as follows.

Proposition 3.1.1. The following edge formulation, denoted by £ is valid for
the maximum w-weighted co-k-plex problem:

maxw ' (3.4)

Ty + Ty — Yuo < 1 Yuv € E (3.5)
Y(6s) < @y Yo eV (3.6)

ye € {0,1} Vee E (3.7)

x, € {0,1} YoeV (3.8)

Proof. Every binary point satisfying Inequalities (3.2)) and also satisfies
constraints . Moreover, Inequalities and (3.3) are redundant with
respect to Inequalities and the trivial inequalities: the Inequality
associated with u € V and uv € 9, is the sum of the Inequality associated
with u and y. > 0 for all e € §, \ uv, and the Inequality associated with
v € V is the sum of associated with v and z, < 1. O

As a consequence, we get that the linear relaxation of £ is tighter than
the linear relaxation of the standard linear reformulation of Q;. We now show
that £ provides a tighter linear relaxation than A . For this, we show that the
projection onto the x variables of the polytope subjacent to £ is included in the
polytope subjacent to A and that there exist graphs for which this inclusion is
strict. The polytope subjacent to £ is defined as:

Pe = {(z,y) € RY x R¥ | (z,y) satisfies ) and (3.6)}.

Indeed, trivial inequalities 0 < z, <1 Vv € V and y. < 1 Ve € FE are redundant
for £ as they are obtained as sums of its constraints. Note that no trivial
constraints are needed of x variables.

42



CHAPTER 3. THE MAXIMUM WEIGHTED CO-2-PLEX PROBLEM

Theorem 3.1.2. The projection of Pg onto the space associated with x variables
s equal to the following:

(W) + (W] = 1)z, < W] Vw eV, W C N, (3.9)
-z, <0 YveV (3.10)
xz, <1 YveV (3.11)

Proof. This projection is made as a direct application of Fourier-Motzkin pro-
cedure. The only inequalities of Pg having a negative coefficient for variables
y are nonnegativity inequalities and inequalities . They have exactly one
negative coefficient -1 on y variables. For this reason, a nondominated inequal-
ity of proj,Ps involves exactly one inequality associated with a vertex w,
a set of trivial inequalities associated with F; C ¢, a set of inequalities
associated with Fy such that (Fy, Fy) partition d,,. By setting Fy = §,, N o(W)
and hence, Fy = §,, \ F» we prove the result. O

Recall that the polytope subjacent to A denoted by Pas is defined by the
following:

T(Nu) + (|Nu| = Dy < [No VueV (3.12)
T, <1 YueV
1, <0 YueV

Note that the Inequality associated with v € V is nothing but the In-
equality associated with v and N,,. Hence, proj,(Ps) C P which implies
that £ provides a linear relaxation as tight as the one of . We prove that it is
actually tighter.

Corollary 3.1.3. Formulation £ provides a tighter linear relaxation than For-
mulation N .

Proof. Consider the star with node 1 as center and nodes 2, 3, and 4 as
leaves, see Figure The point z; = %, To = T3 =1 and #4 = 0 is an extreme
point of Py since its satisfies with equality three trivial inequalities and the
inequality associated with node 1. However,  does not belong to Pg
since it violates the constraint associated with node 1 and neighbors 2

and 3. 0

3.1.2 Formulations based on the utter graph

In Chapter [2] we established a bijection between the co-2-plexes of a graph and
the stable sets of its utter graph. Indeed, a co-2-plex S of G = (V,E) is a
vertex subset inducing graph G[S] of maximum degree one. Hence, the vertex
edge representation of S is a pair (W, F') where W contains the isolated vertices
of G[S] and F contains its isolated edges. By construction, the vertex set of
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T +axs+rxr3 < 2
0 o T1taet+xy < 2
° T3ty < 2
201 + a0+ a3 +x4 < 3

> 0 Vie{l,2,3,4}

O i

Figure 3.1: A star and the linear description of its co-2-plex polytope

u(G) is equal to V U E. Lemma asserts that (W, F) is the vertex edge
representation of a co-2-plex if and only if W U F' is a stable set in u(G).

This bijection allows us to model the co-2-plex problem as a stable set prob-
lem on u(G) as follows. Let z, Yv € V and y. Ve € E be binary variables
indicating which nodes of u(G) belong to the stable set. Since a stable set is a
vertex subset intersecting at most once each clique, we get the following stable
set formulation S.

maxw ' z + Z (W, + W) Yuw (3.13)
weE

z(W)+y(F)<1 V maximal clique WU F of u(G) (3.14)

z, €{0,1} YueV  (3.15)

ye € {0,1} Vec B (3.16)

Note that the solutions of S are the incidence vectors of the vertex edge
representations of co-2-plexes of G. As in the vertex edge representation (W, F')
of a co-2-plex S, uv € F implies that both u and v belong to S, the objective
coefficient of y,, has to be w, + w,.

In the stable set formulation S, a vertex v € V belongs to the co-2-plex
corresponding to a solution if z, = 1 or y. = 1 for some e € §,. One can apply
a linear transformation to have a binary variable associated with each vertex
v € V that equals one if and only if v belongs to the co-2-plex. This leads to
the following utter clique formulation U /C, where an utter clique of G is a couple
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(W, F) with W C V and F C F such that the vertices associated with W, F
form a clique in u(G). An utter clique (W, F) is mazimal if WU F is a maximal
clique of u(G). There is hence a one-to-one correspondence between maximal
utter cliques of G and maximal cliques of u(G).

Theorem 3.1.4. The following utter clique formulation UK is valid for the
mazximum co-2-plex problem:

max ’LUT$

YV mazximal utter clique

e(W) +y(FNEVAW)) —y(E(W)) <1 (3.17)

(W.F) of G
Y(0y) < xy YoeV (3.18)
z, € {0,1} YoeV (3.19)
ye € {0,1} Vee E  (3.20)

Proof. First, we add = variables associated with vertices of G to the stable set
formulation of its utter graph and the following constraints:

Ty =2y +y(dy) YweEV (3.21)

This gives the following formulation.

maxw 'z + Z (Wey + Wo )Y

weE
z(W)+y(F)<1 V maximal utter clique (W, F) of G (3.22)
—2, <0 VueV (3.23)
~Yuw <0 Vuw € E
z, € {0,1} YueV
ye €{0,1} Vec E
Ty — 2y —Y(0y) =0 YueV

The theorem is then proven by projecting the latter formulation onto its x
and y variable space. This is done by replacing every occurrence of z, in the
above formulation by z,, — y(d,):

e Constraints arise from Constraints : the combination yields
(W) +y(F) = > ,ewy(6(u)) < 1. Asif v € V belongs to V, then by
maximality of the clique, every vertex of u(G) associated with an edge
uv € E also belongs to F'. Hence, every variable associated with an edge
of G adjacent to only one vertex of W in u(G) will vanish. The edges of
G adjacent to two vertices of W in «(G) will have a —1 coefficient. The
coefficients of the other variables remain the same.

o Constraints (3.18) will arise from the trivial Constraints (3.23]).

45



CHAPTER 3. THE MAXIMUM WEIGHTED CO-2-PLEX PROBLEM

e And finally, w'z =w'z + > wve s (Wy + Wy)Yu
O

Note that nonmaximal utter cliques of G yield valid but redundant inequal-
ities for UK.

Proposition 3.1.5. Formulation UK is tighter than the linear relazation of £.

nothing but the utter clique inequality (3.17)) associated with the utter clique
({u, v}, 0, Ud,). Hence, Pyic C Pg. Consider a hole of size 4 (u, v, z, w). Then,
the point z}, = z; = 2% = a}, = yi, = 3 belongs to Pg but violates the utter
clique inequality associated with utter clique ({z,w}, {uv}). O

By Corollary [3.1.3]and Proposition[3.1.5, Formulation /K provides a tighter
linear relaxation than A/. We prove in Proposition that this still holds
even if we strenghten Formulation (A) with the following 2-plex inequalities
introduced in [32]:

Proof. Note that the Constraint (3.2)) associated with edge uv € E is
(3.17

2(K) <2 for all 2-plexes K of G (3.24)

Let 7 denote the polytope corresponding to the linear relaxation of N
strenghtened by the 2-plex inequalties, that is,

T = Py N {z € RV | z satisfies (3.24)}.

Proposition 3.1.6. Formulation UK provides a tighter linear relaxation than

N strenghtened by ((3.24))

Proof. By Corollary and Proposition to prove that proj(Pyx) is
included in 7, it suffices to show that the 2-plex inequalities are redundant with
respect to , and the trivial inequalities. Let K be a 2-plex of G.
By definition of 2-plexes, K induces a complete graph in which a matching has
been removed. Taking one extremity of each edge of this matching yields a node
set Kj. Then, K; is a clique of G, as well as Ko = K \ K;. Moreover, for all
v € K1 and e € E(K3), v and e are adjacent by contraction so (K, E(K3))
is an utter clique of G, and so is (K2, E(K1)). Thus, the inequality associated
with K is the sum of the utter clique inequalities associated with (K1, F(K>))
and (K3, E(K7)) and is redundant.

It remains to exhibit a graph for which the inclusion is strict. Consider the
star with node 1 as center and nodes 2, 3, 4 and 5 as leaves. The point z; = %
fori=1,...,4 and Z5 = 0 is valid for 7. Indeed, each maximal 2-plex contains
node 1 and two nodes among 2, 3, 4 and 5 so all 2-plex inequalities are satisfied.
Moreover, it satisfies inequalities of Pxr. However, it violates the inequality
associated with node 1 and neighbors 2, 3 and 4. As this inequality is
valid for proj(Pg) and proj(Pg) C proj(Pux) by Proposition it is valid
for proj(Pyx) which ends the proof. O
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3.2 Extended space polyhedral characterizations

In this section, we present an extended formulation describing the co-2-plex
polytope of any contraction perfect graph G using the utter graph u(G) defined
in Chapter[2] As a corollary, we will obtain a compact extended formulation for
the co-2-plex polytope of chordal graphs.

The following Theorem can be seen as a Corollary of Theorem [2.2.4] and the
weak perfect graph theorem.

Corollary 3.2.1. A graph G is contraction perfect if and only if Py is integer.

Proof. By Theorem G is contraction perfect if and only if u(G) is perfect
and, by the weak perfect graphs theorem if and only if the stable set polytope
of u(@G) is described by maximal clique inequalities if and only if the polytope
subjacent to UK is integer. Note that =, = z, + y(d,) preserves integrality
in the sense that (x,y) is integer if and only (z,y) is also which implies the
equivalence. O

Any orthogonal projection of an integer polyhedron is an integer polyhedron,
which yields the following.

Corollary 3.2.2. If G is contraction perfect, then the co-2-plex polytope of G
is exactly proj.(Pui).

We do not know if a polynomial bounds the number of maximal cliques of a
contraction perfect graph, hence, the formulation given in Corollary may
not be compact.

In the following, we exhibit a compact extended formulation of the co-2-plex
polytope for chordal graphs. Consider the following set of inequalities:

z(K) —y(E(K)) <1 V maximal clique K of G (3.25)

and let P = {(z,y) € RY x R¥ | (z,y) satisfies (3.18) and (3.25)}.
Theorem 3.2.3. A graph G is chordal if and only if Px is integer.

Proof. (=) Suppose that G = (V, E) is chordal and let us show that for any
maximal utter clique (W, F) of G, F' = FNE(V\W) is empty. By contradiction,
suppose that there exists an edge uv € F’. Then, u and v do not belong to W.
Since W U F' is a maximal clique of u(G), we know that there exists at least
one vertex w, € W U F (resp. w,) that is non-adjacent to u (resp. v) in u(G).
We have w, # w, as otherwise, by contradiction, uv would be non-adjacent to
wy, in u(G), a contradiction with the fact that W U F is a clique. We consider
three cases: i) both w, and w, belong to W, i) only one belongs to W, 4ii)
and finally both belong to F.

i) Since uwv € F, we know that wv is adjacent to w, and w, (in u(QG)),
in which case u is adjacent to w, and v is adjacent to w, which means that
G{u,v,w,,w,}] is a hole of size 4, a contradiction.
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i1) We suppose that w, is associated to the edge 2t € E. Now, since uv is
adjacent to zt and wu is not adjacent to zt, v is adjacent to z or ¢, and w, is
adjacent to t or z since w, is adjacent to w,. By taking a shortest path P from
wy to v in G[{wy,t, z,v}], we obtain that G[P U u] is a hole of size 4 or 5, a
contradiction.

i11) Now we suppose that w, (resp. w,) is associated to an edge tz € E
(resp. rs € E). Analogously, by taking a shortest path P from u to v in
Glu,v,t, 2,7, 5] \ uv, we obtain that Glu,v,t,z,r, s| contains a hole of size 4, 5
or 6, a contradiction.

Hence F” is empty. Since by definition, W is a clique of G, the utter clique in-
equality associated with (W, F') is nothing but the clique inequality
associated with W. Note that the trivial inequalities 0 < x,, < 1 and y. < 1 are
redundant with respect to inequalities , and y. > 0 for all e € E.
This implies that Px = Pyx. Since G = (V, F) is chordal, it is contraction
perfect, and hence by Corollary [3.2.1] Py is an integer polytope, and so is Pk.

(<) By contradiction, suppose that G is not chordal. Since (K, E(K)) is an
utter clique when K is a clique, and since the trivial inequalities except y, > 0
for all e € E are redundant for Py, it follows that Py C Px. Both polytopes
have the same set of integer points by Propositions [3.I.1] and [3.1.4] since the
inequality associated with edge uv is the inequality associated with
clique {u, v} if {u, v} is maximal, or dominated by a inequality associated
with a maximal clique containing both v and v. If G is not contraction perfect,
by Theorem Pui is not integer, so it contains a fractional point (Z, )
that is not a convex combination of its integer points. Since (Z,y) belongs to
Pic, Px is not integer.

Suppose now that GG is contraction perfect but not chordal. Hence, it con-
tains a hole of size 4, say (u,v,w,z). Let K;, Ko and K3 be three maxi-
mal cliques satisfying K; N {u,v,w,z} = {u,z}, Ko N {u,v} = {v,w} and
Ks N {u,v,w,z} = {v,w}. Let (z*,y*) be such that z} = z} = 2} = 2}, =
Yo = % and all other components are 0. (z*,y*) satisfies the clique inequalities
associated with K;, K, and K3, with equality. The inequality associ-
ated with each vertex but u and v, and the trivial inequality y. > 0 associated
with e € E'\ {vw}. These inequalities are linearly independent so (z*,y*) is a
fractional extreme point of Pi. O

Corollary 3.2.4. If G is chordal, then Py is a compact extended formulation
of P2(G).

Proof. If G is chordal then, by Theorem P is integer and, as the number
of cliques of a chordal graph is linear in the number of vertices [46], it has
compact size. O

3.3 On the co-2-plex polytope of trees

The edge formulation without integrality constraints is an extended space poly-
hedral description of the co-2-plex polytope of trees.
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Corollary 3.3.1. A graph G = (V, E) is a tree, if and only if Pg is integer.

Proof. A graph is a tree if and only if it is chordal and its maximal cliques are
edges. By Theorem [3.2.3]it is chordal and its maximal cliques are edges if and
only if Pk is integer and its maximal cliques are edges. Noticing that edges are
cliques of size 2 ends the proof. O

As a corollary of Theorem and Theorem [3.3.1] we obtain the following
theorem.

Theorem 3.3.2. The co-2-plex polytope of a tree G = (V, E) is equal to the
following:

s(W) + (W] =1z < W] Yw eV, W C Ny, |W|>2 (3.26)
—Zy <0 YveV (3.27)
Ty <1 YveV (328)

The system is minimal as shown in the next theorem. We denote by x" the
incidence vector of the vertex set W C V.

Theorem 3.3.3. If G = (V, E) is a tree, then the following inequalities define
facets of its co-2-plex polytope:

(i) (W) + (W] -1z <|W|Vw eV, WCN,
(it) —x, <0Vv eV
(iti) ©, <1Vv eV

Proof. The two first statements are proven by exhibiting |V affinely independent
points on the face.

Statement #7): x*“¥ Vu € V' \ v and x” belong to the face z, =1

Statement iz): x* Vu € V' \ v and x? belongs to the face induced by z, = 0.

Statement 7): Note that if W = {u}, the obtained inequality is z, < 1
which defines a facet. We prove the remaining cases by maximality. Take w € V,
W C N, of size at least 2 and consider the inequality z(W)+ (|W|—1)x,, < |W]|
and the face F' of P} that it defines. Suppose that there exists a face F’ of P%
containing F' and described by ax < a.

Claim 1 a, =0 Vu € V\ Ny: as G is a tree, Vu € V \ N,, there exists a
vertex v of W non adjacent to u, in this case """ and x*> both belong to F,
and hence belong to F’ implying that a, +a., +a, = a, +a,, and hence a, = 0.

Claim 2 a, = 0 Vu € N, \ W: similarly, x"V“* and x" both belong to F.

Claim 3 a, = a, Vu,v € W: x”" and x“" both belong to F.

Claim 4 o = a,|W| Vu € V: this is obtained by Claim 3 and the fact that
X" belongs to F.

Finally, as foru € W, x*'* € F' | we have a,, = a—a,, we obtain that ax < «
is a multiple of z(W) + (|W| — 1)z, < |W/| which implies that F' = F”. O
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3.4 On the co-2-plex polytope of split graphs

In this section, I will summarize our research process on split graphs. Unfortu-
nately, we were not able to conclude and characterize the co-2-plex polytope of
split graphs in the natural variable space. However, I believe that this section
enlightens the broadness of both Balas’s theorem and Fourier-Motzkin elimina-
tion procedure by giving nontrivial applications of these results.

3.4.1 The existence of a compact extended formulation for
the co-2-plex polytope of split graphs

Bala’s theorem is not only strong for its explicit extended formulation of the
convex hull of two known polytopes, but, as a corollary, it gives a framework to
prove the existence of a compact extended formulation of some polytopes. We
show how it can be applied for such a purpose in the case of co-2-plex polytope
of split graphs. After that, we discuss what are the requirements to apply Bala’s
theorem and deduce from it the existence of a compact formulation for such a

polytope.

Theorem 3.4.1. Let G = (V, E) be a split graph whose vertex set is partitioned
into a cliqgue K and a stable set S, there exists a compact description of Pé with
O(|VI||K|) constraints.

Proof. We proceed by induction on the size of K. When |K| =0, G = (V, E)
is a stable set, hence, the co-2-plex polytope of G is the hypercube of size
|V| for which the description in the natural variables set has |V variables and
2|V| constraints. Now, let us suppose that there exists a compact formulation
P, = {z' € RVI|Az? < b, L = 0} for the co-2-plex polytope of G\ u with at
most ¢ constraints for some u € K.

Now, we aim for an explicit formulation of the polytope whose extreme points
are co-2-plexes containing u incidence vectors. Any co-2-plex S, of G containing
u contains at most one vertex of N, by definition of co-2-plexes. If a vertex
v € Sy, \ N, belongs to a co-2-plex C, then no vertex of KNN,\u = N,\u = N,
belongs to C' by definition of split graphs and co-2-plexes. This implies that
S. \ N, is a stable set of the graph G’ obtained from G by removing u and
adding an edge between all pairs of vertices in N,,. G’ is a split graph since it is
partitioned into K U N, \ u and S;, \ N,,. Hence, it is perfect, and its stable set
polytope is described by clique inequalities by the weak perfect graph Theorem.
Let S be the set of stable sets of G’, the convex hull of the incidence vectors of
S"U {u}vS" € S is then described by the following where the variables 2% are
associated with vertices of G:

22(N,) < 1 YweS\N,
_ 2 vi| « (KUN,\u) < 1
P v eR —z%(v) < 0 WYweV\u
2 = 1
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Remember that x! has size at most ! by the induction hypothesis, after
adding sufficiently enough zero components to z? (so its size is [), we apply
Balas’s theorem to compute the convex hull of P U Ps:

rl + 2?
22(N.
22(KUN, \ u

Yv e S\ N,

<
<
NN

Yo e V\u

|
&
e NS N

772; = proj

=y

— )b

8

>

mALIA T IANINIA

SO > O > > 8

]

Now, using relations z — 2! = 22, 2, = 0 + 22 = ), we get rid of variables 22,

xl, X and the zero components of x associated with null components of z2:

z(N,) —2'(N,) < Yo e S\ N,
2(KUN,\u) — 2 (KUN,\u) < z
PE = proj. rl—2, < 0 Yo eV\u
Azt < (1 —x,)b
x, € [0,1]

The latter formulation has |V| + ¢ variables, and |V| 4+ |S \ Ny| + ¢ + 2
constraints. This ends our proof. O

Note that the proof of Theorem [3:4.1]is generic and could be used for various
polytopes whose extreme points are other combinatorial objects. The require-
ment is to exhibit a disjunction on this combinatorial object set for which at
most one element of the disjunction ’has the same nature’ (and for which the
induction hypothesis will be used to characterize its polytope with an implicit
extended formulation). In this example, the disjunction is: "A co-2-plex of G, is
either a co-2-plex of G containing u, or a co-2-plex of G\ u". The first element
of this disjunction is equivalent to a stable set in an ’easy’ graph, for which we
know an explicit extended formulation. The second one has the same nature: "a
co-2-plex of G". Hence, we use an implicit extended formulation to describe its
polyhedron, here A'z < b. If for more than one element of the disjunction, it is
necessary to use the implicit formulation to describe their polytope, the result-
ing formulation is no more compact since at each iteration of the induction, we
may give a formulation with k ¢ variables/constraints for k& > 2, which would
end up in an exponential procedure in the size of the induction: it is unclear
how to simplify the variables associated with the several implicit formulations
which imply that each iteration may result in doubling the variable set.

Theorem [3.4.1] is generally not satisfying since it does not exhibit this for-
mulation but can help find an extended formulation in particular by giving an
upper bound on its size. Moreover, it permits confirmation that it exists, which
is a good preliminary in a research process.
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The formulation of Theorem [3.2.3] yields an explicit version of Theorem @
for split graphs since the set of edges in a split graph can have size O(——%— K(K

|S|IK]) = O(|V]|K]) and its number of cliques is |S| + 1.

3.4.2 Expressions obtained using Fourier-Motzkin

For any split graph G = (V, E) partitioned into the maximal clique K, and
the stable set S, its set of maximal cliques is {K} U {N,|u € S}. Hence,
by Corollary3.2.4] its co-2-plex polytope is equal to the projection onto the
variable space of the following polytope:

z(N,) —y(E(N,)) <1 Yu e S (3.29)
z(K) —y(E(K)) <1 (3.30)
Y(0u) =24 <0 Yu €V (3.31)

Y <0 Vee E (3.32)

The Fourier-Motzkin elimination procedure tells us that every facet defining
inequality for P2(G) on split graphs is obtained by a combination of inequalities
such that y variables vanish. Let us consider such an integer combination defined
by:

e n, € Zy for u € S the number of clique inequalities of type|3.29|associated
with N,

e m, € Z, for u € V the number of inequalities of type associated
with «

e [k the number of inequality associated with K
e pr the number of trivial inequalities associated with e

The obtained inequality has the form:
Z N (Ny) + kx(K Z MyTy < Z Ny + k (3.33)
ueS veV uesS

Since the y variables vanish, we know that:

My + My = Pup + Ny YU € S, uv € Oy (3.34)
My, + My = Py + k + Z Ny Vuv € E(K) (3.35)
WES|u,WEN,,

Every combination can be seen as a cover of the edges of a multiset of
cliques by a multiset of stars (edges in 4, for some wu). Note that if n,m,k,p
verify Equations [3.34] and for any A € R*, An, Am, Ak, Ap also verify these
constraints. Hence, the set of such combinations forms a cone (a polyhedral
cone since the constraints are linear) called the projection cone. We will look at
such an object in section [3.4.4]
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Lemma 3.4.2. If a < a is facet defining for Po(G) different than —x, < 0,
thenVu € V 0 < oy, < a.

Proof. First, since S = {u} is a co-2-plex, a,, = ax, < a. Let us now prove
that a > 0. Suppose that a,, is negative, and let S be a co-2-plex containing
u such that axs = a if it exists, S’ = S\ u is also a co-2-plex and axs > a
which constradicts the validity of o < a. If S does not exist, then by setting
o' = a+x, we obtain a new valid inequality o’z < a for Pg dominating ax < a
if the latter is not a trivial inequality. O

The proof of Lemma [3:4.2] is very generic and applicable to every type of
polytopes whose extreme points are incidence vectors of subset closed combina-
torial objects: any subset of a co-2-plex is a co-2-plex, any subset of a stable set
is a stable set, every subset of a matching is a matching.

Let us reduce the space of the parameters of a combination giving a redun-
dant inequality.

Theorem 3.4.3. If for some u € S, m, > 0, the inequality obtained by
Fourier-Motzkin is redundant as obtained by another combination satisfying
my, =0VueS.

Proof. If m,, > n,, according to Equation [3.33] u has a negative coefficient, in
which case the inequality obtained is not facet defining by Lemma [3.4.2 or is a
nonnegativity inequality.

If ny > my, we set ml, =0, nl, = n, —my, ¥ = k+my, m, =m,+m,Vv €
K\ N, and finally, P}, = Pr + m, Ve € E(K \ N,), all other components of
n',m’,p’ are equals to the corresponding component of n,m, p.

Let us show that n/, m’, k', p’ verify Equations and . The relation
remains unchanged for vw € §(S) \ d,,. For uv € §,:

For vw € E(K)N E(N,) = E(Ny,):

mi, +mi, =my + My = Pow + Kk + Z ns = Pl + (K — my)
sES|v,wEN
+ > nl + my +nl,

s€S|v,wENs, s#u

For vw € E(K \ N,):

(ml, = ma) + (M), = my) =My + M = pow +k+ > g
s€S|v,wEN

= (Do — M) + (K —my) + Z g
s€S|v,wEN

]
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For v € K\ Ny, w € Ny:

(ml, —my) +ml, =My, + My = ppw + k + Z Ng
s€S|v,wEN 4

=powt+ (K —m,)+ > 0
s€S|v,wEN

Now that n',m/, k', p’ induces a valid inequality for Py(G), let us compare it to
the one obtained by n,m, k, p; both right hand side are equals:

vaJrk: Z n;Jrk/fmqun;quu:Zn;Jrk’
veS veS\u vES

Similarly, every vertex has the same coefficient in the inequality associated with
n',m' K. p. O

3.4.3 Analyzing PORTA files under the light of Fourier-
Motzkin

PORTA [47] is a software used to manipulate H-representation and V-description
of polyhedrons and compute one from the other. It is also able to enumerate
the integer points inside polytopes. The algorithms used by PORTA are based
on Fourier-Motzkin procedure, hence, they are exponential. In small instances,
it remains possible to use this software, and it often helps to deduce families of
valid inequalities and facets for a given family of polytopes. We used PORTA
accordingly to obtain the H-representation of a split graph co-2-plex polytope
into their natural variable set. I recently started using the Julia library ’Juli-
aPolyhedra’ for that same purpose [48].

Let us consider a nontrivial inequality az < a defining a facet of P%. By
Theorem [3.4:3] we know that there exists a combination n,m, k, p of constraints
of PZ satisfying m, = 0 Vu € S that yields az < a.

In the following, we show how to deduce the value of the other coefficients
in the combination that yields ax < a.

Since we restrict ourselves to coefficients satisfying m, = 0 Vu € S, by
Equation a, = Ny Yu € S. This implies that k = a — Zues Ty

Finally, m, = > ny +k —a, Yo € K and Pg can be deduced from
u€ES, vEN,

relations (3.34) and (3.35)).

Let us show an example with the sun see Figure 3.2] where a split graph
and its co-2-plex polytope are given. The nonnegativity constraint x, > 0 is
obtained with m, = 1, py, = 1 Yuv € §,. The trivial inequality constraint
., < 1is obtained with:

en,=1m,=1%Y e N, ppy =1Yow € E(N,) ifues
o k=1,m,=1%Yv e K\u, pyw =1 Yow € E(K \ v) otherwise
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The inequalities of right-hand size 2 are maximal 2-plex inequalities, and each
2-plex of GG is a clique minus one edge since G is split. They are obtained when
Zue gNy +k = 2 and m, = 1 for every vertex v in the intersection of the
corresponding two cliques and p set accordingly. The same procedure applies to
the other inequalities.

x; ViE{l,...,G}
Te

Ts

T4

T3

T2

T
I3+1'4+IL'5
° e ° To + X4 + X
' ' 1+ s+ g
xr1 + X2+ 23 + g

' Tr1+ T+ T3+ T
e ,131+.T2+1‘3+I4
T+ T2 + 223 + x4 + X6

Ty + 229 + x3 + 5 + X6

201 + x2 +x3 + x4 + x5

1+ X9+ T3+ Tg + X5 + Te
201 + 220 + 223 + 4 + T5 + g

INIAINININININININININININIANIN IN TN IV
W W WWNNNNNNNNNRFE R == -=O

Figure 3.2: The sun and its co-2-plex polytope

To give a finite family (which is not the case in Equation since these lin-
ear constraints correspond to a cone), we would like to understand more precisely
the combinatorial structure behind the coefficients and know which combination
of m, m, k,p gives a facet defining inequality (the above technique permit to do
the converse that is, given a facet, deduce the associated combination).

With our procedure, we see that fixing n, @ and a, determines the coefficients
m, k, p. Now that we seek a combination inducing a facet defining inequality
without knowing the priors a and a, we wonder if fixing n suffices to fix the
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other coefficients, this would permit us to focus on the structure of n. Figure[3:2]
answers by the negative, for all the facets with right-hand side 3 or 4, there exists
a combination verifying ny = ns = ng = 1. But, for any such combination, k = 0
when the right-hand side of the associated inequality equals 3, and k = 1 when
the right-hand side equals 4, proving that k£ can be free even when n is fixed.

A second question is: when n and k are fixed, is it possible to deduce a
unique m and p. Figure [3.2] also answers by the negative. For every facet with
right-hand side 3, a valid combination exists satisfying ny = n5 = ng = 1 and
k = 0, but the coefficients m and p are still free, leading to 3 different facet
defining inequalities.

Still, given n and k, the number of possible p and m satisfying Equa-
tions and and such that the obtained inequality only has positive
coefficients is bounded. In Figure [3:2] every clique is taken at most once, im-
plying that > g ny + k is bounded by |S| 4 1. But in general, it is not true:
there exist graphs for which some facet defining inequalities are obtained by
taking several times the same clique, see Figure where the facet defining in-
equality is obtained by setting ng = 2. This graph is partitioned into the clique
{1,2,3,4} and the stable set {5,6}. We managed to build graphs for which the
right-hand side of a facet inequality becomes even greater than the number of
vertices of the graph, and what is even more surprising is that they are obtained
from the graph of Figure by adding false twins to vertex 6.

/Q\
e,‘.A e 3x1+2x9+ w3+ x4+ 25+ 226 <5

Figure 3.3: A graph and a facet defining inequality

From the Fourier-Motzkin elimination procedure, we deduce a bound U on
the right-hand side of a facet defining inequality for P on chordal graphs,
which gives an upper bound on ) _gn, + k for the particular case of split
graphs and hence, by enumerating the multisets of cliques of size at most U
and enumerating the candidates m and p satisfying relations [3.34] and we
obtain a finite family of inequalities. This bound is proven by induction and is
not satisfying since it does not give information on the combinatorial structure
of the facets, but it is generic and applicable to any extended formulation; the
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only changing point of the proof would be the initialization of the induction.

Theorem 3.4.4. When G = (V, E) is a chordal graph, the right-hand side of a
facet defining inequality for Pg is bounded by PICEE
Proof. We prove such bound by induction. First, let us exhibit a sequence
bounding the right-hand side of a facet defining inequality at each iteration
of the Fourier-Motzkin elimination procedure, i.e. at each removal of a single
variable associated with an edge of F of formulation Px.

Let us consider E = {ey,...,e;p} and P°,..., P ..., PIEl the sequence of
formulations obtained by the Fourier-Motzkin elimination procedure to remove
the y variables from Px = P, where P! is obtained from P’ by projecting
out the variable y;; and finally, P/*l = Pg the co-2-plex polytope of G on its
natural variable set.

Let us denote by Uy an upper bound on the right-hand side of a facet defining
inequality of P*. First, by definition of P we can set Uy = 1. Also, the projection
of the very first variable, that is y.,, results in inequalities with a right-hand side
1 or 0: this happens because the set of constraints having a positive coefficient
for the variable y., in PY have a coefficient one or zero for each y variable and
a right-hand side equal to 0. Also, the set of constraints having a negative
coefficient for the variable y., has a coefficient -1 or 0 for y variables and a
right-hand side equal to 0 or 1. By combining two of these inequalities such
that the y., disappear, one can only obtain an inequality with a right-hand side
equal to 1, and where the absolute value of the coefficients associated with y
is lower or equal to 1. Hence, U; = 1. Let §; be the largest absolute value
of the coefficient of a y variable in formulation P¢. The right-hand side of a
facet defining inequality of P“*! is bounded by 2U, * §; (it corresponds to the
combination of two inequalities maximizing the right-hand side). Also, one can
see that 8, < U, V¢ € {0, ...,|E|} (the fact that it is true at rank 0 propagates
all over the recursion). Hence, by setting Upy1 = 2 x (Uy)?, we obtain that
U|g| bounds the right-hand side of a facet defining inequality of Pg for chordal
graphs.

Now, we compute Ujg: let W, = loga(Uy), we have Wyy1 = loga(Upy1) =
loga (2% (Up)?) = loga(2) + 2logs(Uy) = 1+ 2W,. And finally Z, = 1+ W, hence,
Zpp1=14+Wpp1 =14+142W, = 2(1 + Wg) =27y. Also, W = lOgg(Ul) =0
hence, Z; = 1. This implies that Z, = 2=, W, = 261 — 1 and U, = 22" ' 1
which ends our proof. O

3.4.4 Projection cone

Another possibility to understand the structure of the combinations inducing
facet-defining inequalities is to study the structure of the projection cone that
is:
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E VvV kS
7 Iy, 00 \XV
?7 7 1 0 Xk

Figure 3.4: The matrix built in the proof of Theorem

Duv + Ny = My +m, Yu€eS, uveld,
Puv + K + > Ny = My + My Yuv € E(K)
WES|U,VEN
(p,n,m, k) € RIFI x RV x RIVI x R my > 0 wevV
Pe = 0 ec
ng > 0 ues
k>0

Theorem 3.4.5. Cg has dimension |S| + |V| + 1.

Proof. First, since Cq is defined using ¢t = |S| + |V| 4+ 1 + |E| variables, its
dimension d is at most t. Let us consider the constraint submatrix associated
with edges of G. Every Pg e € E belongs to exactly one such constraint,
hence, this submatrix contains an identity of size |E|, which proves that its
rank is exactly |E|. This implies that ¢ — |E| > d. Let us build enough affinely
independent incidence points of Cg. For each u € V let us consider the point
having m, = 1 and Pg = 1 Ve € §,, let us denote the matrix induced by
all such points by xy. We denote by xi the point £k = 1, m, = 1 Vu € K,
Pr = Ve € E(K). For each vertex u € S, let us consider the point satisfying
ny=1m,=1Vw e N, and P =1Vee |J d, )\ dy, let us denote by xs the

VEN,
Xv
submatrix induced by all such points. Now, one can check that Xk has
Xs
rank |S| 4 |V| + 1, see Figure [3.4 where a diagonal block of size |V| + |S| + 1 is
exhibited, which ends the proof (as 0 belongs to the cone). O

Every point of C¢ induces an inequality weakly dominated by the inequalities
induced by the generators of Cg. Hence, it is sufficient to consider the set of
generators of the projection cone. By Theorem|3.4.3] we can restrict the research
to the generators satisfying m, = 0 Yu € S, hence we give the dimension of the
face induced by such constraints.

Theorem 3.4.6. C; N {m, =0|u € S} has dimension |V|+ 1.
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Proof. Similarly to the proof of Theorem [3.4.5] we first give an upper bound
on its dimension. The equality submatrix has a size |E| + |S|, and its rank
is at least |E| + |S| since Pr e € E appears precisely one time in each edge
constraint, which gives a diagonal, and m, = OVu € S gives an identity. Now,
by restricting the set of points exhibited in the proof of Theorem 3.4.5|to the lines
of xv associated with vertices of n,, u € K, x, and xs we obtain |[V'\ S|+|S|+1
linearly independent integer points. O

Let us write down the polytope obtained by removing the null variables

My u € S:
Duv + Ny = My Yu € S, uv € &y
puwtk+ Y oy = my+m, Vuve E(K)
wWES|u,WEN,,
(p,n,m,k)EIR‘E‘><1R|V‘><]R|K|><IR my > 0 ue K
pe = 0 eckE
ng, > 0 ue S
k> 0

It is still a cone, so we are still interested in its generators. Its generators
satisfy at least |V/| linearly independent constraints with equality among the
nonnegativity ones. This means that by enumerating the subsets of variables of
size |V'| among the variables X = {m,|u € K}U{n,|u € S}U{Pgle € E}U{k},
one can enumerate the generators of Cg. Let X’ be such a subset, any non-zero
integer solution of Cg N {z = 0|z € X’} induces a valid inequality. The set
of obtained inequalities defines the co-2-plex polytope of G. Note that given a
rational non-zero solution, one can easily obtain an integer non-zero solution by
multiplying it with a sufficiently big coefficient. A satisfying projection would
summarize such inequalities by enumerating some graph structure(s) and their
associated coefficient.

3.5 Experimental results for the maximum car-
dinality co-2-plex problem

As shown in Section [3I] the extended clique formulation UK seems pretty
strong. Its subjacent polytope Py i is integer when the graph is contraction per-
fect, and its projection on the natural variable set is contained in the subjacent
polytope of the formulation of Balasundaram [7], even when 2-plex inequalities
are added to the latter. In this section, we investigate from an experimental
point of view the performances of our formulation by considering different vari-
ants. Gao et.al show in [49] that given a lower bound b for the size of the
largest co-k-plex of a graph G = (V, E), if a vertex has a neighborhood of size
greater or equal to |V| — b + k, it does not belong to the largest co-k-plex of
G. After noticing that, they proposed a preprocessing recursively removing the
vertices verifying this property from the graph. Note that a co-k-plex of G is a
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k-plex of G, and the diameter of a k-plex is k. This remark led Gao et.al [49)
to decompose an instance G in |V| smaller instances: instead of computing the
maximal size co-k-plex problem on the graph obtained after the preprocessing,
they compute for each vertex v € V the maximal co-k-plex on the graph G,
obtained by restricting G to the vertices at distance at most k from v in G.
After that, they preprocess each obtained instance using the same method, and
finally, they launch their exact algorithm on this set of smaller instances.

This section uses this preprocessing to solve the maximum co-2-plex problem.

3.5.1 The different algorithms
The 3 formulations/5 algorithms

In this section, "N’ will refer to the branch-and-cut algorithm based on Formula-
tion A that dynamically adds the 2-plex inequalities using the following
heuristic greedy separation algorithm: it consists of ordering the vertices by
decreasing LP value and then adding the vertex of higher cost at each iteration
before removing the vertices adjacent to this latter from the list of potential
candidates to first build a maximal clique and then add vertices to make it an
inclusion wise maximal 2-plex.

We compare this baseline algorithm with the stable set formulation S based
on the utter graph. In the algorithm ’S’, only the clique inequalities associated
with the cliques {u,v} U d, U J, for all edge uv € E are considered. The
formulation is weaker but valid, that is, every integer point satisfying these
inequalities is a stable set of u(G). The second algorithm ’SK’ is a branch-
and-cut solving the stable set formulation S: it starts by only considering edge
constraints (for each edge of the utter graph, at most, one of both sides belongs
to the solution) and the clique inequalities are dynamically added using a greedy
separation. It orders the vertices by decreasing LP value before adding them to
the current clique while it is still possible.

We also compare these algorithms with the results obtained by solving £ that
corresponds to Algorithm ’P’. The algorithm ’PK’ is a branch-and-cut that
solves £ with a dynamic separation of utter clique inequalities . These
inequalities are separated as follows: the optimal fractional point (z*,y*) is
first mapped into the corresponding point (z*,y*) of Pg, using the formula x,, —
y(0) = 24, the greedy clique separation procedure is run and if a violated clique
inequality is found, it is mapped into the associated clique inequality and
added to PK.

Correspondences between the branching scheme of these formulations

First, we did not implement any branching rule, we let CPLEX decide how to
branch. We discuss here the classic branching rule used to solve any compact
MILP that is setting on one child node a variable to 1 and on the other to 0.

Branching on z variables of 'P’ corresponds to branching on x variables of
formulation ’N’, branching on variable ¥,,, of 'P’ corresponds in formulation N
to adding x,, = x, = 1 on one child node and z, 4+ x, < 1 on the other.
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Branching on z, variable of formulation 'S’ corresponds in formulation "P’ to
the addition of constraints z,, = 1 and y(d,,) = 0 on one node, and x,, = y(d,)
on the other node. Branching on y variables in "P’ or ’S’ is equivalent.

To have a balanced branching tree, branching on x variables of formulation
N and P seems to give the most balanced branching tree since its semantic is:
"on one child node, u belongs to the solution. On the other, it does not" when
branching on z variables of formulation ’S’ has the following semantic: " on one
child node u and none of its neighbors belong to the solution and on the other,
u is in the solution only if one of its neighbors belongs to it."

3.5.2 Experimental results
Instances

We compare our algorithm on several sets of graphs:
e 74 instances from Color02 [50]

e 120 connected random graphs with 70, 80, 85, and 90 vertices and a prob-
ability 0.5,0.7, 0.9 for each edge (10 graphs for each combination of such
parameters)

e The 8 smallest instances (in terms of vertices) from the 10th DIMACS
challenge and their complement

Performance profile

"Performance profile" is a statistic that permits the comparison of different
algorithms on sets of instances for which they do not always converge. We
describe how it is calculated in this section. The idea came from [51]. First,
let us denote by 7% the time needed for the algorithm A to solve the instance
I. Let A be the set of algorithms we want to compare. We also consider

I
7l = ﬁ if A manages to solve I before the timeout and co otherwise .
Ale Al
Given a set of instances 7 and a parameter ¢ € [1, ..., K| for some K we consider
I
p(t) = w which represent the proportion of instances solved with a

factor of ¢ from the fastest algorithm. The performance profile is then the
graphic obtained by computing p(t) for some ¢t € R.

By this definition, the highest curve on such a graphic corresponds to the
"best’ algorithm.

Tables and Figures

First, note that some algorithms do not solve some instances. For this rea-
son, we consider the performance profile on the whole sets of instances, see
Figures the ratio between the CPU time consumed by our
algorithms (S, SK, P, PK) divided by the CPU time consumed by N to solve
the set of instances that each algorithm manages to solve in less than an hour,
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Figure 3.5: Performance profile on Color02
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Figure 3.6: Performance profile on Random instances

we refer to this sets as ’restricted’ and finally the number of instances solved,
these latter statistics are given in Table

In Table we give the CPU time consumed by N and its number of
branching nodes, one can see that DIMACS and comp-DIMACS both contain
easy instances.

By looking at the performance profiles on Figures[3.5] [3:6] 3.7 [3-8] it is clear
that S is better than SK and P seems to be overall better than PK. Unless for
DIMACS, where N solves every instance faster than our algorithm, S and P are
the best algorithms depending on the instance set.

In Table[3:2] the data that pops out is the number of branching nodes, which
is much lower when considering an extended variable set. This corresponds to
the theoretical comparison made in Section B:I] On the sets, DIMACS and
comp-DIMACS, PK generates much more inequalities than SK. P manages to
solve two sets of instances completely when all the other algorithms solve at
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Figure 3.8: Performance profile on DIMACS-comp
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Instances CPU # nodes

restrict Color02 8204 | 11 204 503
restrict Random | 13 858 | 39 476 293
restrict DIMACS 33 18 897
restrict comp-DIMACS 127 239 401

Table 3.1: Flat results of N

most one set. P also performs quite well in terms of CPU consumed, in particu-
lar, when all the other extended formulations perform quite badly on DIMACS,
P manages to solve it reasonably slower than N. Still, the algorithm that solves
Color02 the fastest is S. This seems to show that the heuristic procedure com-
puting a maximum clique does not improve the algorithms.

Restricted instances All instances

ratio flat
Algorithm Instances | CPU | # nodes # cuts % solved
Color02 1.0 1.0 701186 71.62
N Random 1.0 1.0 | 1926611 80
DIMACS 1.0 1.0 25803 100
comp-DIMACS 1.0 1.0 6347 75
Color02 | 0.99 <1072 79830 81.08
SK Random | 4.32 0.03 | 877485 35
DIMACS | 55.01 <1072 35 87.5
comp-DIMACS 0.4 <1072 98 100
Color02 | 0.39 <1072 - 85.13
S Random 3.33 0.03 - 76.6
DIMACS | 24.31 2.6 - 87.5
comp-DIMACS 0.17 <1072 - 100
Color02 1.32 0.01 62764 77.02
PK Random | 3.76 0.06 | 1372674 61.6
DIMACS | 51.63 0.79 24540 87.5
comp-DIMACS 0.87 0.01 2695 87.5
Color02 0.7 0.2 - 74.32
P Random | 0.71 0.07 - 100
DIMACS 5.7 0.01 - 87.5
comp-DIMACS | 0.44 <1072 - 100

Table 3.2: Experimental results of the 5 algorithms solving the maximum co-2-
plex problem
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Conclusion

In this chapter, we proposed new extended formulations for the maximum
weighted co-2-plex, and studied their associated polyhedra. From a theoretical
point of view, we proved that our formulations provide tighter linear relaxations
than the existing formulations. We also study when the polytopes are integer.
As a consequence, we provided an extended formulation for the co-2-plex poly-
tope for contraction perfect graphs which is compact if the graph is chordal. We
also give a description of the co-2-plex polytope on the natural variable space
when the graph is a tree. From a computational point of view, we compared
several implementations of our formulations and showed that our algorithms
perform quite better than the state of the art on such a problem.
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Part 11

k-Defective coloring: cutting
primal and dual spaces in
column generation
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Chapter 4

Literature review on defective
colorings and covering
polytopes

In this second part, we will study how to solve the k-defective problem through
integer linear programming. This first chapter is dedicated to the state-of-the-
art on defective colorings. In the first part of this thesis, we motivated the
study of 2-plexes (co-2-plexes by complementing the graph) from the fact that
cliques can be too restrictive in defining a strongly connected subgraph, as it
can correspond to communities in social networks or genetic similarities.

4.1 Defective colorings

Defective colorings were introduced in 1986 [52] to study variants of problems
related to the chromatic number of graphs. From a computational point of view,
they are known to be challenging as the k-defective coloring is NP-hard even on
split graphs for k > 2 as proven among other complexity results in [53].

4.1.1 Defective coloring number of a graph class

A variant of defective colorings is the the defective coloring number of a graph
class F, denoted by xa(F), as the infimum k € Z* such that there exists
an integer d € Z; for which every graph in F is d-colorable with co-k-plexes.
This number may not exist, in particular, w(F) = sup{w(G)|G € F} must be
bounded. Finding xa (F) has been introduced to study a variant of the following
conjecture by Hadwiger:

Conjecture 4.1.1 (|54]). For every t € ZT, if F is the set of graphs with no
clique of size t + 1 as minor, then x(F) < t.
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The case t = 1 corresponds to coloring isolated vertices, which is trivially 1-
colorable. The case t = 2 corresponds to coloring trees: since they are bipartite,
they are also 2-colorable. The case t = 3 corresponds to coloring series-parallel
graphs for which a simple induction proves the result. The case t = 4 implies
the 4-color theorem. At first sight, it seems counter-intuitive with the fact that
planar graphs are graphs with no cliques of size 5 minors or biclique of size 3
minors. Indeed, the biclique of size 3 is 2-colorable which suggests that having
no minor clique of size 5 could be sufficient for a graph to be 4-colorable. The
case t = 5 has been proven in [55].

The following variant of the Hadwiger conjecture has been proven in 2015:

Theorem 4.1.2 ([56]). For every t € Z*, if F is the set of graphs with no
clique of size t + 1 as minor, then xa(F) < t.

4.1.2 An exact approach for the k-defective coloring

Furini et al. [2] propose a generic column generation framework to solve the par-
titioning/covering of a graph with relaxed cliques. In particular, they propose
a framework to solve the k-defective coloring by generalizing the formulation of
Mehrotra and Trick [3] for the vertex coloring problem (corresponding to the
case k = 1).

The primal and pricing formulations of Furini et al.

Let S be the set of inclusion-wise maximal co-k-plexes of G = (V, E), Sk C Sk
be the set of maximal inclusion wise co-k-plexes of G containing v, and zg, S €
Sg, be binary variables associated with the inclusion-wise maximal co-k-plexes
of G. The extended formulation of Furini et al. in [2] for the k-defective problem
is the following (Py):

Sesk,
doooas>1 VoeV (4.2)
SeSk |ves
x5 >0 vV SeSk (4.3)
g €Z vV SeSk

Given S* a subset of S& covering the vertices of G, the restricted master
problem RM Ps- is the formulation (Pj) restricted to the subset of variables
associated with S*. Let A,, v € V, the optimal dual cost associated with
the covering inequalities of RM Ps+. The pricing subproblem of the column
generation process is then to find a co-k-plex S whose associated primal variable

has a negative reduced cost cs(\) = 1— 3 _o Ay, that is, to find a co-k-plex
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S maximizing ) g Ay. If cs(A) is nonnegative for all S € S, RM Ps- gives
an optimal solution of the linear relaxation (P), otherwise we iterate by solving
RM Ps« s for some S satisfying cg(\) < 0.

The exact pricing subproblems are solved by (SP) the following ILP formu-
lation [7]:

max Z ATy (4.5)

veV
(INu| +1 = k)my + 7(Ny) < [Ny VueVv
T, € {0,1} VoeV

Branching rules

Furini et al. [2] compare several branching rules and conclude that the best is
obtained by analogy with the Ryan and Foster rule proposed by Mehrotra et
al. [3] that is: branching on pairs of vertices (u,v) such that in one child node, u
and v always belong to the same co-k-plex. In the other child node, they never
belong to the same co-k-plex.

Let 8* (resp. z*) be the subset of co-k-plexes (resp. the primal solution)
obtained at the end of the column generation process. Let (u,v), a couple of
vertices minimizing the following quantity:

‘0.5 - ¥ xs‘

SeS*: ueS,ves

This quantity is a way to evaluate if solution x* contains some information
on whether u and v belong to the same co-k-plex in an optimal solution. Indeed,
if it is close to 0, it lets us think that no information can be deduced from z*;
and if it is close to 0.5, it lets us think that z* give the information whether u
and v belong to the same co-k-plex in an optimal covering. Now, the pricing
procedure has to be modified. The exact procedure is based on an MILP (SP)
with the additional inequalities z,, = x, in one branching node, and x, +x, <1
in the other.

In the next section, we describe how the case k = 1 naturally yields a robust
branching rule i.e., adding these branching decisions to the master program
preserves the structure of the pricing subproblems. When &k > 2, these branching
decisions are nonrobust. Indeed, the pricing subproblem is no longer a maximum
co-k-plex problem. For example, suppose that at the current node, u, v always
belong to the same co-k-plex and v, w never belong to the same co-k-plex, the
pricing subproblem is then to find the maximum co-k-plex either containing u, v
but not w, or containing w but not u, v or containing none of these three vertices.
This latter problem probably shares a little bit of structure with the maximum
co-k-plex problem on G, but the more one added branching decisions, the more
you break the similarities between these problems disappear. In general, a
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robust branching decision manages to keep the similarities by considering the
same problem definition but on a slightly modified instance instead of keeping
the instance and changing the definition of the problem slightly.

4.2 Integer linear programming formulation for
the coloring problem

Extensive work has been done to solve the coloring problem on any graph.
One of the best methods has been proposed by Anuj Mehrotra and Michael
A. Trick [3] and corresponds to finding the best integer point of formulation D
presented in Chapter [T} It also corresponds to formulation P; by noticing that
co-1-plexes are stable sets. This section considers that S = S'.

4.2.1 Covering formulation for the coloring problem

Note that the graph coloring problem corresponds to the 1-defective coloring
problem, as co-1-plexes are stable sets. In this case S is the set of inclusion
wise maximal stable sets. The resulting stable set formulation (P) is based on
the observation that any color class in a coloring is a stable set and is as follows:

min Z Ts (4.6)

SeSa
stzl YveV (4.7)
SeS,
zg € 40,1} vSeSa (4.8)

Recall that with this objective function, covering is equivalent to partitioning
as subsets of stable sets are stable: any vertex covered more than one time could
be assigned arbitrarily to one of the corresponding colors. The dual of the linear
relaxation of P is an LP whose integer points correspond to cliques of the graph.
This remark is particularly interesting because of the work of Jan Mycielski [57],
who gives an operation on a graph that does not change the size of its largest
clique but increases by 1 its coloring number.

As (Py) has exponentially many variables in the size of G, it is solved using
column generation: the idea is to solve the linear relaxation of (P) to get a lower
bound for the optimal solution. It is done by considering a subset of maximal
stable sets S* that is non-optimal for the coloring problem and then, by solving
the following linear program called Restricted Master Problem and denoted by
(RMPS* )I
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min Z Tg (4.9)

SeS*
Y ows>1 VoeV (4.10)
SeS*NS,
25 >0 VSest (4.11)

Then, given the dual values A, v € V associated with the covering con-
straints, the reduced cost of a variable associated with the stable set S is as

follows:
Cs(/\) =1- Z >\v~

veS

Finding a minimum reduced cost variable corresponds to finding a maximum
weighted stable set .S with weight \,, we call it the Pricing Subproblem.

After that, if a negative reduced cost column associated with the stable set
S is found, S is added to §*, and we iterate. When no negative reduced cost
variables exist for a given &*, the optimal solution x* of RM Ps« gives the linear
relaxation value of (P) but does not necessarily give its optimal solution since
z* can be fractional. To deal with this problem, the Ryan and Foster’s rule
leads to computing for each couple of vertices {u,v} the quantity:

’0.5 - ¥ xs‘

SeS* NSNS,

This quantity is a way to evaluate if solution z* contains some information on
whether u and v belong to the same co-k-plex in an optimal solution. Indeed,
being close to 0, let us think that no information can be deduced from z*; and
being close to 0.5, let us think that x* gives the information whether v and
v belong to the same co-k-plex in the optimal covering. This quantity always
equals 0.5 for adjacent vertices since no stable set contains both.

Given the pair {u,v} minimizing this quantity, we create two branching
nodes, the first where u and v will always belong to the same stable set and
another where they never belong to the same co-k-plex. If such a rule is applied
to any couple of vertices, we can deduce the associated integer solution, which
gives a complete branching rule.

In practice, the left-hand branching node corresponds to solving the color-
ing problem on the graph obtained by merging v and v while the right-hand
branching node corresponds to solving the coloring problem on the graph ob-
tained by adding an edge between u and v. Hence, the leaves of this branching
tree correspond to coloring cliques, for which it is trivial to compute an op-
timal coloring even without linear programming. Note that, in this case, the
constraint matrix is the identity and hence yields an integral polyhedron. This
type of branching, where the structure of the problem is similar in the branch-
ing nodes (every branching node corresponds to a coloring problem), is called
robust. Robust branchings are generally preferable since they imply that the
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pricing subproblems in each branching node have the same structure. In our
example, the pricing subproblem of each branching node is a maximum weighted
stable set, this permits using all the knowledge on computing maximum stable
sets at each branching node.

Extensive work has been done on this ILP formulation. In 2010, Stefano
Gualandi and Frederico Malucelli [58] proposed a constraint satisfaction scheme
for the pricing subproblems and solved 22 instances still open from the refer-
ence benchmark [59]. Enrico Malaguti, Michele Monaci, and Paolo Toth [60],
using heuristics for the pricing subproblems, solved 5 additional instances in
2012. The formulation of Mehrotra et al. suffers from the lack of precision of
some linear programming solvers. In 2011, Stephan Held, William Cook, and
Edward C. Sewell proposed a new technique assuring the validity of the lower
bound given by the formulation independent of the solvers’s precision. They
gave a method to parallelize the resolution [61]. In 2014, David Morrison, Jason
Sauppe, Edward Sewell, and Sheldon Jacobson [62] presented a new branching
rule, making them able to solve 7 instances faster than Malaguti, Monaci, and
Toth [60]. Pierre Hansen, Martin Labbé, and David Schindl [63] tried to rein-
force this formulation by adding cuts associated with odd holes and antiholes
of the graph. These inequalities indicate that at least 3 stable sets are needed
to cover an odd hole. For an antihole of length 2k + 1, at least k + 1 stable
sets are needed. These inequalities are robust [64], that is, they do not change
the pricing subproblems structure; it is still a maximum weighted stable set in
a slightly modified graph. Unfortunately, experiments of [63] showed that, in
general, they do not siginificantly improve the relaxation value.

4.3 Mycielski’s graphs: a worst case scenario

Jan Mycielski [57] gave an operation on a graph G = (V, E) (connected and with
at least two vertices), resulting in a new graph G for which w(G) = w(G) but
X(G) +1 = x(G). Let us consider V = {vy,... ,vjv|}- This operation consists
of adding for each v; i € {1,...,|V|} a vertex w; adjacent to every vertex of N;,

and adding a vertex u adjacent to all w,,.

Theorem 4.3.1 ( [57]). For any graph G, x(G) = x(G)+ 1 and w(G) = w(G).

Here is a sketch of the proof: any clique of G contains at most one vertex
from W = {wi,...,wy}, and any clique K containing w; has the same size
of the clique of G, K Uw; \ w;. Moreover, any clique containing u has size at
most 2. The chromatic number of G is at least X(G) since it contains G. Let
us show that it is strictly greater by contradiction. Suppose that there exists
a coloring C = {S1,...,Sy(q)} of G. First, G; = G[V Uw; \ {vi,u} \ W] is
isomorphic to G, hence the restriction of C to the vertices of G; has size x(G)
and is optimal. If W NS, = @ for some k € {1,...,x(G)}, by coloring each
vertex v; of Sj with the same color used (in C) for w;, we obtain a x(G) — 1

coloring of G, a contradiction. This means that for all x(G) coloring of G, x(G)
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different colors appear in W, which implies having an extra color for vertex u,
which contradicts the fact that it is x(G)-colorable.

This permits the construction of instances for which the integrality gap of
(Py) is as large as wanted [65].

Theorem 4.3.2 ([65]). The optimal fractional coloring of G is equal to X7 (G)+
1
xr(G)”

Here is a sketch of the proof: from any stable set S of G, S Uu, {w;|v; €

S} U S and W all form stable sets of G. Given a fractional coloring z* of G of

. T G)—1)x
value xf(G), by setting z' ,, = Xf(SG), Su{w7|v7€S} WW)S and finally

Ty = m we obtain a fractional coloring of G of size x s (G)+ (G) The hard
part of the proof in [65] shows that when z* is an optimal fractlonal coloring of
G, 2’ is optimal for G.

Let us consider a sequence of graphs obtained by recursively applying Myciel-
ski’s operation Their fractional coloring numbers follow the sequence U, 11 =
U, + U while their coloring numbers follow V,,1; = V,, + 1. Both sequences
strictly increase and diverge, but it can be shown that the difference between
both also grows to infinity, which proves the arbitrarily large gap.

4.4 Strengthening the linear relaxation of (P)

Valid inequalities may be added to strengthen the linear relaxation of Py. We
first present the elementary Chvatal closure, which gives valid inequalities for
any integer polytope given valid inequalities.

The coloring polytope, that is, the integral polytope subjacent to formula-
tion P, is a particular case of covering polytope. These polytopes have been
extensively studied, and the hope is that the theoretical analysis of such poly-
topes extends to experimental improvements on (P;). Hence, we present classes
of facet-defining inequalities for covering polytopes and then describe valid in-
equalities for the coloring polytope.

4.4.1 Separating Chvatal-Gomory inequalities

For an ILP defined with polynomially many variables, black box solvers often
use heuristics to separate the elementary Chvatal closure since it is a generic
way to reinforce a formulation, and it often helps to reduce significantly the
integrality gap [66].

Separating the elementary Chvatal closure is doable using the MILP pro-
posed in [66]. It is a heuristic separation procedure based on a MILP with
a maximum number of 1000 branching nodes. It is generic, hence usable to
separate heuristically the Chvatal elementary closure for any ILP. We describe
the particular case of their formulation corresponding to our setup, that is, im-
proving the linear relaxation of P and, hence, considering improving the linear
relaxation of an RMP.
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It takes as input a solution x* of our RMP and computes a Chvatal-Gomory
(CG) constraint such that its violation by z* is maximized. The separating
MILP will then be given by:

max ag — Z rgag (4.12)
Ses*
fs= as —u(S)VS € §* (4.13)
fo= ap — Tu (4.14)
fs > ovs € S§* (4.15)
fs < 1-6vSes” (4.16)
Uy > Vv eV (4.17)
Uy < 1-0VveV (4.18)
as € vy SeS* (4.19)
ap € z (4.20)

In this MILP, the variables u are associated with the covering constraints of
P and correspond to the linear combination associated with a CG constraint,
the variable g (resp. ag) represents the integer coeflicient of the stable S (resp.
right-hand side) in the CG constraint. The variable fg (resp. fop) corresponds
to the gap between the coefficient ag (resp. «p) and the linear combination
u(S) (resp. 1u), that is [u(S)] — u(S) (resp. [Lu] — 1u) and finally, § is
some small value to avoid having u coefficients greater or equal to 1. The
objective function is to maximize the constraint violation associated with w.
Note that some constraints are redundant, but the authors [66] explain that it
helps stabilize the numerical behavior. In [66], it is proposed to add a little
penalty in the objective value on variables u, weighted by a small value ¢, to
add numerical stability.

4.4.2 Set covering polytope

A covering polytope can be described as follows. Let M be a 0/1 matrix, a
covering polytope P whose V-description has the following structure:

Py = conv{z € {0,1}" | Mz > 1}

. Rows of M can be seen as elements to cover, and columns as subsets of these
elements. In the coloring problem, these elements are vertices in V' and these
subsets are stable sets of S, we hence define M{ as the 0/1 matrix whose rows
are vertices of V' and columns are stable sets of S.

Unlike packing polytopes, no beautiful combinatorial characterization is
known for covering polyhedrons for which {z € [0,1]™ | Ma > 1} would be
integer.
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However, extensive work on this topic has given families of facets and valid
inequalities. Our first idea was to use this knowledge to reinforce the stable set
formulation P.

In this section, we describe some of these results and the limits to their
compatibility within a column generation scheme.

A first attempt to link P and the facial structure of covering polyhedrons
was initiated in [63]: they work on the coloring polytope, that is, the convex
hull of P’s solutions. Even if the study of covering polytopes goes beyond the
study of the coloring polytope, we will use similar notations that we used in the
previous section to create a smooth link between both studies.

Assuming that M{ has no zero row or column, Antonio Sassano [67] gives
many classes of facets for the set covering polytope, characterizations of trivial
inequalities defining facets, and a lifting procedure building facets from facets.

Theorem 4.4.1. [67] Py is full dimensional if and only if every row of M
contains at least two 1s.

Theorem 4.4.2. [67] If Pas is full dimensional, then the following hold:
o x5 >0 defines a facet of Pys if and only if |S, \ {S} 22 Vv e S

xs < 1 defines a facet of Py

All facet defining inequalities o™ x > aq for Py have o > 0 and o > 0

The inequality =(S,) > 1 defines a facet if and only if (i) there exists no
u € V such that S, € S,, and (ii) for each S; € S\ S,, there exists
Sy € Sy such that {S,} US\ S, \ {S1} covers V

The only minimal valid inequalities for Py with right-hand side equal to
1 belong to the system Mz > 1

As a corollary of Theorem [£.4.2] we can obtain results for the coloring poly-
tope, and this has been done by Hansen et.al., we describe these results in the
next section.

The covering garden is full of roses

The families of facets given by Sassano [67], are rank facets, i.e. they have the
form a"x > B where a only has {0, 1} coefficient. Their characterization goes
through a bipartite graph having as vertex set V U S and where v is adjacent
to S if and only if v € S. Let us denote this graph by G(V,S).

Definition 4.4.3. [67] A bipartite graph G(V,S) is a complete g-rose of order
pif:

(i) S={5,...,5}
(ii) V = {vl,...,v(s)}
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Figure 4.1: A 2-rose of order 4

(#ii) each v; is contained in exactly g elements of S
(iv) Vv, v; €V, i # j = Sy, # Sy,

Moreover, we say that S C S is a g-clique (of order |S|) if there exists V C V,
such that G(V,S) is a complete g-rose or order |V|.

Figure gives an example of 2-rose of order 4. Note that the matrix
associated with a complete g-rose of order p is never the transpose of a stable
set incidence matrix, see Theorem [1.2.5

Definition 4.4.4. [67] For an integer t < p , let us denote by T the set
{Si,...,Sitt—1} C S (indices taken modulo p). A bipartite graph G(V,S) is a
(g, t)-rose of order p if:

(Z) §= {Slw"asp}

(ii) V is the union of subsets V1 ... VP where Upev: Sv = TiVie{l,...,p}
(iii) each subgraph G(V*,T*) is a complete g-rose of order t > q > 2

On Figure we show a (2,3)-rose of order 7: S = {S1,...,57}, V =
{vr, ..., vd}, TH = {81,583}, T? = {S9,83,54}..., TP = {51,85,57},
VI = {vy,ve,v3}, V2 = {v3,v4,v5},..., VP = {via,v13,v14}. Note that the
intersection between these families of bipartite graphs is not empty: the graph
of Figure [4.1]is also a (2,3)-rose of order 4.
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Figure 4.2: A (2,3)-rose of order 7
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Figure 4.3: An odd antihole and the transpose of its stable set incidence matrix

Most proofs for rank facets of the covering polytope use a Lemma character-
izing such facets in terms of connectivity of the so-called critical graph (given
by a very technical definition). Still, the validity of such inequalities is easier to
understand than it seems by looking at the right-hand side.

Let us introduce some facet defining inequalities for the covering polytope
Purs-

By definition of a complete g-rose of order p G(V,S), the covering number
of G(V,S8) is exactly p — g + 1: for every set S C S of size |S| < p—q—+1, there
exists an element of v € V' contained in the ¢ elements of S that do not belong
to |S|. The associated valid inequality for Pus is YosesTs > p—q+ 1.

Now, given a (g,t)-rose of order p G(V,S), and the associated T¢, V? Vi €
{1,...,p}, we obtain the validity of the inequalities defined in the following
Theorem by a Chvatal sum with c_oefﬁcient % of the inequalities associated
with a complete g-rose of order p G(T*,V*) for all ¢ € {1,...,p}.

Theorem 4.4.5. [67] Given a (q,t)-rose of order p G(V,S), the inequality
Y oges TS > f@} defines a facet of Pys if and only if p(¢q—1) mod t # 0.

Corollary 4.4.6. [67] If G(V,S) is a (q,q)-rose of order p, p # q, then the
inequality: Y g.gTs > f%} defines a facet of Pyys .

Application to the coloring polytope of antiholes

It is well known that to color any antihole of odd size k, % colors are needed.
If G is an odd antihole, then M“g is a matrix having two 1 per line and columns
and has an odd size. This matrix is the incidence matrix of a (2, 2)-rose of order
k. Hence, Corollary applies and gives a facet with right-hand side %,
see Figure [I.3] gives an illustration with an odd antihole of size 7.

However, these families of facets depend on the whole structure of the con-
straint matrix. Indeed, in packing problems, a local constraint is always valid
for the whole problem but this is not the case with covering problems. An
example based on the coloring problem is given in Figure .4 when looking
at the red submatrix, we deduce a local constraints of the form x1 4 + 15 +
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Figure 4.4: Nonvalidity of local constraints

Z24 + T25 + 35 > 3. This inequality is not valid for the whole problem as
{{1,4},{2,5},{3,6}} is a covering but does not satisfy this constraint

Unfortunately many covering polytopes do not have such a well-structured
constraint matrix as in Theorem [1.4.5] and Corollary [£:4.6] so these results do
not apply directly even if a strict submatrix has such a structure.

To tackle this problem, lifting theorems should lead to valid inequalities for
the whole problem. Given o'z < ag a facet defining inequality for 7350*, we
captures the smallest coefficient 8 such that a'z + 8 Tzgv > ag is valid for

”PS Y19} in the next definition.

Definition 4.4.7. [67] Given G(Vy,S*) a subgraph of G(V,S) and a facet defin-
ing inequality a" x > ag fOT'PMg* . For S € S\S*, we denote by ag(G(Vy,S*)) =
0
minccs-{axC|C covers Vo \ S}, where x® is the incidence vector of R C S.
Theorem 4.4.8. [67]] Given G(Vy,S*) a subgraph of G(V,S) and a facet defin-
ing inequality a’x > aqg for PMg* .
0
For each S € S\ 8*, the inequality

alz + (ag — as(G(V0,8")))zs = ag
defines a facet of the polytope P, s+uisy .
Vo

Note that if a '@ > ag is valid but not facet defining, a " 2+ (ap—as(G(Vy, S*)))xs >
ag will still be a valid inequality for PMS*U{S}

Note also that by repeatedly applymg this procedure, one can obtain a facet
defining inequality for ’PMs . Hence, this latter inequality is valid for PMS

Unfortunately, as we show i 1n Chapter[5} this lifting procedure is not compatible
within a column generation scheme.

Rank 2 and 3 inequalities

Antonio Sassano and Gérard Cornugjols [68] characterize the facets with right-
hand side 2 by giving an exponential procedure to enumerate them. It consists
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of enumerating the subsets W of V' and summing the associated inequalities
before dividing by |W| — € and up-rounding every coefficient of the obtained
inequality. This shows that they all belong to the elementary Chvatal closure.

Theorem 4.4.9. FEvery facet of PM{; with right-hand side {0, 1,2} belongs to
the elementary Chuvdtal closure.

They also give two characterizations for an inequality of the type o'z > 2 to
be minimal and a characterization of the ones defining facets. They show that
for each k£ > 3, a covering polytope exists for which a facet defining inequality
with right-hand side & does not belong to its elementary Chvatal closure. In [69],
the same authors discuss how to lift such inequalities. Lifting an inequality of-
ten refers to a procedure that, given a facet of a polyhedron, deduces a new
facet defining inequality of that same polyhedron or of another one whose con-
straint defining matrix is close. Finally, M. Sanchez-Garcia M.I. Sobro6n and
B. Vitoriano [70] characterize all facets with coefficient {0,1,2,3}. According
to the increasing difficulty of [71] [68], [69],[70], we understand that no one tried
to characterize all the facets with coefficients greater than 3.

To evaluate the ability of the rank 2 inequalities to improve the relaxation
value, we enumerated such constraints and added them to P for a few little in-
stances of coloring problems. Unfortunately, this did not improve the relaxation
value.

4.4.3 Polyhedral study of the coloring polytope

Hansen, Labbé et Schindl [63] proposed a polyhedral study of the coloring poly-
tope that is the polytope subjacent to formulation P; using the generics results
for the covering polytope that I recalled in Section [£.4]

Proposition 4.4.10 ([63]). Poss s full dimensional if and only if Vv € V, V\
N (v) is not a stable set.

If this condition is not verified, one can simplify the instance. Indeed, if
there exists v such that V'\ N(v) is a stable set, the optimal coloring of G is the
optimal coloring G[V \ N (v)] to which we add vUV \ N(v). This transformation
is doable in polynomial time and can be applied until we consider a subgraph
whose coloring polytope is fully dimensional.

A vertex u is said to be dominated if there exists v € V such that N(u) C
N(v) and u # v.

Proposition 4.4.11 ([63]). The only facet defining inequalities with a right-
hand side equal to 1 are the cover inequalities associated with non-dominated
vertices.

Both Propositions [f.4.11] and [£.4.10] are respectively deduced from the
Theorems [£.4.1] and [£.4.2] Moreover, they interpret the results of Cornuéjols
et.al. [71], regarding the coloring polytope. They also give necessary conditions
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for an elementary Chvétal rank inequality to be non-dominated for the coloring
polytope.

They did computational experiments adding to P; constraints associated
with odd holes of size 5 to improve the linear relaxation, but they said it to be
inefficient. The idea of such constraints is that every odd hole needs at least 3
stable sets to be covered. It can be extended with odd antiholes, stating that
an odd antihole of size 2k + 1 needs at least k + 1 stable sets to be covered.

4.5 Dual optimal inequalities for column genera-
tion

Column generation suffers from slow convergence, and to bypass this problem,
different methods, called stabilization methods, have been derived [72]. One of
them consists of introducing Dual Optimal Inequalities (DOI), that is, adding
extra columns to the linear relaxation that do not perturbate its optimum value
and for which an optimal solution with positive values for variables associated
with such extra columns can be transformed into an optimal solution of the
original relaxed problem, that is, with a null coefficient in these extra columns.
The name comes from the fact that each extra column corresponds to a con-
straint that cuts the dual solution space but none of its optimal solutions. One
could think that adding this columns to the rimal only makes the RMP harder
to solve, but in fact it stabilizes the columns generation by cutting the space of
dual values, which often results in a lower number of columns.

Gschwind et al. [4] proposed a set of DOI for different column generation
formulations for different problems based on the following structural property
of the constraint matrix.

Definition 4.5.1 ([4]). Given, an nxm matriz M and two size m vectors I, J,
matriz M has the (I, J)-exchange property if, for any of its column H, H > I
implies that H — I 4+ J is a column of M.

Theorem 4.5.2 ([]). Given a linear system
min{]lTx | Mx > b, = >0}

where M has positive integer coefficients and b > 0, if M has the (I, J)-exchange
property and I is a canonical column vector, then J'y < Iy does not cut off
any optimal point of the dual

max{b'y | My <1}.

Theorem m permits to deduce that if M has the (I, J)-exchange property
for some canonical unit vector I, then:

min{l "z | Mz >b, y >0} =min{l 2 | Ma+ (J" —1")z>b, z>0}.
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Figure 4.5: A graph for which Mg has an exchange property

where z is a new variable. Moreover, as the set of variables of the left-hand
program is included in the set of variables of the right-hand program, the dual
space of the right-hand one is included in the dual space of the other.

Gschwind et al. [4] use Theorem to propose DOIs for formulation (P)
solving the coloring problem on a graph G = (V, E), whose constraint matrix
is M. Given w € V and a stable set T such that T C N; and N(T) C N,
then M has the (x“,x”)-exchange property. Then the DOI variable z has
coefficients (x, x7) as follows.

—1\— w
1
=T
1
0
0

This matrix property translates in terms of graph structure: given a stable set
S containing w, as N(T') € N, there is no edge between S\ w and T, as T is a
stable set, (SUT)\w is also a stable set of G. An example is given in Figure 4.5
where T' = {t1,t2}. A stable set containing w is given by {w, v}, and {v,1 ,t2}
is another stable set.

This implies that adding a variable z with coefficients x7 — x* to P does not
change its optimal value. However, given a solution x, z of P with the additional
column x" — x?, where z # 0,  may not be a solution of P as vertices of W
may not be sufficiently covered. But, since z has a negative coefficient in the
constraints associated with ¢, ¢t will be excessively covered. For that reason, by
taking a stable set S containing ¢ such that g # 0, reducing xg and increasing
rsuw\¢ will permit to obtain a solution of (P) Note that this can be done only
if z < xg otherwise, it will be necessary to iterate over several stable sets S.

As the number of such structures can be exponential in the size of a graph,
Gschwind et al. [4] first propose to add a set of such DOI as a preprocess-
ing, this has been experimentally successful. However, Gschwind et al. [4] also
investigated adding DOI dynamically during the column generation process.
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The DOIs based on the exchange property have appeared previously in sev-
eral contexts linked to cutting stock problems but are not the only type of DOI
that have been proposed in the literature. Another type of dual inequalities
that have been proposed in [4] is called deep dual optimal inequalities (DDOI),
they correspond to inequalities that do not cut off every dual optimal point.

Dual optimal inequalities DOI were introduced in 2005 by José M. Valério
de Carvalho [73] for the cutting stock problem. This problem is to find the
minimal number of patterns needed to satisfy a set of demands d;, i € I in
items of sizes s; < W. It can be formulated as an ILP with exponentially many
variables associated with every possible cutting pattern. Its constraints are as-
sociated with each item and having a right-hand side equal to the number of
such items needed. Remark that given an item of size s; we can cut a new item
having size s; < s;, and this can be generalized in the following way: cutting
an item of size s; into a set of items J is possible when Zje] s; < s;. Hence,
José M. Valério de Carvalho proposed to add new variables to the primal with
zero objective coefficients, coefficient 1 in constraints associated with items in
J, —1 is the constraint associated with ¢, and 0 in the other constraints. There
exists exponentially many such DOI variables. Hence, he made experimental
computations with |J| = 1,2 only and added only one variable with coefficient
—1 in line 7 for each item 4. It resulted in less primal iterations and computa-
tion time to compute the linear relaxation. Later, Hatem Ben Amor et.al. [74]
showed that aggregating constraints from the binary cutting stock (where each
item has a unit demand and several items can have the same size) problem
works equivalently as adding equality constraints in the dual formulation from
a computational point of view. This corresponds to the use of deep dual opti-
mal inequalities, i.e., inequalities that do not cut every optimal solution of the
dual. Later, Claudio Alves and J.M Valério de Carvalho [75] proposed a stabi-
lized branch and cut and price algorithm for the multiple length cutting stock
problem, which is a generalization of the previous problem where the patterns
have different sizes and for each size there is a maximum number of patterns
available. They were the first to try branching with DOI and pointed out that
some DOI conflicted with the branching decisions. Hence, they removed DOI
from the master problem when such conflicting decisions were made. They also
added DOI during the branching, considering the branching decisions as con-
straints of the primal and, hence, as variables of the dual. This also has been
experimentally successful.

In another article on the cutting stock problem, Frangois Clautiaux, Clau-
dio Alves, and J.M Valério de Carvalho [76] proposed to add safe lower and
upper bounds on the dual variables: these bounds do not cut off any optimal
solution. They also introduce a particular type of dual cut associated with a
given dual solution y*. This type of cut would separate every dual point that
is a linear combination of y* and some other solution. This type of inequality
may sometimes cut every optimal dual solution, but in that case, they prove
that y* is already an optimal solution. The idea of their framework is to add
a set of such cuts before solving the linear relaxation and then remove subsets
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of these cuts to check if it improves the linear relaxation. In other words, they
check whether these cuts have cut every optimal point. Note that they never
solve the linear relaxation without additional cuts. Nonetheless, they prove that
this framework computes a right linear relaxation. They propose removing pat-
terns associated with constraints whose dual value is zero. They give a lemma
characterizing a set of such items. Given a valid lower bound for the number of
patterns needed, if this lower bound is greater than some number (polynomially
computable) depending on the instance, then every ’small’ item can be removed
from the instance. The last idea tried in this article is "Original trust region."
The idea is to use a known dual solution close to the optimal one. Then add
dual box constraints containing this solution, solve the LP, and check if remov-
ing the box improves the relaxation, if this is not the case, then it is a dual
optimal solution. They show that these ideas stabilize the column generation
on 10 sets of instances for which they compare different combinations of dual
cuts/bounds/trust region combinations.
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Chapter 5

The graph coloring problem
and alternation strategies

In this chapter, we discuss whether it is possible to use the general results on
the set covering polytope for developing a Branch and Price and Cut (B&C&P)
for the graph coloring problem. Finally, we present a new B&C&P based on
different alternation strategies between cutting and pricing. Finally, we propose
a method using both dual inequalities and Chvatal-Gomory constraints.

5.1 Two remarks about graph coloring polytopes

First, we show that the inequalities used in [63] to reinforce (P) belong to the
elementary Chvatal closure of {z | M¥z > 1, > 0}. We recall that M is the
0/1 matrix whose rows are vertices of G and columns are stable sets of G.

Lemma 5.1.1. The following inequality families belong to the elementary Chvad-
tal closure of {x | M¥x > 1, x > 0}:

(i) > xg > 3 for each odd hole C of G,
SeS|SNC#D

(i1) > Tg > |C‘T+1 for each odd antihole C' of G.
SeS|SNC#D

Proof. Let us sum the inequalities of Mﬁx > 1 associated with vertices of
|C]—1

C. If C is a hole, then a stable set contains at most vertices of C, and
hence, by dividing the obtained inequality by this quantity and rounding up
every coeflicient gives inequality (i) associated with C. If C is an antihole, then
every stable set contains at most two vertices of C, in which case, dividing the
obtained inequality by 2 and rounding up gives the inequality i) associated
with C. O
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Lemma 5.1.1] and Theorem [£.4.9|let us think that separating the elementary
Chvatal closure may be promising for the coloring problem as this procedure
seems natural to obtain facet-defining inequalities for covering polytopes.

Lifting procedure of Theorem and column generation A first
question arising from the lifting operation of Theorem is to see whether it
can be used in a column generation scheme.

The first issue with such a procedure is that, generally, the lifting coefficient
«g is not linear in the elements of S. This changes the structure of the pricing
subproblems. An idea to address this issue would be to compute heuristically
a quantity ay higher or equal to ag. This would still lead to a valid inequality,
but weaker if a'y > ag. This upper bound could be linear on the elements of S,
which would not change the structure of the pricing subproblems.

The second issue seems harder to address. Since the procedure given in The-
orem to obtain a valid inequality for PMv is iterative, it is order dependent.
We give a simple example of this limit with the graph in Figure[5.1] Here, a valid
covering of the graph by stable sets is given by §* = {{1,4}, {2, 5}, {3, 6}} The
inequality ) g g. 25 > 3 is valid for ’PM1,2,3,4.5,6 This inequality is redundant
since it is the half sum of the inequalities Wlth right-hand side one restricted to
the subset of columns in S*. Using Theorem [4.4.8] for S’ = {1,2,3} we obtain
the valid inequality )¢ 5. 5 > 3 for PM;/ But now, if we apply it again

57y
with S” = {4,5,6} we obtain the inequality {22565* zs + 3xs+ > 3. Now, if we
do it in the reverse order, we obtain Zses* s + 3xrg > 3.

Until now, this seems compatible with column generation since such an al-
gorithm directly gives an order of columns. It turns out that this idea does not
work well from a theoretical point of view, it hardens the convergence criteria
of the column generation. Given a subset of columns §* and a valid inequality
ax > ag for PMg*. Given an order of the columns in S\S8*, say, (S1,...,5|s\s+|),
the reduced cost of a column S; depends on ag,, which can be computed using
Theorem only by knowing the coefficients {ag, |k < i}. This seems to be
possible only by enumerating such columns recursively and hence generating all
the columns.

If one ignores such an issue and prices a column S, supposing that ag (or
a’s) should be the coefficient obtained as if S was the first column in the given
order. What can happen is that no column has a negative reduced cost at this
iteration. Still, after adding S to the RMP (even if it has a positive reduced
cost), another column, say S’, now has a negative reduced cost since it is added
as the second element of that order.

In conclusion, using such a lifting operation appears to contradict the prin-
ciple of column generation, that is to generate the fewer possible columns.
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Figure 5.1: A limit in the use of Theorem in a column generation scheme

5.2 B&C&P with Chvatal-Gomory constraints

In [68], all facet defining inequalities with right-hand side 0, 1, and 2 for the set
covering polyhedron are given. The only facet defining inequalities with right-

hand side 0 are g > 0, the ones of right-hand size 1 are: Y. zg > 1, and
Slves

the ones with right-hand side 2 are proven to belong to the elementary Chvatal

closure. Recall that the odd hole and antihole inequalities used in [63] also have

rank 1. Hence, we decided to separate the elementary Chvatal closure.

5.2.1 Pricing with Chvatal-Gomory constraints

This section describes how to use Chvatal-Gomory (CG) constraints to reinforce
(P1). Note that a Chvatal-Gomory constraint is obtained by taking a fractional
linear combination of constraints, which implies having a vector of fractional co-
efficients. In the particular case of (P), constraints are associated with vertices,
hence we represent these coefficients by a vector ¢ € RY. Now, the obtained

reinforced formulation (P) is the following, where C' is a set of CG multipliers
c

min Z xs (5.1)

SeS
Y oas>1 VoeV (5.2)
SeSlves
Z zg[c(S)] > [17¢] Vee C (5.3)
Ses
zs >0 vVSesS (5.4)

We then must deal with additional dual variables associated with CG con-
straints in (P). Let us denote by p. the dual cost of a CG constraint associated
with ¢ € C. The reduced cost of a stable set S becomes:

87



CHAPTER 5. THE GRAPH COLORING PROBLEM AND
ALTERNATION STRATEGIES

re=1=> X —=>_ pefc(S)].

veS ceC

Note that this quantity is no longer linear in the vertices of S (it is linear
when no CG constraints are added to the primal) and modifies the structure of
the pricing subproblems. To tackle this problem, in [77] it is proposed but not
tried, to use a modified ILP. We propose a similar exact ILP (SP) solving the
pricing subproblems with an additional variable z. and one additional constraint
for each CG constraint of the primal:

max Z ApWy + Z eZe

veV ceC
Wy + Wy < 1 Vuv € F,
zC—chwvgl—e Ve e C,
veV
wy, € {0,1} VveV.
z. €N VeeC.

An important aspect of practically using (SP) as an exact algorithm is to
compute an € value such that SP is valid. For a given CG constraint associated
with ¢, the tightest €. (the one that would give the strongest valid constraints
for the formulation SP) is given by the following formula:

min c(S) — [e(S)] if it exists,
ses
€c = c(S) = le(S)] >0
0 otherwise.

This quantity seems hard to compute. Hence, we propose every c, to 1074
which implies that e = 10™* gives a valid ILP pricing. This change may imply
changes in the separated inequalities.

To avoid calling an exact pricer at each iteration, we decided also to use two
heuristics. We first approximate cg by a function that is linear on the vertices:

Fszl_ZAv_Zuczcv

veS ceC veS

Now, the weight of a vertex u becomes: f, = Ay + ) c o HeCu. This weight
permits us to use the following three algorithms.
Greedy Algorithm: it consists of sorting vertices u by decreasing f(u), start-
ing from an empty set S in which we recursively add the first vertex not in
N(S)uUS.
Root Node Pricer: it corresponds to the resolution of (SP) without z vari-
ables and with f as objective, only solving the root branching node done with
a black box ILP solver.
Exact Pricer: Finally, to ensure convergence, we solve (SP) until a negative
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reduced cost column is found using a black box ILP solver.

Note that another possibility would be to let the solver solve (SP) to optimality.
Still, a preliminary computational experiment showed that returning the first
negative reduced cost column gives an overall faster method, even if the number
of columns is slightly greater. Note that for the baseline algorithm, for which
no cuts are generated, having a root node pricer and an exact pricer returning
the first negative reduced cost column is redundant; no root node pricer will be
launched for this algorithm.

5.2.2 Alternation strategies

Column generation is known to suffer from convergence issues: in particular, a
phenomenon called the tailing-off effect consists of a sequence of iterations of
subproblems, improving poorly the optimal values of the associated sequence of
RMPs. Most of the time, with BCP, the strategy is to add cuts after primal
convergence (when no reduced cost columns exist) because adding constraints
to the RMPs adds dual variables and hence hardens the pricing subproblems.
This is especially the case when such cuts are non-robust, that is, they change
the structure of the pricing subproblems. On the other hand, it should be possi-
ble to minimize the tailing-off effect by cutting before primal convergence, i.e.,
launching a cutting round in the case when adding a column does not improve
the objective value of the RMP 'much’ with the hope that it perturbates the col-
umn generation process by cutting the sequence of non-improving solutions. To
investigate these techniques, we first need reinforcement inequalities, and then,
we propose different alternation strategies and investigate their performances.

To investigate whether cutting before primal convergence can limit the tailing-
off effect, we propose to compare four parametrized alternation strategies be-
tween pricing and cutting:

e Baseline: no cutting round is launched

e Price&Cut: a cutting round is launched any time the exact pricer does
not find an improving column

e k-alternation: if the improvement of the objective value is less than 10~°
after k iterations of the restricted master problem, start a cutting round

o (a, k)-alternation: each kth iteration, launch a cutting round. If a violated
constraint is found, set k to k x a (0 < o < 1), otherwise set k to g

Note that the baseline algorithm is the particular case when the alternation
strategy never decides to cut. See Figure [5.2] for a diagram describing our
BCP scheme. At each RMP resolution, that is solving the linear relaxation of
P on a subset of variables, the chosen strategy decides whether to cut or to
price. If it decides to cut, we launch the MILP separating the CG constraints
(SEPAL) [66]. If it decides to price, three pricers are successively launched only
when the previous one fails to find a negative reduced cost column always in
the same order: Greedy — Root node — Exact.
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The ’'convergence’ node aims to ensure that both the separator and the
pricing procedures would not find any cut/column, this ensures that a valid lower
bound is computed (i.e., the relaxation value is computed): after a failing pricing
round, meaning that no negative reduced cost column exists, the separator has
to be launched to try to find a new cut, if this round fails, then convergence is
achieved, otherwise, the cut is added and the algorithm goes back to solving the
new RMP. If a separator fails to find a column, then a pricing round must be
launched to try to find a negative reduced cost column if this round fails, then
convergence is achieved. This latter does not appear in the figure for clarity’s
sake.

solve RMP

YES, add the new
constraint to RMP

YES, add the new

* A
XA H column to RMP

h 2

Alternation strategy
decides C or P

A p

Greedy Pricer finds
negative reduced cost column?

WA’H

Separation MILP Root node MILP finds
finds constraint? negative reduced cost column?

W‘)\”&

Exact Pricer finds
negative reduced cost column?

NO

NO

CONVERGENCE

Figure 5.2: BCP scheme

5.2.3 Experimental results
Technical details

We ran the experiments on a computer with an intel core i5, 3.10 GHz processor,
and 16 GB RAM. We used SCIP 7.0.3 [78] for the column generation framework,
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CPLEX [79] for the LPs resolutions, and the pricing heuristics using MILP and
the separation procedure.

Instance description

We compare the different formulations we propose with the baseline algoithm
on three sets of instances:

e Color02 instances [50] solved in less than three hours by the Baseline, for
which x s is computed in less than an hour by the Baseline. This gives a
set of 40 instances

e Instances of the second and tenth DIMACS challenge solved in less than
three hours by the baseline and for which x ¢ is computed in less than an
hour by the Baseline. This gives a set of 9 instances.

e The complements of the instances of the second and tenth DIMACS chal-
lenge solved in less than three hours by the Baseline, for which x; is
computed in less than an hour by the Baseline. It is a set of 7 instances.

Note that Color02 contains the three first Mycielski instances. These in-
stances are obtained by recursively applying the construction of Mycielski
to the hole of size 5. In practice, such adversarial instances are hard to solve
with PY, and the 6th one (myciel6) already takes many hours with the imple-
mentation we will describe in the next section.

Tables
The meaning of the column’s titles is as follows:

e multicolumn ’root node’: statistics for the computation of the root branch-
ing node

e multicolumn 'Complete Branching’: statistics for whole branching tree
computation time

e 'CPU’: ratio of time needed for the corresponding algorithm to solve this
set of instances and the time needed by the Baseline to solve this set of
instances

e ' col’: ratio of columns generated by the corresponding algorithm to
solve this set of instances and the number of columns generated by the
Baseline to solve this set of instances

e '% gap’: corresponds to average gap closure on the instances for which
xf # x calculated by the formula *-222 where Y4 is the relaxation of

X—Xr
the corresponding algorithm

e '# nodes’: ratio of branching nodes generated by the corresponding al-
gorithm to solve this set of instances and the number of branching nodes
generated by the Baseline to solve this set of instances
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e % faster is the proportion of instances solved faster by the corresponding
algorithm than the Baseline

e '# cuts’: number of generated cuts

Since the separation procedure we use for separating the elementary Chva-
tal closure is heuristic, our different alternation strategies may induce different
relaxation values. 9 instances of the Color02 set verify x # x . Only three in-
stances of the set DIMACS verify x # xs. No instances of the set com-DIMACS
verify x # x ¢ hence, the gap closure does not exist for these instances.

root node Complete Branching
Instances set algorithm | CPU | # col | % gap | CPU | # col | # node | % faster | # cuts
Baseline 1.0 1.0 0.0 1.0 1.0 1.0 - -
Price and Cut | 1.01 1.01 34.0 | 1.04 1.0 1.12 10.0 69
Color02 k-alternation (k=1) | 1.49 1.01 | 2899 | 1.25 0.44 0.57 7.5 47
k-alternation (k =10) | 1.02 1.01 27.0 | 1.26 0.8 0.52 10.0 56
k-alternation (k =50) | 1.01 1.01 34.0 | 1.09 0.92 1.02 17.5 64
(a, k)-alternation | 1.07 1.01 36.0 | 1.82 0.35 0.52 7.5 34
Baseline 1.0 1.0 0.0 1.0 1.0 1.0 - -
Price and Cut | 1.02 1.0 0.0 1.01 1.0 1.0 - 0
k-alternation (k. =1) | 1.55 1.0 0.0 | 1.32 1.0 1.0 - 0
DIMACS k-alternation (k = 10) | 1.03 1.0 0.0 | 1.02 1.0 1.0 - 0
k-alternation (k = 50) | 1.02 1.0 0.0 | 1.01 1.0 1.0 - 0
(a, k)-alternation | 1.08 1.0 0.0 | 1.05 1.0 1.0 - 0
Baseline 1.0 1.0 - 1.0 1.0 1.0 - -
Price and Cut | 1.11 1.0 -] 105 1.0 0.95 14.29 11
k-alternation (k =1 6.57 0.82 - | 28.08 0.84 1.13 0.0 13
comp-DIMACS 4t ernation (li = 10; 116 | 0.96 - | 283| 101 0.97 14.29 12
k-alternation (k =50) | 1.11 1.0 - 111 1.0 1.02 14.29 13
(a,k)-alternation | 6.46 0.96 - | 3745 0.66 0.61 14.29 5

Table 5.1: Results of the different formulations for all instances

SCIP Implementation details: The alternation between the three cut-
ting strategies is achieved by having two SCIP object separators. The first is
called when no column is generated at the end of the 3 pricers. This separator
permits achieving a classic Price&Cut, that is, launching a cutting round when
the pricing objects find no column. The second separator is called by our greedy
pricer when the strategy is to alternate; in this case, it will not try to generate
a column if a constraint is found.

Table shows the results of our different algorithms on the three sets of
instances. We do not present the result of the Baseline method as the results
depend on the configuration of the computer and implementation details. We
focus on the comparison between the Baseline method and the proposed one by
giving a ratio between a given statistic for our strategies and the baseline. First,
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whatever alternation technique we consider or instances, the computation time
needed for the root node is always greater than the one of the baseline. Note that
the number of columns and computation time at the root node of the Price and
Cut is necessarily greater or equal to the number of columns and computation
time of the Baseline. This is not necessarily the case when alternating between
cutting and pricing. On DIMACS, we can see that no constraint is generated.
Perhaps this comes from the high relaxation value on these instances. Hence
the Baseline is the best algorithm since all the others spend time separating
nothing.

Significant differences on the improvements of the relaxation value:
Table [5.1] shows that the relaxation value is a lot improved by Chvatal-Gomory
constraints on Color02 instances, and we see that launching a lot of cutting
rounds does not necessarily imply a better relaxation value as k-alternation with
k = 1 closes the gap less than the Price&Cut or k-alternation with (k = 50).
Still, the alternation that reduces most of the gap is the («a, k)-alternation. Sur-
prisingly, the (a, k)-alternation and k-alternation with k¥ = 1 generate fewer
constraints than the other alternation procedure. A purely rhetorical explana-
tion can be that the separating MILP generates constraints considering all the
columns of the RMP: this implies that when the number of columns is high,
it is harder to find the most violated constraint. In counterpart, the most vi-
olated constraint generated at the beginning of the column generation scheme
may not be the most violated one by the optimal points of the linear relaxation,
and may induce complicated optimal points that are harder to separate: this
could be true for k-alternation (k = 1) but not for the («, k)-alternation. This
explanation seems hard to witness in practice, but we think that it somehow
explains some observations...

Reducing the number of columns and branching nodes: The k-
alternation with & = 1,10 and (a, k)-alternation generates fewer columns on
comp-DIMACS, showing a slight stabilization of the root node computation.
When considering the whole branching process for Color02 instances, our al-
ternation strategies, except k-alternation with & = 50, lowered the number of
generated nodes drastically.

Explosion of the computation time because of the separator for
(o, k) and k =1 alternation: Unfortunately, these convergence stabilizations
on Color02 did not induce a lower computation time, which explodes. To un-
derstand what causes this explosion, one can look at Table where we give
the repartition of the computation time. The column RMP is calculated as the
total computation time minus the computation time of the pricers and separa-
tors. On Color02, most of the computation time of k-alternation with k£ = 1
and (a, k)-alternation is spent on the separators.

A hope to achieve faster convergence is to use the so-called DOI which
is investigated in the next section.
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Instance Algorithm | CPU pricing | CPU separation | CPU RMP
Baseline 0.22 - 0.78

Price and Cut 20 6 74

k-alternation (k =1 12 81 7

Color02 | 1 iternation (Ig = 10§ 16 37 048
k-alternation (k = 50) 19 11 7
(o,k)-alternation 8 81 11

Baseline 99 - 1

Price and Cut 98 1 1

k-alternation (k = 1) 76 24 1

DIMACS k-alternation (k = 10) 97 2 1
k-alternation (k = 50) 98 1 1
(av,k)-alternation 94 5 1

Baseline 65 - 35

Price and Cut 62 4 34

k-alternation (k =1 2 97 1
comp-DIMACS |4, it ernation (lg = 103 23 64 13
k-alternation (k = 50) 59 8 33
(a,k)-alternation 1 99 1

Table 5.2: Repartition of the computation time in %

5.3 Dual optimal inequalities and elementary Chva-
tal closure

5.3.1 Cutting both primal and dual spaces

For the formulation (P), if T is a stable set whose closed neighborhood is in-
cluded in the closed neighborhood of a vertex v, then by Theorem X' —x?
is a DOI. Let D be a set of such pairs and y the associated primal variables.
The stabilized formulation (P**%?) will then be :

min Z Tg (5.5)
ses
Soas— Y wrt Y per>1 VoeV  (56)
SeS|ves (v, T)eD (w, T)eD|veT
g >0 vSes (5.7)

Yuw,7 > 0 V(w,T) € D (5.8)

Adding CG constraints to P changes the dual structure by adding variables.
Also, the constraint matrix may no longer have the (x?, x”')-exchange property.
It depends on the coefficient of the variables y in the CG constraints. This
implies that x” —x? may not be a DOI anymore. We denote by ¥ the submatrix
having its column set associated with DOI and its row set the CG constraints.
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Let us denote by C the set of vector multiplier ¢ associated with CG constraints.

The resulting stabilized cut program (P29%) is as follows:

Ses
oows— Y prt Y wer>1 YoeV  (5.10)
SeSlves (v, T)eD (w,T)eD|veT
S leS)es+ > Vs X yur > [e] VeeC  (5.11)
Ses w, TED
2s >0 VSeS (512

Yor >0  Y(w,T)eD (5.13)

Theoretical analysis of ¥

In this section, we investigate several values of W.

It is essential to notice that DOI cannot improve the relaxation value; the
only hope we can have is to reduce the number of iterations or the CPU time
from alternation strategies or finally help our separation procedure to find more
constraints by changing its numerical behavior (remember that it is heuristic).

Let us consider P as defined in Section the set covering formulation
with CG constraints. We denote by d the variables associated with covering
constraints and g the variables associated with CG constraints. The dual D of
P is as follows:

max Z d, + Zfﬂc]gc

veV ceC
N <
(D) d(5)+ezc[c(sﬂgc < 1 VSeS,
d, > 0 VYvelV.
9 > 0 VceC

Theorem 5.3.1. Let (w,T) be a pair such that T is a stable set and N(T) C
N(w), the following inequalites are DOI for P:

(1) d(T) + X cec 9e([(T)] = [ew]) < du
(1) d(T) < dy, if Ve e C ey < c(T)

Proof. For the first statement, suppose that (d*, g*) is optimal for D and d* (T)+
Yoecc 9u(le(T)) = [ew]) > dy,. Let S be a stable set containing w and S" =
S\ {w}UT, S also is a stable set by construction.

Since (d*, g*) is a solution of D we have:

L2 d(8) + ) gile(S)] = d* (1) + d*(S\ {w}) + D g:[e(T) +e(S\ {w})].

ceC ceC
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Using the hypothesis we get:

1> d" () + Y ga([e(T) + e(S\ {w})] + ew] = [e(T))),

ceC

Now we claim that for any a,b,c € R: [a+¢] < [a+b] + [¢] — |b]. This
comes from the fact that [a +¢] + [b] < [a+b+c] < [a+b] + [c].
Now, for a given ¢ € C, by setting a = ¢(S\ w), b = ¢(T), ¢ = ¢, we obtain

[e(S)] < [e(T) + e(S\ {wh)] + [ew] = [e(T)]-

Hence, we have:

1> d"(8)+ Y g5([e(T) +e(S\ {wh)] + [ew] = [e(T)]) > d*(8) + D [e(S)

ceC ceC

Hence, no constraint of D having a positive component for d,, is tight, im-
plying that (d*, g*) is not optimal.
For the second statement, suppose that all our CG constraints
verify ¢, < ¢(T) Ve € C.

Suppose that d(T) > d,,. We have analogously that:
1> d () + Y gi[e(S)] = d*(T) + d*(S\ {w}) + Y g [e(T) + (S \ {w})]
ceC ceC

Hence, using the hypothesis and the fact that the rounding up function is
increasing, we obtain:

d*(T) +d"(S\{w}) + Y gle(T) +e(S\ {w}) > d*(S) + Y galel

ceC ceC

We conclude that no inequality with a positive d,, coefficient is tight. O

We propose two methods using DOI and CG constraints simultaneously:
e DOICHGL : Y(w,T) DOIL, U, 7 = [e(T)] — [ew],

e DOICHG? : ¢, < ¢(T) imposed in the MILP separator (so every con-
straint satisfies Theorem ii), and ¥ = 0.

Implementation details

Let (z*,y*) be a fractional solution we would like to cut.

With DOICHGI1, to cut it with CG inequalities, we need two additional
variables m,, and mr for each pair (w,T) associated with a DOI of the primal
and four constraints. Let D be the set of (w,T’) associated with DOI added to
the primal. The associated MILP is the following. The horizontal line permits
to visually show what changed from SEPA (note that the objective function also
changes):
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MaX ) — Y gegr LGS — Dy 7ep Yo7 (MT — M)
fS = ag — U(S) VS e §*
fo = ao—1u
fs > 0 VS e S*
fs < 1-96 vS e S
U, > 0 YveV
Uy < 1—-96 YveV
(SEPA1) as € Z vSedS*
ay € Z
My —Uy < 1-—96 Y(w,T) € D
My > Uy V(w,T) € D
mr < u(T) Y(w,T) € D
u(T)—mpr < 1-96 Y(w,T) € D
uy € {0,1} Y(w,T) € D
ur € Z Y(w,T) € D
The two first new types of constraints ensure that m, = [u,], the two

second new types of constraints ensure that my = |[u(T)]| and the last two
define the variable space.

If one would like to price not only stable sets but also DOI, i.e. adding DOI
dynamically, the reduced costs of the CG constraints would have to be taken
into account. Still, since adding DOI at the beginning is already reducing the
number of iterations significantly, we choose not to implement such a dynamic
method as it also seems to harden a lot our framework as we would have to take
into consideration the CG constraints while generating new DOIs.

With DOICHG2 We add the constraints wu,, < u(7") for each DOI associ-
ated with (w,T) in the separation MILP.

This implies that generating the DOI (u,T) dynamically should be done
taking into account that some CG constraints already generated may not respect
uy < u(T).

5.3.2 Preliminary computational experiments

We first decide what type of DOI to add to the formulation and then compare the
root node of three formulations: the Baseline to which we added DOI, and two
B&C&P with DOI implementing the two solutions proposed in Theorem [5.3.1]

For these experimental results, we only consider the subset of instances from
the "Color02" which are solved by an algorithm in less than a day and for which
the classic algorithm solves the linear relaxation in less than one hour and more
than 0.1 seconds that contains the graph structure needed for the existence of
the DOI as done in [73)], it consists in 30 instances. The type of DOI we consider
is introduced in [73] and corresponds to x° — x? when S is a stable set such
that N(S) C N,.
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Which set of DOI should we generate ?

Since the number of DOI proposed by Gschwind et al. [4] for the coloring prob-
lem is exponential, we have to choose a subset of these to add. The intuitive
choice would be to consider DOI associated with couples (w,T) where T is a
maximum stable set included in the neighborhood of w. Any DOI associated
with a proper subset of T' would lead to a weaker dual cut. To confirm this
intuition, we consider the three following DOI types:

e type 1 : for each vertex w we construct one DOI with a maximum stable
set S of its neighborhood such that N(S) C N,

e type 2 : for each vertex w we construct a DOI for each maximal stable
sets S, ..., Sy, such that N(S;) C N, and |J S; = Ny (these are computed
greedily with the algorithm described in Table

e type 3 : for each vertex w, v € N, and N, C N, we add the DOI
associated with (w, {u})

Algorithm 1 Greedy Algorithm to compute DOI of type 2
sol + ()
for w eV do
N < {v € Ny | N, € Ny}
for v € n,, do
S« {v}
for u € ny, \ v do
if N,NS =0 then
S+ SuU{u}
end if
end for
sol + sol U (w, S)
end for
end for
return sol

Algorithm [I] permits to cover the vertices of N,, by maximal stable sets of
N, and so for each vertex w € V. Here’s the signification of the column titles :

e CPU is the proportion of the sum of resolution time for each instance
between the corresponding algorithm and the classic one

e # ite is the proportion of the sum over these instances of the number of
iterations between the corresponding algorithm and the classic one

e Price CPU is the proportion of the sum over these instances of the pricing
time between the corresponding algorithm and the classic one.
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The columns whose name starts with av. correspond to the average over all
instances of the associated ratio. According to Table [5.3] even if the DOI of
type 2 seems less effective in average CPU time than the DOI of type 1 and 3,
it is the fastest in terms of total CPU time and total number of iterations. We
will now consider only this type of DOI since it seems the most efficient on hard

instances.
Algorithm | av. CPU | av. # Ite | av. Price CPU | CPU | #ite | Price CPU
Baseline 1 1 1 1 1 1
Baseline + DOI type 1 0.73 0.88 0.89 | 0.93 | 0.85 0.87
Baseline + DOI type 2 0.78 0.80 1.17 | 0.85 | 0.69 0.76
Baseline + DOI type 3 0.81 0.82 1.01 | 0.95 | 0.79 0.97

Table 5.3: Experimental results of the three different types of DOI on instances
for which it exists DOI and that are solved in more than 0.1 seconds

Branching with DOI

Given a DOI-inducing structure (w,T’), it happens that some branching deci-
sions make that structure no longer DOI-inducing. For example, if the branching
decision adds an edge between two vertices of T or between a vertex of T" and
some other vertex of the graph that is not adjacent to w. To address this issue,
we propose two methods :

e AIBN (adapt inside branching nodes): in every branching node, we fix
every DOI variable incompatible with the associated branching decision
to zero (when the associated matrix does not have the associated exchange
property because some of the columns of the original do not respect the
branching decisions).

e DBB (delete before branching): after computing the first relaxation value,
we delete the DOI variable from the primal (and complete the variable set
such that no primal iteration has to be completed before branching)

algorithm | CPU | # ite | # nodes
Baseline 1 1 1
AIBN 0.7 | 0.65 0.34
DBB | 1.15 1.08 1.25

Table 5.4: Experimental results for AIBN and DBB DOI + branching strategies

From Table[5.4] we see that the best is to keep the DOI all over the branching
scheme and only remove them from the nodes where branching decisions are
incompatible. Deleting the DOI before branching is even worse than the Baseline
on this set of instances. It seems like having DOI at the beginning of the column
generation process perturbates the whole B&P by changing the set of columns
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generated at the root node, hence implying different optimal solutions for each
RMP. From now on, it is AIBN that we consider for all branching schemes.

5.3.3 Experiments using Chvatal-Gomory constraints, al-
ternation and Dual Ooptimal Inequalities

It is essential to note that DOI cannot improve the relaxation value; the only
hope we can have is to reduce the number of iterations or the CPU time. We
only use DOI of type two, for which we compare the two following techniques
suggested by Theorem [5.3.1}

e DOICHGI : ¥(w,T) DOI, the coefficient is [A(T)| — [Ay]
e DOICHG2 : A\, < A(T") imposed in all separators

For these final experimentations, we consider the sets Color02, DIMACS, and
DIMACS-comp containing DOI. Each set is composed of 30, 7, and 6 instances,
respectively.

Baseline + DOI is the best in general: In Table[5.5] we see that the re-
sult of the Baseline + DOI all over the branching tree also performs significantly
better than the Baseline on DIMACS and Color02.

k-alternation (k = 10) + DOICHG1 performs well on comp-DIMACS:
Baseline 4+ DOI is overall slower on comp-DIMACS for which the fastest algo-
rithm is k-alternation (k = 10) + DOICHGI.

Poor relaxation value of DOICHG2: On Color02, none of the B&C&P
with DOI and DOICHG2 improve the relaxation value of the Baseline, and the
performances of this algorithm looks like the performances of the B&P + DOI in
terms of the number of iterations. DOICHG2 does not seem to imply a different
algorithm than the BP with DOL.

DOICHG]1 yields mitigated relaxation values: Note that using DOICHG1
came with changing the structure of the separator MILP which explains why
the DOICHG1 Price&Cut does not manage to close the gap at all when the
other alternation, which launched more separation rounds managed to close a
part of it. Remember that for numerical stability, the authors of [66] proposed
to add an epsilon objective coefficient on some variables of the MILP. Similarly,
our variant of this MILP (SEPA1) may be unstable numerically, and this could
also explain why launching several separation rounds can help find interesting
constraints.

DOICHGT1 is the coefficient inducing a combination of primal and
dual cuts: The method using both primal and dual constraints that tries to
take advantage of both is DOICHG1, as DOICHG2 performs like the Baseline
+ DOI, but it is not efficient at all since it often comes with an explosion of the
computation time.

(o, k)-alternation profits a lot from DOICHG2 On DIMACS and comp-
DIMACS, surprisingly the fastest calculation of the root node is done by the
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(a, k)-alternation, adding constraints to the separator of the form wu,, < u(T)
may simplify the separator’s structure which induces a huge stabilization of the
root node calculation. This has more to do with the fact that the separator is
heuristic than a real synergy between primal and dual cuts.

Conclusion: What seems clear in each set of instances, is that alternating
AND using DOI is worse than the Price and Cut with DOI, which is worse than
the Baseline + DOI. This section does not show a significant synergy between
dual cuts and primal cuts, this may have to do with our choices on DOICHG1
and DOICHG2. From a more theoretical point of view, while cutting the dual
restricts the dual space, adding cuts to the primal extends the dual space this
may be the explanation for such poor experimental results.

Conclusion

In this chapter, we proposed a first B&C&P using DOI and alternation strategies
and compared several settings and combinations of these techniques to try to
improve an existing formulation. We investigated, in particular, how to branch
with DOI and different sets of DOI for formulation P;. All these experiments
show that DOIs are a powerful tool that should be used all along the branching
tree when solving a formulation. Alternation strategies do not seem to stabi-
lize the column generation for this formulation, still, we do not think that the
subject is closed. In fact, given a column generation formulation for which we
know stronger cuts than the one we used for our problem and for which a fast
separation exists, as («, k)-alternation managed to close significantly the gap
while generating fewer constraints than the other alternation strategies one can
expect this alternation to work better than the Baseline.

A possible extension would be to reduce the separator’s computation time
which could be achieved by lowering the limit on its maximal number of branch-
ing nodes or also adding a minimal violation on a cut as a constraint of the sep-
aration MILP and adding the first Chvatal-Gomory constraint found (following
the idea we used for the exact pricing procedure). We will also investigate an-
other combination of primal and dual cuts in the next section for the 2-defective
coloring.
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root node Complete Branching
Instances set coeff alg CPU | # col | % gap CPU | # col | # node | % faster
- Baseline 1.0 1.0 - 1.0 1.0 1.0 0.0
- Baseline + DOI 0.85 0.69 - 0.7 | 0.65 0.34 78.57
- Price and Cut 1.1 1.01 53.0 11.8 1.89 4.78 7.14
Price and Cut 3.34 0.95 0.0 0.68 0.91 1.0 42.86
Color02 DOICHG1 k-alternation (k = 1) 9.06 0.74 62.0 4.87 0.78 1.14 14.29
k-alternation (k = 10) 1.42 | 0.69 64.0 | 49.61 1.56 6.01 75.0
(a, k)-alternation | 20.93 0.71 35.0 | 23.84 | 0.71 0.64 39.29
Price and Cut 0.93 0.69 0.0 0.69 | 0.55 0.28 71.43
k-alternation (k = 1) 1.42 | 0.69 0.0 1.05 | 0.57 0.32 39.29
DOICHG2 k-alternation (k = 10) 0.92 0.69 0.0 1.45 0.75 0.93 75.0
(o, k)-alternation 0.93 | 0.65 0.0 228 | 0.59 0.34 53.57
- Baseline 1.0 1.0 - 1.0 1.0 1.0 0.0
- Baseline + DOI 0.62 0.91 - 0.61 0.91 1.0 57.14
- Price and Cut 1.08 1.0 0.0 0.99 1.0 1.0 14.29
Price and Cut 3.32 0.76 0.0 0.68 0.91 1.0 42.86
DIMACS DOICHG1 k-alternation (k =1) | 117.47 | 0.95 0.0 | 118.67 | 0.95 1.0 0.0
k-alternation (k = 10) 3.36 0.94 0.0 1.46 | 0.93 1.0 28.57
(o, k)-alternation 5.89 | 0.96 0.0 5.75 | 0.96 1.0 28.57
Price and Cut 0.66 0.91 - 0.67 091 1.0 28.57
k-alternation (k = 1) 0.81 0.91 0.0 0.76 0.91 1.0 28.57
DOICHG2 k-alternation (k = 10) 0.68 | 0.91 0.0 0.68 | 0.91 1.0 14.29
(a, k)-alternation 0.03 0.19 0.0 0.78 | 0.91 1.0 28.57
- Baseline 1.0 1.0 - 1.0 1.0 1.0 0.0
- Baseline + DOI 0.82 0.89 - 1.15 0.99 1.85 50.0
- Price and Cut 1.08 1.0 - 0.99 1.0 1.0 14.29
Price and Cut 1.04 0.73 - 2.67 1.2 2.3 33.33
comp-DIMACS DOICHG1 k-alternation (k = 1) 6.01 0.69 - | 64.13 1.16 0.79 0.0
k-alternation (k = 10) 1.11 0.91 - 0.31 0.39 0.65 50.0
(o, k)-alternation | 14.62 | 0.67 - | 150.59 | 1.05 0.78 0.0
Price and Cut 1.33 1.01 - 2.35 1.66 2.04 16.67
k-alternation (k = 1) 4.65 0.71 - | 1691 0.86 0.93 0.0
DOICHG2 k-alternation (k = 10) 1.32 1.01 - 2.82 1.56 0.91 16.67
(o, k)-alternation 01| 0.12 - | 224.38 1.55 3.43 16.67
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Chapter 6

2-Defective coloring

This chapter aims to solve the co-2-plex partitioning problem, that is, to par-
tition the vertex set of a graph with the minimum number of co-2-plexes. We
introduce triangle constraints to reinforce the formulation. Secondly, we propose
a set of dual inequalities, which are inequalities cutting the dual. These dual
constraints are added to the primal as variables and help stabilize the column
generation. Thirdly, we investigate how to use both techniques simultaneously.
Each section will end with a set of computational experiments.

6.1 Covering by co-2-plexes polytope

In this section, we give simple corollaries of the results on the set covering
polytope.

Corollary 6.1.1. Let G be a connected graph, then, its 2-defective polytope is
full dimensional if and only if G is not an edge or an isolated vertex.

Proof. A vertex v of a graph G is contained in only one maximal co-2-plex S if
and only if S contains all the vertices of G. Theorem ends the proof. [

6.2 Experimental results of the baseline algorithm

6.2.1 Description of the baseline algorithm

The baseline algorithm corresponds to the algorithm of Furini et al. [2], see
Section for a detailed description of this algorithm. Two main features
have been added for k£ = 2 to this baseline.

The first change that we tried using the exact pricer P’ described in Chap-
ter [3| Indeed, this algorithm challenges the algorithm 'N’ proposed in [2].

The second change is a greedy pricing heuristic consisting in ordering the
vertices and constructing greedily a co-2-plex with the vertices of higher costs.
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When branching, the greedy heuristic is then adapted as follows. Consider for
each vertex w, the list of vertices LY (resp. L)) that have to be contained
(resp. not contained) in the same co-2-plex as w according to all the branching
decisions that correspond to the current branching node. Within the greedy
heuristic procedure, every time a vertex w is added, the list L} is added, and
the list L) is removed from the remaining candidates. At this point, it must be
verified that the obtained set is still a co-2-plex of the graph.

6.2.2 Instances

We now introduce the instance sets used in this chapter to compare our different
methods. To characterize the instances we will use the notion of dominance
graph structure introduced in Definition Indeed, if a graph has such a
structure, we can use the dual inequalities (DI) defined in Section

The instances come from two sources. We take the 30 instances from the
vertex coloring benchmarks [59], called Color02, that our baseline BP has solved
in less than three hours, and that for which the coloring problem is solved in
less than an hour by some exact algorithm. This benchmark is a classical refer-
ence for partitioning problems. In [2], the authors proposed a BP framework to
solve several partitioning problems to detect communities inside social networks.
Their experiments are based on 9 instances from the 10th DIMACS Implemen-
tation challenge, called DIMACS. We take the 7 instances among these 9 ones
that our baseline BP has solved in less than three hours and that have the
dominance graph structure. We also consider the complement of the latter 7
instances, one of them does not contain the graph structure, and another is not
solved in less than 3 hours, we do not consider ones.

Our 42 instances can be partitioned into 5 subsets to focus on the abilities
of the proposed methods. The Color2 instances are first divided into two sets,
depending on whether they have the dominance graph structure indexed by the
letter D. The set having the dominance graph structure is then divided into two
sets of balanced size depending on the computation time needed by the baseline
BP: easy ones are indexed by the letter E and hard ones by the letter H. The
resulting subsets are then:

e E-Color: 10 instances of Color02 not containing the dominance graph
structure

e ED-Color: 10 instances of Color02 containing the dominance graph struc-
ture and taking the least computation time

e HD-Color: 10 instances of Color02 containing the graph dominance struc-
ture and taking the most computation time

e DIMACS: 7 instances from DIMACS containing the graph structure
e comp-DIMACS: complements of the 5 DIMACS

e others: 5 instances from the set color02 that the baseline did not solve
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We tried to generate random graphs with respectively 70, 80, 85, and 90
vertices and a probability of 0.5, 0.7, and 0.9 for each edge, with 10 graphs
for each combination. None of these contained the dominance graph structure.
Hence, we do not consider them. A graph generated with this method seems
to have few chances of containing such a structure. We were able to generate
instances with the dominance structure with density 8%, the results on these
instances will be discussed.

6.2.3 Experimental results of the baseline

We ran the experiments on a computer with processor intel core 15, 3.10 GHz,
and 15.3 GB RAM. We used SCIP 7.0.3 for the column generation framework
and CPLEX for the RMP resolutions and the two pricing heuristics using MILP.

Impact of formulation P: a preliminary experimental comparison has
shown that pricing with formulation ’P’ did not work better than using 'N’ as
the exact pricer. As said in Chapter [3] formulation P’ works much better on
random instances and DIMACS-comp but is slower on Color02 which composes
most of the instance set of this Chapter. Tackling the problem of covering a
graph with co-2-plexes using formulation (P) implies solving several maximum
co-2-plex problems which implies solving ’easy’ instances of maximum co-2-plex.

In Table we present the results of the baseline BP on the 6 instance
subsets. The entries in this table are as follows:

- CPU (h) total solving time in hours,
- #nodes total number of branching nodes,
- Ftcol total number of generated columns (at most one per iteration),

- M CPU p.it (ms) total time spent solving RMP per iteration in milliseconds,
- SP CPU p.it (ms) total time spent per iteration by the three pricers in milliseconds.

Instances | CPU # col | # nodes | M CPU p.it | SP CPU p.it | % pricing
E-Color | 0.028 7829 130 2.58 10.14 79.74
ED-Color | 0.007 4322 88 1.16 4.24 78.52
HD-Color | 7.605 | 201848 3169 116.04 17.5 13.1
DIMACS | 0.546 5787 646 69.18 236.44 77.36
comp-DIMACS | 5.626 | 189841 592 92.61 13.75 12.93
others - - - - - -

Table 6.1: Performances of the baseline BP

The number of iterations is then #col + #nodes, corresponding to the num-
ber of solved RMPs.

In Table [77], we have the computational performances of our baseline. It is
not significant when given alone. However, we will compare the performances
of our algorithms by giving the ratio between a given statistic for our algorithm
and that same statistic for the baseline.
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The sets of instances we would like to solve are HD-color and comp-DIMACS
since they are the hardest ones for the baseline. They are the sets of instances
for which we generated the most branching nodes. We can see that in these
sets of instances, most of the time is spent resolving master problems, this is
certainly due to the huge number of generated columns and hence a witness of
the tailing-off effect. In the sequel, we will try to stabilize by cutting both in
primal and dual spaces.

6.3 Cutting the primal space

In this section, we introduce a new type of primal cuts associated with trian-
gles of the graph and describe how we used them in the column generation
framework.

6.3.1 Triangle inequalities

Given a triangle K = {u,v,w} that is a clique of size 3 of the graph G, we
need at least two co-2-plexes to cover it, which leads to the following triangle

inequality:
S aeze
SeSa|KNS#D

Let 7 be the set of triangles associated with a set of separated triangle
inequalities. We denote by P7 the LP obtained from P by adding triangle
inequalities:

min Z Tg (6.1)

SeSa
> oas>1 VoeV (6.2)
SeSq|ves
> ag>2 VK €T (6.3)
SESc|SNK#D
zs >0 "V S e S (6.4)

Now, we must consider the new dual variables pg, for each K € T and adapt
our pricing procedures.

Triangle inequalities are non-robust cuts to the primal, they are cuts chang-
ing the subproblem structure, to keep fast pricing heuristics, we will end up
with two different MILPs: one for the heuristic root node pricer and the other
for the exact pricer.

The new reduced cost of a variable associated with S € Sg is:

CS(A):I*ZAv* Z MK

veES KeT|KNS#0D
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Note that, the sum over triangles is not linear with respect to the vertices of
S. As described in Chapter [f] we use two pricing heuristics and an exact one.
For the two heuristic pricers, we propose a heuristic linearization:

Es()\):l—Z()\u-F% Z [rc)

veES KeT|lveK

Now, the two pricing heuristics take the associated modified costs on the
vertices, that is, for a vertex v:

KeTlveK

Note that triangle constraints belong to the Chvatal elementary closure of
(P2), obtainable by multiplying the constraints associated with the vertices of
a triangle by 0.5, summing them, and up-rounding every coefficient. For a set
of elementary Chvatal closure constraints associated with coefficient g € G and
whose associated dual variable would be 74, it would be natural to linearize the

reduced cost of a variable the following way: ¢s(A) = 1= > (Ao +3_,cg AX 7)),
veS

this is where comes from the coefficient % in ¢. For the case of the exact pricing
procedure, the new MILP now takes one binary variable px and one constraint
for each K € T. This leads to the following formulation:

maXZ)\Um} + Z PK X UK

veV KeT
(INu| = D7y + 7(Ny) < IN |V ueV,
pr < 7(K) VK eT
m € {0,1} YovevV,
pr €{0,1} VKeT,

6.3.2 Computational results

We perform our experiment with an exact separation procedure, enumerating
the constraints associated with the triangles of the graph and adding the five first
violated ones at each separation round. In the following table, the multicolumn
'Ratio’ contains the ratio between a BCP’s statistic divided by the baseline
algorithm’s corresponding statistic. For example, a value lower than 1 for the
CPU means that the BCP is faster than the baseline. The following list gives
the signification of the column titles in our tables:
- CPU root the time needed to solve the root node

-% sepa the proportion of solving time spent separating the constraints
-# cons the total number of constraints generated
- # faster the pourcentage of instances solved faster than the baseline algorithm
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The triangle constraints do not improve the root node relaxation

value, see Table [6.2] where we list the only instances for which adding triangle
constraints improves the relaxation value. Preliminary experiments showed that
separating the Chvéatal elementary closure with the heuristic MILP proposed
in [12] gives a lower relaxation value than when separating exactly triangle
constraints. This is surprising since triangle constraints belong to the elementary

Chvatal closure but understandable since the separation procedure proposed

in [12] is a heuristic as it is MILP-based with a limit to the number of branching

nodes.

Instances set Name | baseline \ BCP ‘

david 5.6304 5.6666

mulsol.i.2 | 15.7667 16.0

HD-color | isoli3 | 15.7667 16.0

mulsol.i.4 | 15.7667 16.0

mulsol.i.5 | 15.7667 16.0

DIMACS | dolphins | 17.9943 18.0

jazz | 47.5393 | 47.5421

Table 6.2: Linear relaxation value of the BCP

Differences over the solved instances. The BCP did not solve two

instances that the baseline solved: zeroin.i.3 and fpsol2.i.1. The baseline did
not solve three instances that the BCP managed to solve: mulsol.i.3 (0.6h) and

mulsol.i.5 (1.4h). For the first of these instances, the relaxation value went from
15.7667 with the baseline to 16 with triangle constraints. On the other, both
LPs have the same relaxation value.

\ Ratio \ Flat
Instances CPU | # col | # nodes | M CPU p.it | SP CPU p.it | % pricing | % sepa | # cons | # faster
E-Color 1.07 0.99 1.09 1.03 1.1 80.7 | <1072 2 0
ED-color 1.26 0.9 0.56 2.78 1.02 57.34 0.03 24 30
HD-color | 0.92 0.84 0.69 1.09 1.16 13.85 | <1072 306 60
DIMACS 1.05 0.84 0.27 3.9 0.59 33.93 0.06 27 28
comp-DIMACS 1.15 1.09 1.31 1.04 1.12 28.57 | <1072 29 0
others - - - - - - - - 40

Table 6.3: Performances of the BCP

Triangle inequalities only speed up HD-color’s resolution: In Ta-
ble we see that unless for the HD-color where we manage to solve faster 6
instances, which corresponds to a reduction of the total computation time by
8%, for the other instances, separating triangle constraints always increases the
total computation time.

Triangle constraints do not harden pricing subproblems signifi-
cantly: Adding cuts usually hardens the average master problem and the aver-
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age pricing subproblem, but on the set DIMACS the average pricing subproblem
gets easier and for the others, it remains comparable. Unless for comp-DIMACS
and E-color, the number of iterations is still much lowered, which may increase
the average RMP computation times and pricing. This augmentation of compu-
tation time does not come from the separation procedure since the latter always
represents less than 1% of the total computation time.

For the set E-color, some triangle constraints are generated on only one
instance, and it adds 25% of computation time for this instance.

The triangle constraints become useful later in the branching tree:
The only set of instances where adding triangle constraints reduces the total
computation time is the one for which adding triangle constraints improves the
relaxation value in most instances. This improvement is insignificant since it
does not permit inferring a higher lower bound at the root node. It may be
explained by the fact that these constraints become useful after a few branching
decisions.

6.4 Cutting the dual space

In this section, we adapt the DOI introduced by Gschwind et al. for the coloring
problem to the co-2-plex covering problem. We introduce a set of extra columns
in the co-2-plex covering formulation (P) but show that they are not DOI, that
is, adding these inequalities may change the optimum of its linear relaxation.
We will in the sequel call such new columns, dual inequalities (DI). However,
we prove that for any optimal integer point of such obtained formulation, an
optimal solution without these extra columns, and hence a solution of P may
be recovered in polynomial time.

6.4.1 Dual inequalities

The DIs we will define in this section depend on a structure similar to the one
given in [4]. Unfortunately, the constraint matrix of (P) does not have the
exchange property as defined in [4]. As we will show, this structure implies
that all optimal dual points can be cut off by adding such DI. As shown in the
previous section, it seems hard to improve the relaxation value, particularly by
heuristically separating the elementary Chvatal closure or triangle constraints.
The hope is that adding these DIs would not decrease the relaxation value.
Moreover, since these inequalities can cut all optimal dual points in some cases,
we hope a better stabilization of the column generation by cutting ’significantly’
the dual space. We first give a definition of the graph structure we will need to
introduce our DlIs.

Definition 6.4.1. A pair (w,T) withw € V and T C V \w has the dominance
property if:

(i) N(T) is included in the neighborhood of N,
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(ii) Yu,v € T, Ny,N N, = {w}

A graph having the dominance graph property contains at least one such pair.

We say that a dominance couple (v,T) is mazimal if T is inclusion wise
maximal with the above properties. Note that condition (%) implies that T is
a stable set.

Theorem 6.4.2. If (w,T) is a dominance couple and S a co-k-plex containing
w, then SUT \ w is a co-k-plex.

Proof. Given a co-k-plex S containing w, every vertex of S\ w non-adjacent
to w is not adjacent to T by condition (7). Similarly, every vertex of S\ w
adjacent to w is adjacent to at most one vertex of T' by condition (ii). Also, for
alueT, N,NS C N, NS whose size is already at most kK — 1 since S is a
co-k-plex. Hence, every vertex of G[S UT \ w] has degree at most k — 1, which
implies that SUT \ w is a co-k-plex of G. O

Since S may already contain vertices of T', the exchange property does not
hold. That is, x° + x¥ — x* may not be the incidence vector of a co-2-plex
since it may not be binary, nevertheless x° Ux” \ x* is the incidence vector of
a co-k-plex.

We will use a dominance couple (w,T) by adding a new column x? — x*
with objective coefficient 0, where x (resp. x*) is the incidence vector of T
(res. w). Let D be a set of couples (w,T) having the dominance property and
Yw,T their associated primal variables. The variables y associated with D will be
called Dual Inequalities (DI). Hence the MILP we want to solve is the following
(P):

min Z xs (6.5)

SeSa
Yoows— Y ger+ Y. Yur>1 VoeV  (6.6)
SeSg|ves (v, T)ED (w, T)eD|veT
zg >0 VSeSa (6.7)

Yor >0 Yw,T)eD  (68)

6.4.2 A Dual Inequality that cuts every dual optimal so-
lutions

In this section, we will see that DIs with stable sets of size 1 are Deep Dual
Optimal Inequalities (DDOI), that is, inequalities that do not cut every dual
optimal solution, introduced in [74]. However, in the general case, a DI can cut
all the dual optimal solutions.
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Dual inequalities with stable sets of size 1

Let us denote by ]517 the restrictions of P to a set of inequalities associated
with nonmaximal dominance couples (w, T') satisfying |T'| = 1, that is when the
stable set T is of size 1.

Theorem 6.4.3. From any fractional optimal solution (Z,y) of ﬁl, there exists
a fractional solution x of P with a lower or equal objective value.

Proof. Starting from (z°, 5°) = (Z,¥), we build a sequence of solutions (z*, *), k
0,...,N of P such that 1y**! < 1y* and yV = 0.

Given (z*,9y*), let G* be the directed graph having V as vertex set and
having an arc (u,v) if and only if there exists (u,T) € D such that y, 7 # 0 and
v € T. Suppose that G* contains a directed circuit C' = (wy, wa, ..., w,). Every
arc (w;, w;41) of that circuit is associated to the dominance couple (w;, {w;y1}).
Now let us consider m = min;—; yl’f{iﬂ} where p+ 1 = 1. Let us set
R

yiH = { qu,T if (v,T) # (wi, {wira}) Vi=1,....p

—m  otherwise

X

ywi sWi41

Note that since the only composants of y**1 different from the composants

of y* are associated with edges of E(C), we have G*[V \ C] = G*[V'\ C]. The
point (zF 1, y#+1) verifies the inequalities of P associated with vertices of C' and
has the same objective value than (z* y*). It also verifies 1y**! < 1y*. The
number of edges in a circuit is strictly lower in G**! than in G*. The number
of such edges is bounded by |V|?, since it also bounds the number of DI (w,T)
where |T'| = 1. This results in a polynomial time algorithm (in the size of G)
computing a solution (z!,y') for which G' does not contain any cycles.

Let us consider a non isolated leaf v of G* and one of its predecessor u.
First, let us suppose that there exists a dominance couple (w,{u}) such that
y’qj}_’{u} = 0. In that case, let us set m = mz’n{yﬁ_’{v},yiy{u}} and

ys{v} —m  on component (u,{v}))
kil ya{u} —m  on component (w,{u})
Y, (v} T  on component (w,{v})
Y. T otherwise

and ¥t = 2% Hence (z"1,y*+1) is a solution of P; where 1y*+! < 1y*.
After applying recursively this procedure, we obtain a graph G! with no path of
size 2. Let us consider a non isolated leaf v of G and one of its predecessor w.

o If > xls > yi (o} it is possible to build z!** by reducing the value of
S€ES | ueS,v¢s ’

some positive components of 2! associated with co-2-plexes containing u but not
v and by augmenting some components associated with co-2-plexes containing
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mo + M3 < M

Figure 6.1: A dual inequality cutting all optimal points of the dual

v but not u such that the sum of the component associated with the latter co-
2-plexes sum to 1, and by setting yi+{1v} to 0.

l

o If > mls < yi (o} by construction, since z* is a solution we have

SeS | ueSw¢gs

Soak+ Y ak— Y Wy Ve =L

SES | ueS,v¢sS SeS | ueS,wes (u,{w})eD,w#v

and hence > zl, > 1, in which case yi:r{lv} can be set to 0 and all the
SeES | ueS,wes

other component of (z!*1,4'*1) can be equal to the corresponding component
of (x!,9') in order for (z'*1,4'*1) to be a solution of P. O

Note that Theorem shows that the inequalities associated with domi-
nance couples (w,T) satisfying |T'| = 1 are DDOL.

Dual inequalities with stable sets of at least 2 vertices

When their stable set contains two vertices, the following counter example shows
that a DI can cut all optimal points of the dual. See Figure [6.1] where the
dominance property couple associated with the dual inequality is (1, {2,3}). The

associated inequality cuts the only dual optimal point m; = 79 = 73 = % Hence,
the linear relaxation of P which is % with the solution z19 = 213 = % y = %
becomes strictly lower than the linear relaxation of P which is % with the point
Ti2 =213 =223 = % This phenomenon only happens with dominance couple
(w,T) where T is not a singleton. We also wonder if only adding DI associated
with dominance couple (w, {v}) would stabilize the column generation. This DI
would not necessarily be maximal and, hence, would be dominated by maximal

ones when seen as constraints of the dual.

Therefore, program (P) can produce a solution (z*,y*) where z* is not a
solution of P. Fortunately, we present in the next section that we can construct
in polynomial time an integer solution for P from any integer solution of P.
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6.4.3 Pricing with Dual Inequalities

The following theorem tells that given an optimal integer solution (z*,y*) of P
where y* > 0, it is possible to reconstruct another integer solution (z’,0) with
the same optimal value.

Theorem 6.4.4. From any integer optimal solution (Z,y) of ]3, an optimal
solution of P with the same objective value can be recovered in polynomial time.

Proof. Starting from (2°,4°) = (Z,7), we build a sequence of optimal solutions
(z* y*) k = 0,...,N of P such that 1y**t1 < 1y and yV = 0, where N is
polynomial in the size of G.

Given (z*,y*), let G* be the directed graph having V as vertex set and
having an arc (u, v) if and only if there exists (u,T’) € D such that y, r # 0 and
veTl.

Analogously to the proof of Theorem one can suppose that G* does
not contain any directed circuit. Hence, suppose that G* does not contain any
circuit. Then, there exists a vertex v whose successors have no successors. Let
(v,T,) be a couple associated with an outgoing edge of v. If there exists a co-
2-plex S, containing v such that xg, > 1, by Theorem St, =S, UT, \ v
is a co-2-plex. Hence, let us set

1 for component St,,
k= xlgv —1 for component S,,
x’;« otherwise
ka1 0 for component (v, T,)
and y" " = { quj;,U for component (w,U \ T,) where (w,U) # (v, Ty).

Now, G**! contains |T,| more isolated vertices than G*.

If every co-2-plex S containing v is such that z% = 0. For (z*,y*) to be
a solution of 15, there must exist an ongoing edge to v in G* associated with,
say (u,U) where v € U. By definition of DI, for every vertex w € T, N(w) C
N(v) € N(u), and wu € E which necessarily implies that 7' = {w}, otherwise
two vertices of T' share at least two common neighbors which would contradict
the DI definition. We show that (u, U Uw\ v) is a dominance couple. Since U is
a stable set and N,, C N,, UUw \ v also is a stable set, and for every a € U\ v,
N(a) N N(w) = {u} since N(a) N N(v) = {u} and {u} C N(w) C N(v). Let us
0 for component (v,T)
yZ,U -1 for component (u,U)

k+1 _
B yq’ijUw\U +1 for component (u,UUw\ v)

set Pt = zF and y

Y for the other components
Again, (251, yF+1) is a solution of P for which 1y*1 < 1y*. This procedure
is polynomial and can be applied at most |V|? times to get a solution (z9,y9)
for which every connected component of G? is a star whose center is contained
in many different co-2-plexes S such that xg > 1, now the previous procedure
can be applied. This results in a polynomial time algorithm. O
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Theorem [6.4.4] implies that, even if adding these DIs extends the primal
space, it does not add integer solutions with a lower objective value than the
optimal solution of P.

Note that by Theorem one could also use such DIs to solve the parti-
tioning of a graph into co-k-plex for any k € Z+.

However, whereas preserving the relaxation value was originally the idea
behind adding DOIs, adding DIs should deteriorate the relaxation value. But
note that, since adding variables can only reduce the primal’s lower bound, the
relaxation value of P remains a valid lower bound for P. Then the hope is that
adding DIs can be sufficiently interesting in term of speed up ingredient, such
that their bad impact over relaxation would not be significant.

6.5 Dealing with non-integral optimal solutions

In this section, we will see that, surprisingly, solution (z*,y*) of P for which
Y ges & is equal to the optimum of P, even when z* is integer, y* is not
necessarily integer. Note that this is important to be able to apply Theorem
Fortunately we present how to obtain such a integer point using dedicated
Branching Rules.

6.5.1 Structure of the optimal solutions

We describe a family of graphs and the associated extreme point (z*,y*) where
x* is integer and y* factional. This graph has 5 stages:

e The first stage only contains the vertex wu,

e The second stage is a stable set of vertices v;;, i € {1,...,n}, j €
{1,...,m}, where n is odd and m is even, and each of its vertices is
adjacent to vertex u,

e The third stage is a clique of vertices wy, k € {1,..., @} All wy, are
adjacent to u. For each j € {1,...,m}, for all i € {1,...,n} the vertex
v; ; has exactly one common neighbor of the third stage with v;; j, where
n+1l=1and !l € {2,...,n—1}. Also, each vertex of the third stage has
exactly two neighbors in each set S; = {v1;,...,vp,;}. This construction
permits that (u, {v; j, vi+1,;}) is @ maximal dominance couple.

e The fourth stage is composed of one vertex z adjacent to u and to each
Wy,

e The fifth stage is composed of vertices t, k € {1,..., "("2_3) }, where each

ti is adjacent to z and adjacent to all vertices of the third stage except wy

The sets {u,wg,tx} Vk € {1,..., @} form maximal co-2-plexes and
{u, z} is also a maximal co-2-plex. Every (u,{v;;,v;1+1;}) forms a dominance

- . . . . N _
couple where {v;;,v;41;} is inclusion wise maximal. By setting Tl el =
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Lk e {1, 20 ar o =Tandyl,, .  =05Vie{l,...n} je

{1,...,m}, we obtain that (z*,y*) is a solution of (P) with same optimal value
as its integer optimal since the three last stages form a 2-plex of size n(n—3)+1,
n(n—3)

which needs at least + 1 co-2-plexes to be covered. Since the DIs we
described have 0 coefficients in the rows associated with the three last stages,
the relaxation value (P) restricted to the constraint submatrix associated with
these stages is a lower bound of the relaxation value of P and of P.

The relaxation value of P restricted to the constraint submatrix associated
with these stages being w which is equal to the relaxation of P, we know
that the relaxation of P on this graph is equal to w

We now give an example with m = 2 and n = 3. It does not completely
represent the above construction since @ = 0, which should lead to an
empty third stage, but in this case, the three last stages would not form a
sufficiently big 2-plex for (z*, y*) to have the same objective value as the integer
optimal point. Also, the dominance couples we will exhibit will not be maximal.
Any example with n > 5 would satisfy these properties but be too huge for a
clear comprehension. We assume that the upcoming example is sufficient to

understand the idea behind the construction.

First stage - ---------

Second stage - - - - - - - - - -

Third stage - ---------
Forth stage - ---------

Fifth stage - ---------

Figure 6.2: An example of graph G for which adding DI adds fractionnal vertices

115



CHAPTER 6. 2-DEFECTIVE COLORING

First stage

Second stage

Third stage

Fourth stage
Fifth stage

oot ocoocoococococoo o+

o+t ocoocoot+tocoocococoo oo+
cot+toocoot+ococococ oo+

oo oo OO0 OO+ o+ |
cCooc oo ocococoo+ 4+ o |
oo ocococoocoocococo o+ + |
oo o000+ o+ oo o |
N oNeNeNoeNeNel S oo NeNol|
oo oo oo o+ + oo o |
+ oococot+tocoocococococo o+

Figure 6.3: Constraint submatrix

In Figure [6.2] a valid covering of co-2-plexes is as follows:

{{u, z}, {v1,v2,v3, v4, v5,v6, t1,t2}, {w1, wa}, {ws, t3}}. It is optimal since
the third and fourth stages form a 2-plex of size 7, and every co-2-plex in-
tersects at most 2 times a 2-plex. Let us now consider the point:

x?ﬂ,’u)l,tl} =1 * yu’{ﬂlﬁvz]’ =0.5

x?u,w%t'z} =1 * yu’{”%US} =0.5

x?u,wg,t\g} =1 ® yu’{ﬂl,vzs} =05

° Z?U,Z} = 1 ° y’:‘v{v41v5} = 05
e all other components are 0 * yzv{vs,ve} =05

° yzv{m,ve} =05

Note that the objective value of (z*,y*) is 4. The optimal value of the
linear relaxations of P and P for this graph are 3.5. It may be more convenient
to look at its constraint submatrix, see Figure [6.3] for an illustration where
the’+’ corresponds to 1 and =’ corresponds to -1. The first stage is the row
associated with vertex u. The second stage contains two disjoint odd holes
and a matrix of 0. The third stage is a matrix of zeros next to an identity
matrix. The fourth stage is a vector with only one coefficient 1. The fifth
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stage is an identity matrix. From this matrix construction, we understand that
(z*,y*) is an extreme point of the polyhedron since every constraint is satisfied
with equality, and the constraint matrix has rank 10 (the trivial constraints
associated with variables of value 0 form an identity matrix).

6.5.2 Branching rules

The fact that an optimal solution of (]3) can be fractional on y can be treated
using the classical branching rule as described below but with an additional
branching over y variable. However, before branching over y variables, the first
branching rule branches on every pair of nodes u, v, stating that on the one
hand, u and v must belong to the same co-2-plex and on the other hand, they
never belong to the same co-2-plex. A leaf node is infeasible, or the branching
decisions directly give the associated solution without solving any LP. In the
meantime, we plan on considering the values of the variables associated with DI
to guide the branching decisions as follows in order to deal with the DI variables.

At each branching node, we compute (u,v), a couple of vertices minimizing
the following quantity:

‘0.5 — Z TG — Z yij‘

Ses* [{uv}Cs (0,1)€D | {uw}CT

The branching rule is then to create a first child node where u and v belong
to the same co-2-plex of the solution and where each DI associated with (w,T)
will be set to 0 if u € T, v ¢ Torv € T, u ¢ T. Then, on the second child
node, u and v never belong to the same co-2-plex, and each DI associated with
(w,T) will be set to 0 if {u,v} CT.

6.5.3 Computational results
Adding DIs with a greedy algorithm

The dual inequalities have been added to the RMP before any LP resolution.
Even if adding DOI dynamically has been experimentally successful [4], it is
only slightly better than adding DOI as preprocessing on the coloring problem.
Hence, for our DI variables, we choose only to implement the preprocessing and
no dynamic generation. We use the following greedy algorithm to compute the
dual inequalities:

For each vertex v, we greedily compute a cover {T1,...,Ty} of D, C N,,
where D, is the set of vertices u verifying N,, C N,, such that (v,T;) has the
dominance property and T; is inclusion wise maximal for each i € {1,...,k}.

Experimental results on random instances

The baseline does not converge in less than 3 hours for the random instances
considered in this section; hence, we only compare the root node.
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instance type | nb DI | CPU | nb INst
1 1] 1.06 58
2 2 0.9 26
3 3| 0.96 12
4 41 0.79 4

Table 6.4: root node CPU on random instances with 50 vertices and their
corresponding number of DI

Description of the random instances: The instances are connected
graphs with a density of 8%, this low density was necessary to generate random
instances having the dominant structure. Considering other values for the den-
sity made the try-and-reject algorithm have trouble generating instances with
the dominance structure.

Table lets us think that the random instances with more DI are easy to
solve, but there may be a lot of bias because of the small number of instances
for which we add 4 Dls.

To confirm this intuition we generated sets of 25 random instances with 1 to
8 DIs (rejecting the random instances not having the wanted number of DIs).
These instances are relatively hard for the baseline, hence we only consider the
root node but this should be sufficient to investigate the stabilization power of
DIs. Unfortunately, the improvement appearing in Table does not appear
anymore in Table [6.5] For these instances, it seems that DI does not have a
significant impact.

Algorithm | Instances type | CPU | # col | nb faster
1| 101 1.0 12

2| 1.07| 0.99 10

3| 0.96 0.99 15

~ 4| 1.02 1.0 10
P 5| 1.52 1.57 10
6| 097 1.0 15

7 1.01 1.0 14

8 1.01 1.0 13

1] 1.01 1.0 11

2| 1.07| 0.99 10

31 097 ] 0.99 15

~ 4 | 1.02 1.0 10
P 5| 152 | 1.57 10
6| 097 1.0 15

7| 102 1.0 14

8 1.49 1.65 15

Table 6.5: Experimental results for the root node on random balanced sets of
instances with 100 vertices of P and P;
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P P
Instances | # nodes | # col CPU | # node | # col CPU
anna 201 | 73064 5.55e6 376 | 73378 1.08e7
huck 1 61 318.0 1 112 424.0
jean 71 | 4779 | 35683.0 1 79 456.0
david 711 | 28790 1.26e6 309 | 18235 | 471934.0
miles500 321 8209 | 205169.0 387 | 3578 | 123363.0
r125.1 7 702 2037.0 6 652 1817.0
dolphins.graph comp 35 3945 26781.0 19 2172 11423.0
karate.graph comp 9 392 827.0 4 176 290.0
lesmis.graph _comp 1 1078 5570.0 1 1164 5995.0
polbooks.graph comp 632 | 94834 1.08e7 90 | 15148 | 282638.0
miles250 221 | 16450 | 401534.0 216 | 20590 | 564702.0

Table 6.6: Instances for which Py # P

Ratio to baseline

Instances CPU | # col | # nodes | M CPU p.it | CPU root | % pricing | # DI | #faster

ED-color | 503.42 | 25.25 5.35 80.42 3.8 14.71 3358 50

~ HD-color 0.84 0.47 0.89 1.85 1.06 8.76 | 15182 80
P DIMACS 0.83 0.93 0.79 0.82 0.95 79.52 768 71
comp-DIMACS 0.03 0.2 0.19 0.1 1.0 55.36 306 80
others 0.21 0.19 0.56 1.07 0.01 15.49 3534 80

ED-color | 271.65 | 26.23 4.15 40.46 0.75 17.51 3273 40

~ HD-color 0.88 0.55 0.99 1.64 1.1 1.13 | 15152 70
P DIMACS 0.83 0.93 0.79 0.81 0.95 79.77 768 71
comp-DIMACS 1.15 1.07 1.15 1.05 0.99 28.44 273 40
others 0.21 0.18 0.56 1.13 0.01 15.35 3528 80

Table 6.7: Performances of both BP with DI

Experimental results on literature instances

The column’s titles of Tables [6.6] and [6.7] are listed in Section Moreover,
the column ’# DI corresponds to the number of added DIs.

In Table we compare the few instances for which there exists DI asso-
ciated with couples (w,T) where |T'| > 1. This table shows that it is unclear
which is the best between P and ﬁl. The algorithm based on P does not con-
verge on the instance anna when the algorithm based on P; does not converge
on polbooks.graph comp.

The linear relaxation value remains the same: Note that the linear
relaxation of the baseline is always the same as P and P; on these sets of
instances. This is surprising as we showed that adding such DI can lower the
primal’s relaxation value from a theoretical point of view.

Bad behaviour of DIs for small instances: In Table we give the
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Ratio to baseline
Instances | CPU | # col | # nodes | M CPU p.it | SP CPU p.it | % pricing | nb DI | #faster
ED-color | 1.15 0.94 1.0 0.55 1.56 84.54 | 3358 50
~ HD-color | 2.77 1.44 1.0 2.32 1.73 60.13 | 15182 50
P DIMACS | 1.05 0.98 1.0 1.21 1.06 92.78 768 14.28
comp-DIMACS | 0.76 0.8 1.0 1.0 0.94 69.94 306 40
ED-color 1.2 0.9 1.0 0.73 1.65 81.32 | 3273 50
~ HD-color | 2.76 1.39 1.0 2.39 1.78 60.1 | 15152 40
B DIMACS | 1.06 0.98 1.0 1.13 1.08 93.27 768 0
comp-DIMACS | 0.83 0.82 1.0 0.93 1.03 73.23 273 80

Table 6.8: Performances of the BP with DI with knowledge of the optimal
solution

aggregated results for each set of instances. First, note that on ED-color both
algorithms perform much worse than the baseline. This is understandable since
they are pretty easy instances and the set of DI added has half the size of
the column set for the baseline, see Table this implies that the RMPs are
much harder, which is confirmed by looking at the column % pricing: when the
baseline spend 79% of its computation time in solving pricing subproblems, our
algorithms using DI spent 14% of their computation time in pricing subprob-
lems.

DIs stabilize the column generation: For the other sets of instances,
adding DI seems to stabilize the whole column generation process by decreasing
the number of generated columns and branching nodes. The improvement in
comp-DIMACS comes from the instance poolbocks comp that takes most of
the computation of the baseline and for which the BP with DI converges in
0.02% of the baseline’s computation time.

Perturbating SCIP’s heuristic: A surprising result that is not easy to
exhibit in such tables, is the fact that adding DI perturbates SCIP’s primal
heuristics: sometimes DIs help one of SCIP’s heuristics to find the optimal inte-
ger solution already at the root node and sometimes it makes the heuristics find
it later than the baseline would. To notice that, we had to follow the resolu-
tion of some instances with and without DI. As preliminary experimentations,
we noticed that the order in which the DIs have been added to the RMP also
impacts these heuristics. Since doing column generation without primal heuris-
tics seems to be limiting, we tried to compare this algorithm after giving the
optimal solution of the whole BP as a prior knowledge, in that case, the BP
only ensures the optimality of such solution. The associated results are given
in Table This table shows, for which instances, adding DI stabilizes the
column generation process without considering the solutions given by the pri-
mal heuristics. In fact, for all sets but comp-DIMACS, the baseline with prior
knowledge is faster but now, both BP with DI do not perform much worse than
the baseline on ED-color: this proves that for this set of instances adding DI per-
turbates the primal heuristics in a bad way when for HD-color, and DIMACS,
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it perturbates the primal heuristics in a good way. Still, unless for HD-color,
the number of generated columns is reduced when adding DIs which witness
a slight stabilization. Unfortunately, it does not induce a smaller computation
time. For comp-DIMACS, we see a true stabilization of the column generation
process that does not rely on good primal solutions, and for this set, the DI
that seemed to be the strongest from a dual point of view performs better: P
performs better than P;.

P is the fastest on the hardest sets of instances. Remember that
HD-color where the hardest sets of instances for the Baseline, and so by far.
For these two sets of instances P performs better than the baseline.

6.6 Cutting both primal and dual spaces

This section investigates using triangle inequalities and DI simultaneously to
improve the relaxation value and stabilize the column generation. Both tech-
niques of the previous sections that are, adding primal and dual cuts seem to
have a positive impact on the set HD-color, and we wonder if it is possible to
use the benefits of both to solve this particular set of instances.

6.6.1 The triangle coefficient of dual inequalities

In this section, we investigate how to use triangle inequalities and DI simulta-
neously to improve the relaxation value and use DI simultaneously. To answer
this question, we consider the following LP where W is the matrix of y coefficient
in triangle inequalities:

min Y, zg

SeSa
X Ts— X Yert+ X Yur = 1 YeeV

~u SeSq|veS (v, T)eD (w,T)eD|veS
(Pr) > s+ Py > 2 VK eT

SeSq|SNK#D

zg > 0 VS eSa
Yoo = 0 Y(w,T) € D

First, since every integer point x of P is a solution (not necessarily optimal)
of (Pr), we have that (z,0) is also a solution of (57‘1—’ ). Conversely, since (]57‘1—’ ) is
included in (P), then every integer solution (z,y) of (E‘l—’ ) is an integer solution
of (P) and hence can be mapped using Theorem to build a solution of P
with the same objective value. It means that (ﬁ;l—’) has the same optimal value
as P. Note that this reasoning holds whatever W is.

Intuitively, if the coefficients of y variables are large in triangle constraints
i.e. ¥ has high coefficients, the triangle constraints become easy to satisfy, even
for fractional points. Hence, the relaxation value of (ﬁ7‘1—') should be close to the
one of P. If U is nonnegative, one can understand high coefficients as smaller or
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equal to 2 since it is the right-hand side of triangle inequalities. Having strictly
higher coeflicients would lead to trivially dominated constraints. Conversely, if
U has negative, low coefficients, having positive y variables makes it harder to
satisfy the triangle inequalities, in which case the optimal value solution of (P7‘I-’ )
probably verify y = 0, in which case we lose the benefits of DI.

Guided by this intuition and the recovery algorithm of Theorem [6.4.4] we
propose that ¥ depends on how the triangle inequality intersects the dominance
property associated pairs. Given a triangle K and a dominance couple (w,T)
we propose the following coefficients:

e VT =1ifw¢g Kand TNK # 0
o U = lifwe Kand TNK =0
o U" =0 otherwise.

In the first case, having y,,, 7 # 0 means that some co-2-plex not necessarily
intersecting the triangle K will be replaced by the recovery algorithm by a co-
2-plex intersecting it for sure. In the second case, some co-2-plex intersecting it
will be replaced by a co-2-plex that may not intersect it.

To investigate the impact of this dedicated coefficient ¥, we use this same
procedure with ¥ = 0.

6.6.2 Computational results

The branching rule for these algorithms is the same as the one used for the BP
with DI.

In Table [6.9) we give the aggregated results of the two different BCPs using
DI. First note that the time spent separating constraints is ridiculous. On ED-
color, the BCP with ¥ = 0 is much worse than the baseline, remember that
the same phenomenon happened when considering the BP with DI based on
formulation P.

BCPs with DI perform well on HD-color: Both BCPs with DI solve
HD-color faster than both BP with DI based on formulations P and P;. The
root node takes generally a little bit more time to be computed because of the
additional constraints, even if the addition of DI permits to compute it slightly
faster on comp-DIMACS. Also, the number of generated constraints is really
low for both BCPs on comp-DIMACS. The BCP with DI that seems to work
the best on HD-color is with ¥ = 0.

The two BCPs with DI manage to solve 2 instances from ’others’ when both
BP with DI solve 4 of them. On this hard set of instances for the baseline, the
BPs with DI seem are the best algorithms.

The time spent solving the pricing subproblems is low: it represents
in general less than one-third of the total computation time. On HD-color, the
number of columns generated and branching nodes is lowered, in particular with
¥ = 0, for this set of instances it seems like taking W = 0 is the coeflicient that
combines the most effectively primal and dual inequalities.
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Both BCPs with DI perform badly on DIMACS: For the instance set
DIMACS, the number of iterations is a little higher than for the baseline, but the
average Master problem becomes suddenly really hard while the average pricing
subproblem becomes a little bit harder. This results in two BCP algorithms
that are close to 6 times slower than the baseline.

The relaxation value remains the same as the classic BCP Table[6.10]
shows the relaxation value of the baseline, the classic BCP and the two BCP
using DI on the only instances where they differ. Both BCP with DI yield
the same relaxation value that may be lower than the classic BCP, this is sur-
prising since ¥ = 0 should imply stronger primal constraints but weaker dual
constraints and when going back to Table we see that U = 0 is faster in
general.

Among all algorithm, B&C&P with ¥ = 0 is the fastest on HD-
color. This shows that for this problem, using primal and dual inequalities
permitted to solve 2 times faster HD-color than the state-of-the-art method.

Ratio from the baseline

Alg Instances CPU | # col | # nodes | M CPU p.it | SP CPU p.it | CPU root
ED-color | 122.55 | 11.29 2.41 42.79 2.34 3.04
=0 HD-color 0.49 0.38 0.8 1.21 1.56 1.39
DIMACS 5.52 1.07 1.61 15.67 1.77 2.68
comp-DIMACS 1.15 1.04 1.24 1.08 1.17 0.98
others 0.62 0.66 0.62 0.94 0.92 1
ED-color 8.09 2.74 0.66 6.46 2.05 3.69
T 40 HD-color 0.65 0.46 0.95 1.31 1.89 1.54
DIMACS 5.54 1.07 1.63 16.02 1.67 2.6
comp-DIMACS 1.15 1.04 1.26 1.1 1.11 0.98
others 0.44 0.53 0.7 0.83 0.82 1

Alg Instances | % pricing | % sepa | # cons | # DOI | % faster

ED-color 16.63 102 28 3358 50

U0 HD-color 16.22 1072 1780 | 15182 70

DIMACS 27.78 0.07 126 768 43

comp-DIMACS 28.67 1072 13 306 40

others 15.33 102 1352 3534 40

ED-color 53.67 1072 35 3358 50

U0 HD-color 17.87 1072 2312 15182 80

DIMACS 26.27 0.07 130 768 43

comp-DIMACS 27.28 102 19 306 60

others 15.54 102 894 3534 40

Table 6.9: Computational results of the BCP with DI
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relaxation
Instances set Name | baseline \ BCP \ BCP+ DIV =0 \ BCP + DI ¥ #0
david 5.63 5.67 5.67 5.67
HD-color mulsol.i.2 | 15.7667 16.0 15.7667 15.7667
mulsol.i.4 | 15.7667 16.0 15.7667 15.7667
mulsol.i.5b | 15.7667 16.0 15.7667 15.7667
DIMACS | dolphins 17.99 18.0 18.0 18.0
jazz | 47.5393 | 47.5421 47.5393 47.5393

Table 6.10: Linear relaxation value of the BCP with DI

6.7 Conclusion

In this chapter, we proposed to improve a formulation used to solve the 2-
defective coloring by adding primal and dual inequalities. These new dual in-
equalities sometimes cut off all optimal dual points. We show that this type of
dual inequality reduces the computation time to solve this problem in some in-
stances. Moreover, we investigated how to use both primal and dual constraints
simultaneously. We proposed two new approaches and gave a set of instances
for which the best algorithm uses both primal and dual inequalities. We showed
that even if some instances are hard for the baseline, our dual inequalities could
help solve some of them faster. We showed that they managed to stabilize the
column generation on some instance sets. But they also are often slower

Since we generalized that type of DI to the partitioning into co-k-plex for every
positive integer k, one could investigate if it also helps for k strictly greater
than 2. Furthermore, since every DI adds an integer variable to the primal,
it could be interesting to dynamically generate these DI to avoid manipulating
non-useful integer variables as done in [4], still, by doing that, we may loose the
potential benefit of the interactions between such variables and SCIP’s primal
heuristics.

As we have seen that the DI help SCIP’s heuristics to find great primal
solutions and that it induces an important reduction of the computation time,
it would be interesting to find dedicated primal heuristics for these problems,
that is a heuristic able to give a good quality primal solution from a set of dual
inequalities, branching decisions and co-2-plexes.

Another perspective, since triangle constraints do not show significant im-
provements, someone may be interested in using general odd 2-plex constraints.
In fact, every 2-plex of size 2n+ 1 must be covered by at least n+ 1 co-2-plexes.
This remark led us to triangle constraints that can be enumerated exactly. Sep-
arating general odd 2-plex constraints may improve the relaxation by exhibiting
rank constraints with high right-hand sides.
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Conclusion

In this thesis, we first introduced a new subclass of perfect graphs and charac-
terized them in several manners. This theoretical study permitted us to give
a new polynomial graph class for the problem of finding a maximum weighted
co-2-plex and strong extended formulations based on the weak perfect graphs
theorem. After deducing that our new formulations perform quite well on some
sets of instances we tried to solve the 2-defective coloring problem. Towards
new algorithms for the 2-defective problem, we studied a well-known formula-
tion for the coloring problem. We first tried to add primal cuts and investigated
different alternation strategies between cutting and pricing. This formulation
has been improved in the literature by considering dual optimal inequalities at
the root node. We showed that using these dual inequalities during the whole
branching scheme yielded a better algorithm and proposed two methods com-
bining primal and dual inequalities and experimentally compared them to the
baseline. We deduced using only dual inequalities is the best improvement over
the coloring problem. The study of this formulation permitted us to give new
dual inequalities for the 2-defective coloring problem’s analogous formulation.
We also considered adding Chvatal-Gomory or triangle inequalities to the primal
and tried to use that same framework considering primal and dual inequalities.
This time, using both primal and dual inequalities seemed to be pertinent on a
set of instances but with only a low improvement compared to the use of dual
inequalities alone.

Perspectives about the maximum weighted stable set/clique problem
on contraction perfect graphs

No combinatorial algorithm is known to solve the problem of weighted stable
sets/cliques on perfect graphs. It is a pretty challenging topic, in particular, the
perfect graph decomposition does not yield such an algorithm.

A simpler perspective would be to find such an algorithm for contraction-
perfect graphs. As the complements of contraction-perfect graphs are not nec-
essarily contraction-perfect, unlike for perfect graphs, both problems of finding
a maximum clique and a maximum stable set are not exactly the same. More-
over, contracting an edge, can increase, decrease, or let unchanged the size of a
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largest clique when it can only decrease or let unchanged the size of a largest
stable set.

Analogously to the perfect graph decomposition, a first idea would be to
investigate a contraction-perfect graph decomposition. For sure, some of the
operations used in the decomposition of perfect graphs preserve contraction-
perfectness (the replication lemma for contraction perfect and clique identifica-
tion should do the job), but I am not sure about the so-called 2-amalgam [37]
as I am not sure how it works. Moreover, it should also not be too hard to find
the contraction-perfect base cases.

The last idea for this perspective is to investigate the combinatorial struc-
ture of the stable set/clique polytope and in particular, their 1-skeleta that is
the graph having as vertex set, the extreme points of the stable set polytope
(incidence vectors of stable sets) and where two vertices are adjacent if their
corresponding extreme points belong to the same one-dimensional face. Farid
Aliniaeifard et al. [80] prove the following result for a class of polytopes including
stable set/clique polytopes:

Theorem 6.7.1 (|[80]). Two vertices of the stable set polytope x°*, x°2 are
adjacent if and only if x5 + x%2 = % + x5 = {1, x5} = {x%, x5}

As a corollary of Theorem we obtain that the diameter of the 1-skeleta of the
stable set polytope is polynomial. This is a first step to try finding a simplex rule
following a polynomial path between an arbitrary extreme point and an extreme
point corresponding to a maximal size stable set. Note that these results also
hold for the clique polytope.

Finally investigating how the 1-skeleta of perfect graphs behave when apply-
ing the decomposition/composition operations used in the strong perfect graph
theorem’s proof could be another track and contractions. Moreover, the edges
of the 1-skeleta of the stable set polytope correspond to subsets of cliques and
vertices as they correspond to subsets of |[V| —1 linear independent constraints.

Perspectives about the co-2-plex polytope of richer graph classes

The result we obtained for the co-2-plex polytope of trees on the natural variable
set is not satisfying to me. In particular, I feel like we used heavy weapons (the
perfect graphs theorem, Fourier-Motzkin elimination) to obtain a weak result
characterizing this polytope on a tiny graph class. I have come to the point
that I do not expect us to obtain the natural variable space description of this
polytope on split graphs nor trivially perfect. However, we could probably go
further than a characterization for only trees as our result does not involve,
particularly new proof methods and is more or less a direct consequence of
Fourier-Motzkin elimination and our extended space characterization of the co-
2-polytope of chordal graphs.

Perspectives about alternating between cutting and pricing

The Chvatal-Gomory constraints we added for the coloring problem did not
improve the relaxation value much and were costly to separate. Looking for a
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problem, formulated as a column generation formulation, for which strong re-
inforcement inequalities can be computed easily (a polynomial exact separation
or a fast heuristic) would be a good candidate for a computational improvement
using alternation strategies. As alternating strategies may induce cutting before
primal convergence, several cuts may be added and hence would be preferably
robust.

A good candidate could be a problem that is naturally formulated with an
exponential number of constraints and columns and for which the dual is highly
degenerated. I am thinking of an operational problem combining several known
problems that would inherit from both combinatorial structures. Unfortunately,
I am not aware of an application of this last problem which would be the first
important feature to look for.

Perspectives about the power of our DI for k-defective coloring

The first obvious perspective on this topic would be to investigate the power
of our DIs for k > 2 and k-plexes inequalities, but we believe that the correct
way to use them should be first investigated. As these cuts did not stabilize the
column generation but helped SCIP’s heuristic find good solutions, a natural
way to utilize such cuts would be to add them after primal convergence, and
then let SCIP try to find a good primal solution, and hence remove them at each
branching node. This would permit to use of the benefits of such cuts without
hardening the master problems.

That being said, another natural question would be to find a dedicated
quality primal heuristic able to take into account the branching decisions. A lot
of work has been done to compute heuristically maximum co-k-plexes [16], [17,
18, 19, 20], but recall that the branching decisions we used are nonrobust, so
these heuristics would have to be adapted to take into account a set of branching
decisions. One could even try to find primal heuristics profiting from the graph
structure inducing our dual cuts.

Using the bound given in Theorem [I.1.5 on the size of the intersection of
a co-k-plex and a k-plex, we deduce that the number of co-k-plexes covering a
k-plex K is at least f%
triangle constraints. The last perspective of this Chapter would then be to add
such inequalities in a B&C&P scheme. Computing such constraints is probably
hard, and hence it would be necessary to find a heuristic separation.

1. This yields a family of constraints containing
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Appendix

Complete tables for the maximum co-2-plex prob-

lem
Algorithm Instances set name CPU # nodes | # cuts
1-Fulllns 3 0.81 271 0
1-Fulllns 4 23.76 13549 15
1-Fulllns_5 3600.0 440093 703
1-Insertions 4 9.65 6032 16
1-Insertions_ 5 1330.43 | 339974 595
1-Insertions 6 3600.0 210598 649
2-Fulllns_ 3 3.75 4518 5
2-Fulllns_ 4 1612.62 | 421961 48
2-Fulllns_5 3600.0 57759 2
2-Insertions 3 1.05 378 2
2-Insertions 4 379.37 182677 104
2-Insertions 5 3600.0 189415 448
3-Fulllns_ 3 12.85 7852 7
3-Fulllns 4 3600.0 178940 279
3-Insertions 3 4.16 4034 34
3-Insertions 4 3600.0 468244 931
3-Insertions 5 3600.0 19050 18
4-Fulllns_ 3 102.85 80555 127
Color02 4-Fulllns 4 3600.0 22078 7
4-Insertions_ 3 27.39 46291 242
4-Insertions 4 3600.0 79992 66
anna 1.83 220 219
david 1.56 570 411
DSJC125.1 3600.0 | 4678016 | 142253
N DSJC125.5 3600.0 | 3401525 | 111212
DSJC125.9 257.15 35000 89770
DSJC250.1 3600.0 | 1383769 | 26356
fpsol2.i.1 89.76 78831 18228
homer 214.22 545252 55551
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huck
inithx.i.1
inithx.i.2
inithx.i.3
jean
miles1000
miles1500
miles250
miles500
miles750
mugl00 1
mugl00 25
mug88_1
mug88 25
mulsol.i.1
mulsol.i.2
mulsol.i.3
mulsol.i.4
mulsol.i.5
myciel3
mycield
mycield
myciel6
myciel7
queenlO 10
queenll 11
queenl2 12
queenl3 13
queenld 14
queenld 15
queenl6 16
queend 5
queen6 6
queen? 7
queen8 12
queen8 8
queen9 9
r125.1c
r125.1
r125.5
r250.1c
r250.1
zeroin.i.1
zeroin.i.2
zeroin.i.3

2.05
52.52
14.49
13.03

2.29
10.34

3.26
30.14

4.44

3.74

2.09

2.08

1.35

1.28
11.73
0.41
0.37
0.25
0.27
0.01
0.44
2.43
25.96

531.52
3600.0
3600.0
3600.0
3600.0
3600.0
3600.0
3600.0

0.9
2.77
15.73

3600.0
255.14
3389.33

0.04
2.92
68.2
2.11

3600.0

5.75
1.14

1.1

—_

365
1989
23797
240259
12352964
8005249
5649691
4560284
3027060
2828203
2030277
3549
7608
96060
11530239
1386539
13610897
1
2755
44961
2033
2700059
393
164
146

120
27063

731
1345
310
4421
1803
812
0
42
25
34
531
0
0
33
25
0
0
8
44
310
430633
451381
204536
154732
113904
106755
62597
644
1547
6022
543401
50427
526666
0
130
6813
965
557958
1355
231
248
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random instances

70 1177 num 9
70 1193 num_2
70 1197 num 5
70 1201 num_ 8
70 1216 num 6
70 1216 num 7
70 1218 num O
70 1219 num 3
70 1241 num 1
70 1245 num 4
70 _1657 num_ 9
70 1665 num_ 2
70_1676_num_8
70 1680 num 3
70 1681 num 1
70 1682 num 4
70 1691 num 5
70 1706 _num 6
70 1712 num O
70 1712 num 7
70 669 num 7
70 689 num_3
70 _700 num 6
70 703 _num 2
70 705 num_ b5
70 712 num 9
70 731 num_ 0
70 735 num 4
70 738 num 1
70 743 num_8
80 1552 num 2
80 1566 num 6
80 1569 num_ 3
80 1569 num 4
80 1573 num 5
80 1577 num 1
80 1584 num 0
80 1592 num 9
80 1602 num_ 8
80 1627 num 7
80 2169 num 4
80 2200 num 8
80 2202 num 5
80 2203 num 2
80 2207 num 1
80 2215 num 7

138

247.34
262.44
244.9
180.56
212.78
211.88
145.23
202.19
141.52
191.09
99.77
68.27
87.85
83.65
108.76
80.75
68.97
96.19
68.34
105.18
441.42
458.57
727.93
682.07
628.53
434.63
291.1
977.34
616.46
601.69
358.76
454.56
426.88
390.5
441.27
659.47
406.98
374.85
381.63
362.38
168.59
254.28
186.53
243.37
232.13
242.26

904881
967617
864624
564469
747661
699869
393398
676925
359511
561732
171921
84076
127183
134308
138308
114198
55372
108692
80554
165449
1299754
1504316
2618918
2397051
2159141
1430006
881183
1965454
2223312
2074172
926695
1411564
1276818
1076744
1307404
2256433
1085194
953655
1020940
897755
177192
367153
182646
345161
311312
303036

48219
45304
48384
37902
42079
44191
31732
40682
31216
42981
33757
25191
31086
29764
39585
29055
26900
35372
26035
39211
27256
35633
59628
59460
54876
41591
20138
45420
64889
55681
59371
64309
67929
62504
68484
95174
66292
66520
62247
61614
47635
68838
55201
67333
63032
67767
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80 2217 num O
80 2220 num 3
80 2232 num_ 9
80 2258 num 6
80 881 num 3
80 907 num 7
80_910 num 4
80 912 num 9
80 928 num 1
80 938 num 0
80 941 num 2
80 949 num 6
80 973 num 8
80 973 num 5
85 1039 num 1
85 1047 num_ 0
85 1052 num_8
85 1055 num 7
85 1057 num 4
85 1059 num 5
85 1072 _num_ 6
85 1075 num_ 3
85 1088 num 9
85 1093 num 2
85 1735 num_ 3
85 1763 num 4
85 1771 num 1
85 1781 num 7
85 1785 num 5
85 1804 num 6
85 1818 num 8
85 1823 num 0
85 1872 num 9
85 1889 num 2
85 2452 num 7
85 2453 num 0
85 2471 num 9
85 2472 num 6
85 2480 num 5
85 2485 num 2
85 2507 num 1
85 2512 num 4
85 2521 num 3
85 2524 num 8
90 1158 num 2
90 1168 num 9
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228.73
220.83
228.17
222.16
1149.15
3600.0
3600.0
3063.59
2378.02
1027.32
3600.0
1584.16
3199.14
3600.0
3600.0
3539.94
3600.0
3600.0
3600.0
3600.0
3600.0
3600.0
3600.0
3600.0
1058.42
530.7
677.22
468.5
743.09
697.76
612.38
795.52
710.75
691.98
267.27
266.62
345.95
361.15
320.59
313.34
305.73
321.07
303.26
315.95
3600.0
3600.0

280595
261577
294180
264042
3248857
5633111
5463889
9890234
7447972
2828160
12098654
4850641
10308566
5900603
10639892
9673876
11172053
10978077
10894840
10901452
10182077
11068889
10634636
10616522
3372918
1296383
1840640
969506
2191119
1836094
1646019
2154282
1945512
1855961
260989
262453
488773
445015
425559
467116
344671
396738
349693
409428
10038325
9143239

64440
62840
64439
65843
73964
142953
140659
232482
170590
57200
310037
111032
264192
150673
248299
259402
281244
280324
283422
274126
237902
274420
249169
265427
125616
72413
88849
72036
99084
96044
84301
112083
98979
97335
66051
68160
83385
88548
79840
77544
80554
80631
79311
80622
233480
204933
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90 1173 num 0 3600.0 | 10369489 | 277123
90 1177 num 5 3600.0 | 10517441 | 260123
90 1199 num 7 3600.0 | 10563140 | 268206
90 1200 num 1 3600.0 | 9688057 | 222462
90 1204 num_8 3600.0 | 9548422 | 249569
90 1206 _num_6 3600.0 | 9462666 | 216890
90 1214 num_ 3 3600.0 | 10589544 | 284130
90 1218 num 4 3600.0 | 10524587 | 265560
90 1985 num_9 904.88 | 2114077 | 107229
90 1992 num 4 1279.37 | 3313346 | 136543
90 1993 num_3 1076.15 | 2665139 | 122987
90 1994 num 5 1212.45 | 3093574 | 137756
90 2003 _num_2 1138.48 | 2851473 | 127573
90 2010 _num_ 6 1135.87 | 2905049 | 125614
90 2019 num_8 1093.53 | 2649323 | 121277
90 2030 _num_0 992.05 | 2403399 | 115701
90 2036 _num_7 945.55 | 2379172 | 110534
90 2042 num 1 1066.83 | 2524025 | 123685
90 2739 num 6 384.91 351477 87292
90 2772 num_2 348.55 308739 80566
90 2781 num 5 452.7 545444 | 103206
90 2806 num_3 359.79 344629 83556
90 2813 num 7 423.94 589981 96113
90 2817 num 4 420.17 474794 98741
90 2818 num_8 421.58 484569 98461
90 2830 num_9 426.29 524150 96827
90 2846 num_ 0 260.07 185819 64887
90 2853 num 1 355.02 311460 87848
adjnoun.graph 11.15 4856 7350
. chesapeake.graph 0.7 55 232
inst_DIMACS dolphins.graph 0.88 478 704
football.graph 14.46 7211 14266
jazz.graph 153.82 86090 32061
karate.graph 0.11 6 57
lesmis.graph 0.88 1051 80
polbooks.graph 4.67 5240 3114
adjnoun.graph comp 73.43 148203 1440
. ) chesapeake.graph _comp 0.05 1 0
comp_dimacs dolphins.graph _comp 4.7 9152 424
football.graph comp 3600.0 5257279 | 477067
jazz.graph comp 3600.0 1720512 26280
karate.graph comp 0.03 1 0
lesmis.graph _comp 2.1 2340 335
polbooks.graph comp 46.92 79706 4148
1-Fulllns 3 0.29 1 0
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1-Fulllns 4
1-Fulllns 5
1-Insertions 4
1-Insertions 5
1-Insertions 6
2-Fulllns_ 3
2-Fulllns_ 4
2-Fulllns 5
2-Insertions 3
2-Insertions 4
2-Insertions 5
3-Fulllns 3
3-Fulllns 4
3-Insertions 3
3-Insertions 4
3-Insertions 5
4-Fulllns 3
4-Fulllns 4
4-Insertions 3
4-Insertions 4
anna
david
DSJC125.1
DSJC125.5
DSJC125.9
DSJC250.1
fpsol2.i.1
homer
huck
inithx.i.1
inithx.i.2
inithx.i.3
jean
miles1000
miles1500
miles250
milesH00
miles750
mugl00 1
mugl00 25
mug88 1
mug88 25
mulsol.i.1
mulsol.i.2
mulsol.i.3
mulsol.i.4
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29.23
3600.0
7.43
272.3
3600.0
1.61
446.88
3600.0
0.29
63.06
3600.0
6.18
3600.0
1.04
268.81
3600.0
25.84
3600.0
2.67
1095.93
0.67
0.98
3600.0
3600.0
3600.0
3600.0
752.95
101.5
0.7
302.86
213.83
200.13
0.63
528.4
1258.26
1.32
15.18
83.04
0.47
0.46
0.39
0.36
738.03
0.48
0.54
0.29

785847
29765
1
16311
1

e e e e e e  a e a  a

531

300

419
423
24
169
11
289

5841
5424
76
868

o
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mulsol.i.b 0.32 1 0
myciel3 0.02 1 0
myciel4 0.2 1 0
mycield 5.28 1 22
myciel6 89.22 1 53
myciel7 3555.46 1 191

queenl0 10 764.7 18429 81069
queenll 11 330.71 3370 1013
queenl2 12 2202.55 57452 17223
queenl3 13 3318.6 34001 7870
queenld 14 3600.0 16158 1734
queenld 15 3600.0 31812 466

queenl6 16 3600.0 10923 424

queend 5 3.7 1 201

queen6 6 13.21 1 191

queen7 7 25.49 19 1707

queen8 12 870.1 11214 71633

queen8 8 51.21 396 5661

queen9 9 506.82 19225 71620
rl125.1c 0.14 1 0
r125.1 0.86 1 0
r125.5 3003.32 1 1
r250.1c 17.61 1 3
r250.1 9.15 1 0

zeroin.i.1 12.49 1 0

zeroin.i.2 10.67 1 0

zeroin.i.3 10.26 1 0

70 1177 num 9 1746.77 51555 61575
70 1193 num_ 2 1748.78 49579 62809
70 1197 num 5 1912.51 46598 62779
70 1201 num_8 1007.36 16084 33027
70 1216 _num_6 1416.21 41410 50476
70 1216 _num_ 7 1445.42 40698 51034
70 1218 num 0 706.81 5913 14487
70 1219 num 3 1521.69 38811 52228
70 1241 num 1 590.07 1626 4783
70 1245 num_ 4 1307.7 26078 45228
70 1657 num_9 1101.48 693 4601
70 1665 num_2 931.87 1 828

70 1676 _num_ 8 1039.83 31 2087
70 1680 num 3 1049.7 918 4737
70 1681 num 1 1290.52 475 3396
70 1682 num_ 4 1101.19 42 1370
70 1691 num_ 5 893.92 1 317

70 1706 _num 6 1234.59 294 2551
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70 1712 num O
70 1712 num 7
70 _669 num 7
70 689 num 3
70 700 _num_6
70 703 _num_2
70 _705 num 5
70 712 num 9
70 731 num O
70 735 num 4
70 738 num_ 1
70 743 num 8
80 1552 _num_2
80 1566 num 6
80 1569 num 3
80 1569 num 4
80 1573 num 5
80 1577 num 1
80 1584 num 0
80 1592 num 9
80 1602 num 8
80 1627 num 7
80 2169 num 4
80 2200 num 8
80 2202 num_ 5
80 2203 num 2
80 2207 num 1
80 2215 num 7
80 2217 num 0
80 2220 num 3
80 2232 num_ 9
80 2258 num 6
80 881 num 3
80 907 num 7
80 910 num 4
80 912 num 9
80 928 num 1
80 938 num 0
80 941 num_ 2
80 949 num 6
80 973 num 8
80 973 num 5
85 1039 num 1
85 1047 num 0
85 1052 _num_8
85 1055 num 7
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963.76
1231.58
346.8
396.07
641.38
975.71
530.91
460.27
351.4
555.68
565.1
734.75
3600.0
3600.0
3600.0
3600.0
3600.0
3600.0
3600.0
3600.0
3600.0
3600.0
2206.71
3600.0
2535.63
3600.0
3559.93
3170.21
3356.57
3506.01
3107.94
3598.38
1442.33
3600.0
3600.0
3600.0
3600.0
1322.69
3600.0
2676.94
3600.0
2854.96
3600.0
3600.0
3600.0
3600.0

1
1856
19894
25857
57515
48200
47983
32288
16750
48553
40721
55514
46017
59580
53453
56061
47701
38812
53026
47694
42752
43041
7
21218
545
20236
11379
8978
7414
7657
7300
2913
83212
438646
383643
362581
336603
60662
403266
191760
273419
133295
311802
238458
385500
378023

453
4941
12983
13601
19835
19394
17575
16357
12908
15246
20173
24479
81325
78805
76867
75194
69133
54505
67991
78535
66816
85830
1186
01737
3639
41401
29809
26088
22320
19849
21929
11523
27977
30289
41057
37604
39023
32643
31382
44264
39615
51165
26702
33785
21709
21356
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85 1057 num 4
85 1059 num 5
85 1072 num 6
85 1075 num_ 3
85 1088 num 9
85 1093 num 2
85 1735 num_ 3
85 1763 num 4
85 1771 num 1
85 1781 num 7
85 1785 num 5
85 1804 num 6
85 1818 num_8
85 1823 num O
85 1872 num_ 9
85 1889 num 2
85 2452 num 7
85 2453 num 0
85 2471 num 9
85 2472 num 6
85 2480 num_ 5
85 2485 num 2
85 2507 num 1
85 2512 num 4
85 2521 num 3
85 2524 num 8
90 1158 num 2
90 1168 num_ 9
90 1173 _num O
90 1177 num 5
90 1199 num 7
90 1200 _num 1
90 1204 num 8
90 1206 _num 6
90 1214 num 3
90 1218 num 4
90 1985 num 9
90 1992 num 4
90 1993 num_ 3
90 1994 num 5
90 2003 num_ 2
90 2010 _num 6
90 2019 num_8
90 2030 _num_ O
90 2036 num 7
90 2042 num 1
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3600.0
3600.0
3600.0
3600.0
3600.0
3600.0
3600.0
3600.0
3600.0
3600.0
3600.0
3600.0
3600.0
3600.0
3600.0
3600.0
3600.0
3600.0
3600.0
3600.0
3600.0
3600.0
3600.0
3600.0
3600.0
3600.0
3600.0
3600.0
3600.0
3600.0
3600.0
3600.0
3600.0
3600.0
3600.0
3600.0
3600.0
3600.0
3600.0
3600.0
3600.0
3600.0
3600.0
3600.0
3600.0
3600.0

374708
365935
285068
334686
298197
255065
29986
45685
29546
40388
32065
26294
32234
27265
21569
24644
3543
794
27299
28053
23290
24906
14081
17911
15834
20773
371507
243158
385789
382126
363135
300658
268111
286787
321229
326761
36456
27063
29918
20159
26075
33298
27168
26555
20873
19712

18168
22077
24237
18627
25342
36775
37849
64874
39970
68324
43064
45463
52172
46040
39787
42493
12130
5760
49926
46383
48210
50765
33307
38565
34560
37338
14238
24774
11692
12178
15123
14081
18090
16461
14413
13429
45667
31235
34946
33377
32996
36034
38070
41548
35796
34906
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SK

90 2739 num_ 6 3600.0 4549 16328
90 2772 num 2 3600.0 388 4058
90 2781 num 5 3600.0 22421 42173
90 2806 num_3 3600.0 1080 5302
90 2813 num 7 3600.0 | 21514 | 41201
90 2817 num 4 3600.0 20158 41893
90 2818 num_8 3600.0 19851 41866
90 2830 num 9 3600.0 21255 35634
90 2846 num 0 3600.0 1102 4832
90 2853 num 1 3600.0 404 3861
adjnoun.graph 731.47 1 26
. chesapeake.graph 3.78 1 0
inst_DIMACS dolphins.graph 6.45 1 3
football.graph 927.03 1 3
jazz.graph 3600.0 1 9
karate.graph 0.84 1 0
lesmis.graph 3.29 1 0
polbooks.graph 133.78 1 3
adjnoun.graph comp 43.38 313 98
. chesapeake.graph comp 0.08 1 0
comp_ dimacs dolphins.graph _comp 0.65 1 0
football.graph comp 24.29 157 194
jazz.graph comp 2621.26 8356 2151
karate.graph comp 0.02 1 0
lesmis.graph comp 1.18 1 0
polbooks.graph comp 6.24 1 0
1-Fulllns 3 0.17 1 0
1-Fulllns 4 24.76 1 0
1-Fulllns_ 5 1781.02 1 0
1-Insertions 4 4.02 1 0
1-Insertions 5 304.97 1 0
1-Insertions 6 3600.0 5270 0
2-Fulllns 3 1.05 1 0
2-Fulllns_ 4 322.47 1 0
2-Fulllns_5 3600.0 1 0
2-Insertions 3 0.29 1 0
2-Insertions 4 20.83 1 0
2-Insertions 5 3600.0 9931 0
3-Fulllns 3 3.61 1 0
3-Fulllns_ 4 3600.0 1 0
3-Insertions 3 1.12 1 0
3-Insertions 4 218.36 1 0
3-Insertions 5 3600.0 2126 0
4-Fulllns 3 12.63 1 0
Color02 4-Fulllns 4 3600.0 1 0
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4-Insertions 3
4-Insertions 4
anna
david
DSJC125.1
DSJC125.5
DSJC125.9
DSJC250.1
fpsol2.i.1
homer
huck
inithx.i.1
inithx.i.2
inithx.i.3
jean
miles1000
miles1500
miles250
miles500
miles750
muglO0_1
mugl00 25
mug88 1
mug88 25
mulsol.i.1
mulsol.i.2
mulsol.i.3
mulsol.i.4
mulsol.i.5
myciel3
mycield
mycielb
myciel6
myciel7
queenlO 10
queenll 11
queenl2 12
queenl3 13
queenld 14
queenld 15
queenl6 16
queend 5
queen6_ 6
queen? 7
queen8 12
queen8 8
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3.12
1006.56
0.36
0.37
3600.0
3600.0
3600.0
3600.0
217.64
67.44
0.25
104.08
138.69
127.63
0.26
58.52
3600.0
0.68
9.05
24.98
0.43
0.49
0.43
0.39
126.13
0.35
0.36
0.48
0.59
0.04
0.16
3.96
59.55
1039.68
597.48
75.83
202.41
221.51
255.02
544.6
544.31
2.11
8.31
49.26
971.72
103.62

1
31
1
1
4340649

811442
111656
365528

at
N=)
at
N
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queen9 9 305.99 18836 0
r125.1c 0.13 1 0
r125.1 1.09 1 0
r125.5 199.84 1 0
r250.1c 7.81 1 0
r250.1 5.25 1 0
zeroin.i.1 1.58 1 0
zeroin.i.2 1.63 1 0
zeroin.i.3 1.57 1 0

70 1177 num_9 1099.64 72524 0
70 1193 num_2 1066.75 72276 0
70 1197 num_ 5 901.87 70204 0
70 1201 num_ 8 894.16 19202 0
70 1216 _num_ 6 834.79 59644 0
70 1216 _num_ 7 848.12 62463 0
70 1218 num_ 0 691.61 5620 0
70 1219 num_ 3 821.36 59526 0
70 1241 num 1 605.4 1481 0
70 1245 num 4 831.24 48583 0
70 1657 num_ 9 619.03 1 0
70 1665 num 2 492.82 1 0
70 1676 _num_8 600.97 1 0
70 1680 num_3 664.04 1 0
70 1681 num 1 640.67 1 0
70 1682 num 4 603.51 1 0
70 1691 num_5 496.64 1 0
70 1706 _num_6 628.2 1 0
70 1712 num 0 597.72 1 0
70 1712 num 7 614.4 1 0
70 669 num 7 278.79 18497 0
70 689 num_3 340.61 29685 0
70 _700 _num_ 6 360.84 57296 0
70 _703 num 2 374.82 59368 0
70 705 num_b5 369.65 60499 0
70 712 num 9 329.96 21658 0
70 731 num 0 345.46 19625 0
70 735 num_ 4 387.65 49674 0
70 738 num 1 388.2 34907 0
random instances 70 743 num_8 396.05 56060 0
80 1552 num 2 1140.66 59979 0
80 1566 num 6 1362.88 107528 0
80 1569 num_3 1373.56 103662 0
80 1569 num 4 1450.56 102718 0
80 1573 num 5 1418.23 105071 0
80 1577 num 1 1594.77 171265 0
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80 1584 num 0
80 1592 num 9
80 1602 num 8
80 1627 num 7
80 2169 num 4
80 2200 num_8
80 2202 num 5
80 2203 num 2
80 2207 num 1
80 2215 num 7
80 2217 num O
80 2220 num 3
80 2232 _num_ 9
80 2258 num 6
80 881 num 3
80 907 num 7
80 910 num 4
80_ 912 num 9
80 928 num 1
80 938 num 0
80 941 num 2
80 949 num 6
80 973 num 8
80 973 num 5
85 1039 num 1
85 1047 num 0
85 1052 num_8
85 1055 num 7
85 1057 _num 4
85 1059 num 5
85 1072 _num_ 6
85 1075 num_3
85 1088 num_ 9
85 1093 num 2
85 1735 num 3
85 1763 num 4
85 1771 num 1
85 1781 num 7
85 1785 num 5
85 1804 num 6
85 1818 num 8
85 1823 num O
85 1872 num_ 9
85 1889 num 2
85 2452 num 7
85 2453 num 0
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1356.96
1361.33
1341.42
1377.51
2916.3
2590.75
2814.85
3600.0
2927.62
3493.78
3434.55
3466.89
3564.81
3257.92
585.83
1606.98
774.93
867.89
823.03
744.85
1176.22
765.29
923.65
861.95
1630.45
1061.19
2232.43
1749.97
2321.92
2617.91
1864.16
3600.0
1401.39
1151.9
1791.3
1745.37
1933.14
1676.89
1855.34
1833.17
1800.92
1725.95
2180.85
2241.75
3600.0
3600.0

93624
93206
87723
79203
5307
8037
3798
14951
1
3169
10703
1
9347
10597
49485
868863
218238
244083
200101
62225
565238
118520
215782
82342
474600
152938
1147035
688842
1157032
1494446
555970
2129909
351061
217210
204890
101900
171729
92370
149379
147910
144178
140145
176265
169359
179340
19502
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85 2471 num 9 3600.0 54054 0
85 2472 num 6 3600.0 53020 0
85 2480 num 5 3600.0 166480 0
85 2485 num_2 3600.0 50644 0
85 2507 num 1 3600.0 149927 0
85 2512 num 4 3600.0 162622 0
85 2521 num_ 3 3600.0 152791 0
85 2524 num 8 3600.0 162161 0
90 1158 num_2 3600.0 | 1982501 0
90 1168 num_9 1625.16 | 334181 0
90 1173 _num_ 0 3600.0 | 2681958 0
90 1177 num 5 3600.0 | 2548747 0
90 1199 num 7 3600.0 | 2460100 0
90 1200 num 1 3342.94 | 1395841 0
90 1204 num_8 2446.35 | 657422 0
90 1206 _num_6 3375.85 | 1421037 0
90 1214 num_ 3 3600.0 | 2172342 0
90 1218 num 4 3600.0 | 2216155 0
90 1985 num 9 2565.47 | 161299 0
90 1992 num 4 2702.77 | 246502 0
90 1993 num_3 2498.23 | 216085 0
90 1994 num 5 2648.27 | 277362 0
90 2003 _num_2 2580.8 243275 0
90 2010 _num 6 2729.97 | 225512 0
90 2019 num_ 8 2873.05 | 206894 0
90 2030 _num_0 2727.52 | 207710 0
90 2036 _num_7 2600.74 199601 0
90 2042 num 1 2703.36 | 206049 0
90 2739 num 6 3600.0 133740 0
90 2772 num 2 3600.0 139446 0
90 2781 num_ 5 3600.0 145532 0
90 2806 num_3 3600.0 112721 0
90 2813 num 7 3600.0 150535 0
90 2817 num 4 3600.0 118911 0
90 2818 num_ 8 3600.0 122280 0
90 2830 num_9 3600.0 134771 0
90 2846 num_0 3600.0 116602 0
90 2853 num 1 3600.0 114681 0
adjnoun.graph 232.16 8228 0

. chesapeake.graph 4.67 1 0
inst_DIMACS dolphins.graph 5.39 1 0
football.graph 485.02 40897 0
jazz.graph 3600.0 33696 0
karate.graph 0.58 1 0
lesmis.graph 1.81 1 0
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150

| polbooks.graph 67.76 1 0
adjnoun.graph comp 16.99 1 0
. chesapeake.graph comp 0.1 1 0
comp_ dimacs dolphins.graph comp 0.58 1 0
football.graph comp 13.27 1 0
jazz.graph comp 1052.91 648 0
karate.graph comp 0.03 1 0
lesmis.graph comp 0.51 1 0
polbooks.graph comp 3.44 1 0
1-Fulllns 3 0.61 1 30
1-Fulllns 4 41.76 1 485
1-Fulllns_ 5 2934.5 1790 6530
1-Insertions 4 12.12 1 413
1-Insertions 5 349.57 374 3527
1-Insertions 6 3600.0 2581 2979
2-Fulllns 3 5.78 1 247
2-Fulllns_ 4 581.05 24 2737
2-Fulllns_ 5 3600.0 591 621
2-Insertions 3 0.65 1 74
2-Insertions 4 88.75 353 1706
2-Insertions 5 3600.0 2348 4175
3-Fulllns 3 25.41 3 852
3-Fulllns 4 3600.0 238 5050
3-Insertions 3 2.3 1 108
3-Insertions 4 613.79 2736 3807
3-Insertions 5 3600.0 1306 1148
4-Fulllns 3 95.36 472 1901
Color02 4-Fulllns 4 3600.0 731 1611
4-Insertions 3 4.81 1 140
4-Insertions 4 3015.9 4079 6054
anna 1.69 1 133
david 3.61 1 104
DSJC125.1 3600.0 250095 49976
P DSJC125.5 3600.0 44829 24494
DSJC125.9 3600.0 6997 6189
DSJC250.1 3600.0 31455 17554
fpsol2.i.1 3180.91 4449 2322
homer 1177.47 58751 2881
huck 15.86 168 18
inithx.i.1 1021.78 3748 2124
inithx.i.2 91.79 7 276
inithx.i.3 46.93 1 270
jean 7.34 7 143
miles1000 386.88 168 2092
miles1500 672.85 58 1909
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miles250 27.9 1569 313
miles500 30.69 20 1191
miles750 71.27 30 623
mugl00 1 3.39 1 2
mugl00 25 5.45 76 166
mug88 1 2.01 1 16
mug88 25 24 1 93
mulsol.i.1 1800.98 645 474
mulsol.i.2 1.29 1 0
mulsol.i.3 1.67 1 0
mulsol.i.4 1.03 1 33
mulsol.i.b 1.15 1 25
myciel3 0.03 1 10
myciel4 0.35 1 46
mycield 12.08 1 832
myciel6 84.77 1 1258
myciel7 999.89 687 4210
queenl0 10 627.07 11376 12009
queenll 11 3600.0 5014 103599
queenl2 12 2464.13 13206 17249
queenl3 13 3600.0 11926 15831
queenl4d 14 3600.0 6410 9901
queenld 15 3600.0 4296 6231
queenl6 16 3600.0 1907 4192
queend 5 6.6 872 1351
queen6 6 18.46 1947 2475
queen? 7 50.66 5226 4865
queen8 12 489.56 9377 10524
queen8_ 8 152.28 8636 7820
queen9 9 316.8 11409 10362
r125.1c 0.13 1 12
r125.1 5.3 1 2
r125.5 3600.0 1125 6214
r250.1c 27.82 780 3322
r250.1 3600.0 157026 7945
zeroin.i.1 43.58 254 293
zeroin.i.2 13.68 1 196
zeroin.i.3 12.75 13 191
70 1177 num 9 857.95 67307 38215
70 1193 num_ 2 762.93 58721 33875
70 1197 num 5 817.38 61939 35357
70 1201 num_8 797.16 58753 33746
70 1216 _num_6 904.62 66114 36894
70 1216 _num_ 7 844.33 61830 35402
70 1218 num 0 729.3 51351 30120
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70 1219 num 3
70 1241 num 1
70 1245 num 4
70 1657 num_ 9
70 1665 num 2
70 1676 _num_ 8
70 1680 num 3
70 1681 num 1
70 1682 num 4
70 1691 num 5
70 1706 _num_6
70 1712 num O
70_1712 num_ 7
70_669_num_7
70 689 num 3
70 700 _num_6
70 703 _num_ 2
70 705 num 5
70 712 num 9
70 731 num 0
70 735 num 4
70 738 num_ 1
70 743 num 8
80 1552 num 2
80 1566 num 6
80 1569 num 3
80 1569 num 4
80 1573 num 5
80 1577 _num 1
80 1584 num 0
80 1592 num 9
80 1602 num 8
80 1627 num 7
80 2169 num 4
80 2200 num 8
80 2202 num 5
80 2203 _num_2
80 2207 num 1
80 2215 num 7
80 2217 num 0
80 2220 num 3
80 2232 num_ 9
80 2258 num_ 6
80 881 num 3
80 907 num 7
80 910 num 4
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900.5
815.05
863.54
1196.73
1062.94
1214.53
1164.31
1342.99
1241.52
1151.52
1335.95
1174.2
1345.17
401.13
382.24
506.18
424.66
393.7
395.44
363.38
485.84
429.32
459.5
2156.12
1944.33
2107.74
2544.38
2435.3
2423.71
2638.13
2190.55
2277.58
2054.83
2802.39
3236.85
2811.67
3107.51
3351.82
2726.94
3361.21
2855.7
2911.66
3234.44
925.56
1245.59
1291.66

62816
54399
60731
44415
39128
43477
39974
52580
44544
38416
46791
37788
47321
48828
45733
61155
50081
45320
44463
36740
57315
50835
53224
110877
105324
109653
124723
117662
120915
126385
111451
113017
98594
80178
81003
74027
81550
84119
74351
83968
78406
4727
79110
83745
112816
109791

36349
31579
34662
26155
23353
25510
23856
29608
26057
23761
27224
23229
27283
26079
24841
32279
27776
25435
24725
21279
29588
27071
28881
63160
58601
62384
72187
68989
67832
72360
62570
64596
57520
44904
47426
42857
46756
48201
42040
47493
44015
42796
44234
42516
97885
97514
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80 912 num 9
80_ 928 num 1
80 938 num 0
80 941 num 2
80 949 num 6
80 973 num_ 8
80 973 num 5
85 1039 num 1
85 1047 num 0
85 1052 num_8
85 1055 num 7
85 1057 num 4
85 1059 _num_5
85 1072 num 6
85 1075 num_3
85 1088 num_ 9
85 1093 num 2
85 1735 num 3
85 1763 num 4
85 1771 num 1
85 1781 num 7
85 1785 num 5
85 1804 num 6
85 1818 num 8
85 1823 num O
85 1872 num_ 9
85 1889 num 2
85 2452 num 7
85 2453 _num 0
85 2471 num 9
85 2472 num 6
85 2480 num_ b5
85 2485 num 2
85 2507 num 1
85 2512 num 4
85 2521 num 3
85 2524 num 8
90 1158 num 2
90 1168 num_ 9
90 1173 num O
90 1177 num 5
90 1199 num 7
90 1200 num 1
90 1204 num 8
90 1206 _num 6
90 1214 num 3
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1353.09
1462.32
1162.1
1624.13
1188.11
1638.0
1557.12
2432.34
2305.25
2462.52
2965.08
2421.32
2262.6
2929.54
3005.87
2301.47
2122.49
3600.0
3600.0
3600.0
3600.0
3600.0
3600.0
3239.36
2831.09
3600.0
2959.0
3600.0
3600.0
3600.0
3600.0
3600.0
3600.0
3600.0
3600.0
3600.0
3600.0
3600.0
3596.1
3600.0
3600.0
3600.0
3600.0
3600.0
3600.0
3600.0

115790
127860
94364
127295
99372
135637
118662
163672
157587
166171
189680
163489
154286
181634
181007
147727
139994
146159
139989
140484
148217
134528
133525
126195
113026
132919
111300
77682
82231
78227
79750
77601
77609
74737
71511
71526
72859
203966
203244
199135
190926
191770
191062
188087
191875
191018

59930
64486
51073
70746
52356
70777
66066
87667
84244
90408
106708
88222
82710
104804
104553
82442
76937
85906
84808
82653
85494
81677
80849
69710
62318
76573
59801
45960
47090
44978
44977
43585
44399
42468
41034
41835
41514
116044
114930
114366
113741
118427
114478
112272
111630
110477
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90 1218 num 4 3600.0 189642 114089
90 1985 num 9 3600.0 114216 64307
90 1992 num 4 3600.0 108199 70849
90 1993 num_3 3600.0 112022 70873
90 1994 num 5 3600.0 113523 65139
90 2003 _num_2 3600.0 111058 67149
90 2010 _num_ 6 3600.0 111507 65451
90 2019 num 8 3600.0 110098 68950
90 2030 _num 0 3600.0 113362 63697
90 2036 _num_7 3600.0 115655 63860
90 2042 num 1 3600.0 116707 63967
90 2739 num_ 6 3600.0 68408 39451
90 2772 num 2 3600.0 65356 36862
90 2781 num 5 3600.0 64540 35497
90 2806 num_3 3600.0 61376 35973
90 2813 num 7 3600.0 63205 35333
90 2817 num 4 3600.0 60256 34887
90 2818 num_ 8 3600.0 64374 36101
90 2830 num 9 3600.0 59595 32799
90 2846 num_0 3600.0 61599 35437
90 2853 num 1 3600.0 54117 32346
adjnoun.graph 759.33 4621 6558
. chesapeake.graph 18.27 355 1513
inst_DIMACS dolphins.graph 16.98 507 1575
football.graph 697.45 6049 8129
jazz.graph 3600.0 1888 1498
karate.graph 2.37 19 285
lesmis.graph 9.04 141 910
polbooks.graph 193.19 3155 5570
adjnoun.graph comp 66.62 1149 1877
. chesapeake.graph comp 0.09 1 5
comp_ dimacs dolphins.graph _comp 8.55 24 169
football.graph comp 1103.0 124644 20158
jazz.graph comp 3600.0 54734 24149
karate.graph comp 0.04 1 0
lesmis.graph comp 9.1 74 221
polbooks.graph _comp 26.18 1 423
1-Fulllns_ 3 0.64 1 0
1-Fulllns 4 18.6 1 0
1-Fulllns 5 1419.16 1 0
1-Insertions 4 6.41 1 0
1-Insertions 5 305.37 11 0
1-Insertions 6 3600.0 1511 0
2-Fulllns_ 3 4.71 1 0
2-Fulllns 4 387.6 1 0
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2-Fulllns_5
2-Insertions 3
2-Insertions 4
2-Insertions 5
3-Fulllns 3
3-Fulllns 4
3-Insertions 3
3-Insertions 4
3-Insertions 5
4-Fulllns 3
4-Fulllns 4
4-Insertions 3
4-Insertions 4
anna
david
DSJC125.1
DSJC125.5
DSJC125.9
DSJC250.1
fpsol2.i.1
homer
huck
inithx.i.1
inithx.i.2
inithx.i.3
jean
miles1000
miles1500
miles250
miles500
miles750
muglO0_1
mugl00 25
mug88 1
mug88 25
mulsol.i.1
mulsol.i.2
mulsol.i.3
mulsol.i.4
mulsol.i.b
myciel3
mycield
mycield
myciel6
myciel7
queenlO 10
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3600.0
0.71
59.49
3600.0
12.53
3600.0
2.46
609.64
3600.0
49.91
3600.0
5.27
2922.94
291
4.93
3600.0
3600.0
1954.1
3600.0
542.69
1103.28
6.59
482.28
76.18
53.99
6.51
211.04
278.88
31.27
18.3
54.69
3.8
5.15
241
3.16
152.48
1.82
2.37
1.84
1.99
0.03
0.42
4.35
40.41
483.48
3600.0
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21
1065

873

1771
295
1
543
1
3386
1
1
818698
1767500
58368
190966
2698
1107813
1
394
1
1
1
3513
847
1714
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Appendix

random instances

queenll 11 3600.0 | 3698265 0
queenl2 12 3600.0 | 1625200 0
queenl3 13 3600.0 929582 0
queenld 14 3600.0 692228 0
queenld 15 3600.0 475407 0
queenl6 16 3600.0 301347 0
queend 5 2.34 1 0
queen6 6 3.64 1 0
queen7 7 21.64 1 0
queen8 12 3600.0 | 5814920 0
queen8 8 160.24 261068 0
queen9 9 1391.34 | 2033809 0
r125.1c 0.14 1 0
r125.1 4.12 1 0
r125.5 3600.0 | 1677634 0
r250.1c 10.62 1 0
r250.1 3600.0 598880 0
zeroin.i.1 18.18 1 0
zeroin.i.2 11.4 1 0
zeroin.i.3 11.09 1 0

70 1177 num_9 152.17 1933 0
70 1193 num_2 146.1 2289 0
70 1197 num 5 148.65 1 0
70 1201 num 8 137.92 1 0
70 1216 num 6 153.81 1993 0
70 1216 _num_7 141.19 1 0
70 1218 num_ 0 134.68 1 0
70 1219 num_ 3 158.69 1557 0
70 1241 num 1 130.35 1 0
70 1245 num 4 136.59 1 0
70 1657 num 9 197.45 736 0
70 16656 num 2 173.78 477 0
70 1676 _num_ 8 182.44 1 0
70 1680 num 3 192.88 895 0
70 1681 num 1 208.41 2200 0
70 1682 num 4 169.66 933 0
70 1691 num 5 178.16 1 0
70 1706 num 6 184.82 687 0
70 1712 num 0 200.94 2086 0
70 1712 num 7 195.19 1130 0
70 669 num 7 131.06 70514 0
70 689 num 3 153.03 93508 0
70 700 _num_6 222.23 217928 0
70 703 num 2 219.68 219880 0
70 705 num 5 224.66 218964 0
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Appendix

70 712 num 9
70 731 num 0
70 735 num 4
70 738 num 1
70 743 num_8
80 1552 num 2
80 1566 num 6
80 1569 num 3
80 1569 num 4
80 1573 num 5
80 1577 num 1
80 1584 num 0
80 1592 num_ 9
80 1602 num 8
80 1627 num 7
80 2169 num 4
80 2200 num_8
80 2202 num 5
80 2203 num_ 2
80 2207 num 1
80 2215 num 7
80 2217 num O
80 2220 num 3
80 2232 num 9
80 2258 num_ 6
80 881 num 3
80 907 num 7
80 910 num 4
80_912 num_9
80 928 num 1
80 938 num 0
80 941 num 2
80 949 num 6
80 973 num 8
80 973 num 5
85 1039 num 1
85 1047 num_ 0
85 1052 num_8
85 1055 num 7
85 1057 num 4
85 1059 num 5
85 1072 _num_ 6
85 1075 num 3
85 1088 num_ 9
85 1093 num 2
85 1735 num 3
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147.74
114.15
181.69
192.82
201.14
271.42
315.68
304.52
337.17
370.18
671.43
320.1
271.73
322.81
285.43
376.89
443.72
426.54
416.84
391.18
412.24
418.92
425.44
430.14
397.22
464.2
1082.97
1014.08
1003.83
805.54
439.29
1194.16
554.43
1048.23
716.24
1397.86
1398.03
1554.44
1669.08
1655.51
1712.38
1633.06
1759.35
1487.66
1315.8
916.62

81851
28312
125283
155971
154699
12005
48192
30941
45790
101015
399716
52674
19435
59367
38350
33126
85728
36696
63821
51591
72909
55786
54882
50889
57054
281140
735497
646275
647716
543582
251330
821187
419268
632592
401493
750749
691090
904033
1017078
980675
1043099
914120
1083605
777035
680837
434951
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Appendix

85 1763 num 4
85 1771 num 1
85 1781 num 7
85 1785 num 5
85 1804 num_ 6
85 1818 num_8
85 1823 num 0
85 1872 num 9
85 1889 num 2
85 2452 num 7
85 2453 num 0
85 2471 num 9
85 2472 num 6
85 2480 num 5
85 2485 num_ 2
85 2507 num 1
85 2512 num 4
85 2521 num 3
85 2524 num 8
90 1158 num 2
90 1168 num 9
90 1173 num O
90 1177 _num 5
90 1199 num 7
90 1200 _num 1
90 1204 num 8
90 1206 _num_6
90 1214 num 3
90 1218 num 4
90 1985 num 9
90 1992 num 4
90 1993 num 3
90 1994 num 5
90 2003 _num_2
90 2010 _num_ 6
90 2019 num 8
90 2030 _num O
90 2036 _num 7
90 2042 num 1
90 2739 num 6
90 2772 num 2
90 2781 num 5
90 2806 num_3
90 2813 num 7
90 2817 num 4
90 2818 num 8
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406.75
736.51
462.01
813.81
665.14
514.9
605.26
631.41
515.8
563.29
541.56
654.22
537.6
560.12
561.57
598.94
609.03
580.97
633.65
2173.63
1667.07
2600.79
2528.04
2464.71
2169.96
2154.05
2072.26
2334.79
2411.08
1230.57
1506.72
1449.59
1189.45
1378.19
1337.63
1012.32
838.49
775.76
1035.82
876.49
747.78
908.45
806.25
963.36
935.41
776.32

23907
230411
52378
253742
157692
280091
400896
192195
297740
49992
20667
136096
32407
48092
125963
60041
81545
78467
99988
1177766
716350
1806907
1705655
1629450
1082383
1048830
1010182
1394870
1506214
499539
527780
503979
642058
642642
635474
245826
423694
409359
490698
92703
21487
115052
70188
178884
155164
39622
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Appendix

90 2830 _num_9 781.67 50868 0

90 2846 num 0 775.07 60745 0

90 2853 num 1 660.19 16268 0

adjnoun.graph 103.16 139 0

. chesapeake.graph 2.55 1 0
inst_DIMACS dolphins.graph 3.93 1 0
football.graph 50.05 1 0

jazz.graph 3600.0 35632 0

karate.graph 1.83 1 0

lesmis.graph 2.79 1 0

polbooks.graph 21.94 1 0

adjnoun.graph comp 23.28 1 0

. chesapeake.graph comp 0.16 1 0

comp_ dimacs dolphins.graph comp 5.58 1 0
football.graph _comp 2198.85 522907 0

jazz.graph _comp 2390.87 114206 0

karate.graph _comp 0.09 1 0

lesmis.graph comp 4.11 1 0

polbooks.graph comp 22.54 1 0
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