Decomposition methods for quadratic programming

Lucas Létocart
LIPN - CNRS - Univ. Sorbonne Paris Nord
ROA
2022

Context

- In this work we aim at investigating a family of decompositions for Quadratic Problems (QPs).
- A generic QP reads as follows:

Quadratic Problem (BQP)

$$
(Q P) \quad \max \left\{f(x)=x^{\top} Q x+L^{\top} x \mid A x \leq b, x \in X\right\} .
$$

- $Q \in \mathbb{Q}^{n \times n}$ and not restricted to be convex.
- $L \in \mathbb{Q}^{n}$.
- $X \subseteq \mathbb{R}^{n}$ or $X \subseteq \mathbb{N}^{n}$.

Dantzig-Wolfe decomposition for Binary Quadratic Problems (BQPs) Alberto Ceselli (Univ. Milano) and Emiliano Traversi (Univ. Paris 13)

A generic BQP reads as follows:
Binary Quadratic Problem (BQP)

$$
(B Q P) \quad \max \left\{f(x)=x^{\top} Q x+L^{\top} x \mid A x \leq b, x \in\{0,1\}\right\} .
$$

- Let $A^{\prime}, A^{\prime \prime}$ and $b^{\prime}, b^{\prime \prime}$ be a generic row partition of the constraint matrix A and of the rhs vector b.
- The continuous relaxation of (BQP) can be strengthened by convexifying the constraints $A^{\prime \prime} x \leq b^{\prime \prime}$ (i.e. imposing $\left.x \in \operatorname{conv}\left\{A^{\prime \prime} x \leq b^{\prime \prime}, x \in\{0,1\}\right\}\right)$.

Simplicial decomposition for Convex Quadratic Problems

(CQPs) Enrico Bettiol (Univ. Paris 13), Francesco Rinaldi (Univ. Padova), Emiliano Traversi (Univ. Paris 13)

A generic CQP reads as follows:
Convex Quadratic Problem (CQP)

$$
(C Q P) \quad \max \left\{f(x)=x^{\top} Q x+L^{\top} x \mid A x \leq b, x \in \mathbb{R}^{n}\right\} .
$$

- $Q \in \mathbb{Q}^{n \times n}$ convex.
- $L \in \mathbb{Q}^{n}$.
- The problem is decomposed keeping the original objective function in the master and the original constraints in the pricing.

Dantzig-Wolfe reformulation and Completely Positive relaxation for binary QCQPsEnrico Bettiol (Univ. Paris 13), Immanuel Bomze (Univ. of Vienna), Francesco Rinaldi (Univ. Padova), Emiliano Traversi (Univ. Paris 13)

A generic QCQP reads as follows:
Extended formulation

$$
\langle M, X\rangle:=\operatorname{Tr}\left(M^{\top} X\right) .
$$

$$
\min \langle Q, X\rangle
$$

$$
\text { s. t. }\left\langle A_{i}, X\right\rangle \leq b_{i}, \quad \forall i=1 \ldots, m
$$

$$
\begin{aligned}
& X=x x^{\top} \\
& x \in\{0,1\}^{n}
\end{aligned}
$$

DWR with quadratic master problem I

$\left(B Q P_{D W R\left(A^{\prime \prime}\right)}\right) \max f(x)$

$$
\begin{array}{llll}
\text { s.t. } & A^{\prime} x \leq b^{\prime} & {[\alpha]} \\
& x_{j}=\sum_{p \in \mathcal{P}_{\text {DWR }\left(A^{\prime \prime}\right)}} x_{j}^{p} \lambda^{p} \quad j=1, \ldots, n & {\left[\tau_{j}\right]} \tag{1}
\end{array}
$$

$$
\begin{array}{lr}
\sum_{p \in \mathcal{P}_{\text {DWR }\left(A^{\prime \prime}\right)}} \lambda^{p}=1 & \\
x_{j} \in\{0,1\} & j=1, \ldots, n \\
\lambda^{p} \geq 0 & p \in \mathcal{P}_{\operatorname{DWR}\left(A^{\prime \prime}\right)}
\end{array}
$$

DWR with quadratic master problem II

if f is convex and with $\mathcal{P}_{D W R\left(A^{\prime \prime}\right)}$ being the set of extreme points of $\operatorname{conv}\left\{x \mid A^{\prime \prime} x \leq b^{\prime \prime}, x \in\{0,1\}\right\}$.

DWR with quadratic master problem III

Convexification of the objective function
If the objective function is non convex, we need to replace $f(x)$ by an equivalent convex objective function $f^{\prime}(x)$.
$\left(B Q P_{D W R\left(A^{\prime \prime}\right)}\right) \quad \max f^{\prime}(x)$

$$
\begin{array}{llll}
\text { s.t. } & A^{\prime} \times \leq b^{\prime} & {[\alpha]} \tag{7}\\
& x_{j}=\sum_{p \in \mathcal{P}_{\text {DWR }\left(A^{\prime \prime}\right)}} x_{j}^{p} \lambda^{p} \quad j=1, \ldots, n & {\left[\tau_{j}\right]}
\end{array}
$$

$$
\begin{equation*}
\sum_{p \in \mathcal{P}_{\text {DWR }\left(A^{\prime \prime}\right)}} \lambda^{p}=1 \tag{10}
\end{equation*}
$$

[β]

$$
\begin{equation*}
x_{j} \in\{0,1\} \tag{11}
\end{equation*}
$$

$$
j=1, \ldots, n
$$

$$
\begin{equation*}
\lambda^{p} \geq 0 \tag{12}
\end{equation*}
$$

$$
p \in \mathcal{P}_{D W R\left(A^{\prime \prime}\right)}
$$

DWR with quadratic master problem IV

- Variables λ are partially enumerated by solving an additional pricing problem.

Let α, τ and β being the dual variables associated to the constraints in the continuous relaxation of $\left(B Q P_{D W R\left(A^{\prime \prime}\right)}\right)$.

Pricing problem

$$
\begin{array}{rll}
\left(\Pi_{B Q P_{D W R\left(A^{\prime \prime}\right)}}\left(\tau^{*}, \beta^{*}\right)\right) \quad \max & \tau^{* \top} x+\beta^{*} \\
\text { s.t. } & A^{\prime \prime} x \leq b^{\prime \prime} \\
& x_{j} \in\{0,1\} \quad j=1, \ldots, n \tag{15}
\end{array}
$$

If the optimal value of $\left(\Pi_{B Q P_{D W R\left(A^{\prime \prime}\right)}}\left(\tau^{*}, \beta^{*}\right)\right)$ is greater than zero, then a column with positive reduced cost is found and added to the master.

DWR with quadratic master problem V

- (BQP $\left.{ }_{D W R}\right) \Rightarrow f(x)$ is quadratic, the pricing problem is (binary) linear.

DWR with quadratic pricing problem I

The objective function can be rewritten directly in terms of the λ variables by introducing $f(\lambda)=\sum_{p \in \mathcal{P}_{\operatorname{DWR}\left(A^{\prime \prime}\right)}} c_{p} \lambda_{p}$ with

$$
c_{p}=f\left(x_{p}\right)=x_{p}^{\top} Q x_{p}+L^{\top} x_{p} .
$$

$\overline{D W R}$ of constraints $A^{\prime \prime}$

$$
\begin{equation*}
\left(B Q P_{\overline{D W R}\left(A^{\prime \prime}\right)}\right) \quad \max \sum_{p \in \mathcal{P}_{\text {DWR }\left(A^{\prime \prime}\right)}} c_{p} \lambda_{p} \tag{16}
\end{equation*}
$$

$$
\text { s.t. } \quad(8)-(12)
$$

DWR with quadratic pricing problem II

Pricing problem

$$
\begin{array}{rll}
\left(\Pi_{B Q P_{\overline{D W R}\left(A^{\prime \prime}\right)}}\left(\tau^{*}, \beta^{*}\right)\right)(& \max & x^{\top} Q x+L^{\top} x+\tau^{* \top} x+\beta^{*} \\
& \text { s.t. } & A^{\prime \prime} x \leq b^{\prime \prime} \\
& x_{j} \in\{0,1\} & j=1, \ldots, n \tag{19}
\end{array}
$$

where Q is not required to be convex.

- $\left(B Q P_{\overline{D W R}}\right) \Rightarrow f(\lambda)$ is linear, the pricing problem is (binary) quadratic.

DWR with quadratic pricing problem III

The objective function can still be modified using the convexified objective function $f^{\prime}(x)$.
The pricing reduces to the following quadratic problem:
Pricing problem

$$
\begin{array}{rll}
\left(\Pi_{B Q P_{\overline{D W R}\left(A^{\prime \prime}\right)}}\left(\tau^{*}, \beta^{*}\right)\right) \max & f^{\prime}(x)+\tau^{* \top} x+\beta^{*} \\
& \text { s.t. } & A^{\prime \prime} x \leq b^{\prime \prime} \\
& x_{j} \in\{0,1\} & j=1, \ldots, n
\end{array}
$$

(kQKP) Formulation I

Notations

n : number of items
a_{j} : weight of item $j(j=1, \ldots, n)$
b : capacity of the knapsack
$c_{i j}$: profit associated with the selection of items i and $j(i, j=1, \ldots, n)$ k : number of items to be filled in the knapsack

Assumptions
$c_{i j} \in \mathbb{N} i, j=1, \ldots, n, a_{j} \in \mathbb{N} j=1, \ldots, n, b \in \mathbb{N}$
$\max _{j=1, \ldots, n} a_{j} \leq b<\sum_{j=1}^{n} a_{j}$
$k \in\left\{1, \ldots, k_{\max }\right\}$

(kQKP) Formulation II

Mathematical formulation

$$
(\mathrm{kQKP})\left\{\begin{array}{l}
\max f(x)=\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i j} x_{i} x_{j} \\
\text { s.t. } \quad \sum_{j=1}^{n} a_{j} x_{j} \leq b \\
\sum_{j=1}^{n} x_{j}=k \tag{2}\\
\\
x_{j} \in\{0,1\} \quad
\end{array}\right.
$$

- without constraint (2): the 0-1 quadratic knapsack problem (QKP)
- without constraint (1): the k-cluster problem

Reformulations for (kQKP)

Reformulation of the objective function $f(x)$
QCR/MIQCR Method
$\left(f(x)\right.$ can be reformulated by exploiting the property $x^{2}=x$ and the constraints) \Downarrow convex problem

Reformulation of the feasible region $\{x \mid A x \leq b, x \in\{0,1\}\}$
Dantzig-Wolfe Reformulation
(a subset of constraints is substituted by its convex hull)
\Downarrow
tighter formulation

The application of the QCR method leads to the following reformulation of (kQKP):

$$
\begin{array}{rlr}
\left(k Q K P^{\text {conv }}\right) & \max & f_{u, v}(x) \\
\text { s.t. } & \sum_{j=1}^{n} a_{j} x_{j} \leq b & \\
& \sum_{j=1}^{n} x_{j}=k & \\
& x_{j} \in\{0,1\} & j=1, \ldots, n \tag{26}
\end{array}
$$

with

$$
\begin{equation*}
f_{u, v}(x)=f(x)-\sum_{i=1}^{n} u_{i}\left(x_{i}^{2}-x_{i}\right)-v\left(\sum_{j=1}^{n} x_{j}-k\right)^{2} \tag{27}
\end{equation*}
$$

The application of the MIQCR method leads to the following reformulation of (kQKP):

$$
\begin{array}{rlr}
\left(k Q K P^{\text {impr. conv }}\right) & \max & f_{u, v, P, N}(x, y) \\
& \text { s.t. } & \sum_{j=1}^{n} a_{j} x_{j} \leq b \\
& \sum_{j=1}^{n} x_{j}=k & \\
& y_{i j} \leq x_{i}, y_{i j} \leq x_{j} & i, j=1, \ldots, n \\
& y_{i j} \geq 0, y_{i j} \geq x_{i}+x_{j}-1 & i, j=1, \ldots, n \\
& x_{j} \in\{0,1\} & j=1, \ldots, n
\end{array}
$$

with

$$
f_{u, v, P, N}(x, y)=x^{T}(C-\operatorname{Diag}(u)-P-N) x+u^{T} x+\sum_{i, j=1}^{n}\left(P_{i j}+N_{i j}\right) y_{i j}-v\left(\sum_{j=1}^{n} x_{j}-k\right)^{2}
$$

DWR with a quadratic master problem

- PRO : linear pricing problem.
- CON : the objective function must be convex. \Rightarrow DWR must be applied to ($\left.k Q K P^{\text {conv }}\right)$ or to ($k Q K P^{\text {impr. conv }}$).

By applying one of the two convexification methods, we always obtain a convex quadratic (binary) optimization problem, whose objective function is of the form:

$$
\max \sum_{i=1}^{n} \sum_{j=1}^{n} \tilde{q}_{i j} x_{i} x_{j}+\sum_{j=1}^{n} \tilde{I}_{j} x_{j}+\sum_{i=1}^{n} \sum_{j=1}^{n} \tilde{w}_{i j} y_{i j}
$$

Reformulation of ($\left.k Q K P^{\text {conv }}\right)$ I

$$
\begin{align*}
\left(k Q K P_{\operatorname{DWD}(\Omega)}^{\mathrm{conv}}\right) \max & \sum_{i=1}^{n} \sum_{j=1}^{n} \tilde{q}_{i j} x_{i} x_{j}+\sum_{j=1}^{n} \tilde{l}_{j} x_{j}+\sum_{i=1}^{n} \sum_{j=1}^{n} \tilde{w}_{i j} y_{i j} \tag{34}\\
\text { s.t. } & \sum_{j=1}^{n} a_{j} x_{j} \leq b \tag{35}\\
& \sum_{j=1}^{n} x_{j}=k \tag{36}\\
& x_{j} \in\{0,1\} \tag{37}\\
& y_{i j}=x_{i} x_{j} \tag{38}\\
& x_{j}=\sum_{p \in \mathcal{P}} x_{j}^{p} \lambda^{p} \tag{39}\\
& y_{i j}=\sum_{p \in \mathcal{P}} y_{i j}^{p} \lambda^{p} \tag{40}\\
& \sum_{p \in \mathcal{P}} \lambda^{p}=1 \tag{41}\\
& \lambda^{p} \geq 0
\end{align*}
$$

$$
p \in \mathcal{P}
$$

Reformulation of $\left(k Q K P^{\text {conv }}\right)$ II

Constraints (47), (48) and (49) impose x and y to belong to a given polyhedron Ω, whose set of extreme points is denoted by \mathcal{P}. In our case, the following choices of Ω are possible:

$$
\begin{array}{ll}
\Omega_{\text {knap }} & =\text { conv. hull }\left\{(x, y): \sum_{j=1}^{n} a_{j} x_{j} \leq b, y_{i j}=x_{i} x_{j}, i, j=1, \ldots, n, x_{j} \in\{0,1\}, j=1, \ldots, n\right\} \\
\Omega_{\text {card }} & =\text { conv. hull }\left\{(x, y): \sum_{j=1}^{n} x_{j}=k, y_{i j}=x_{i} x_{j}, i, j=1, \ldots, n, x_{j} \in\{0,1\}, j=1, \ldots, n\right\} \\
\Omega_{\text {knap, card }} \quad=\text { conv. hull }\left\{(x, y): \sum_{j=1}^{n} a_{j} x_{j} \leq b, \sum_{j=1}^{n} x_{j}=k, y_{i j}=x_{i} x_{j}, i, j=1, \ldots, n, x_{j} \in\{0,1\}, j=1, \ldots, n\right\}
\end{array}
$$

with $\mathcal{P}_{\text {knap }}, \mathcal{P}_{\text {card }}, \mathcal{P}_{\text {knap, card }}$ being the corresponding sets of extreme points.

Other reformulation of ($k Q K P^{c o n v}$) after variables substitutions

$$
\begin{align*}
& \left.{ }_{(k Q K P \operatorname{DWD}(\Omega)}^{\operatorname{conv}}\right) \max \quad \sum_{p \in \mathcal{P}}\left(\sum_{i=1}^{n} \sum_{j=1}^{n} \tilde{q}_{i j} x_{i}^{p} x_{j}^{p}\right) \lambda^{p}+\sum_{p \in \mathcal{P}}\left(\sum_{j=1}^{n} \tilde{i}_{j} x_{j}^{p}\right) \lambda^{p}+\sum_{p \in \mathcal{P}}\left(\sum_{i=1}^{n} \sum_{j=1}^{n} \tilde{w}_{i j} y_{i j}^{p}\right) \lambda^{p} \tag{42}\\
& \text { s.t. } \quad \sum_{p \in \mathcal{P}}\left(\sum_{j=1}^{n} a_{j} x_{j}^{p}\right) \lambda^{p} \leq b \tag{43}\\
& \sum_{p \in \mathcal{P}}\left(\sum_{j=1}^{n} x_{j}^{p}\right) \lambda^{p}=k \tag{44}\\
& x_{j} \in\{0,1\} \tag{45}\\
& j=1, \ldots, n \\
& y_{i j} \leq x_{i}, y_{i j} \leq x_{j}, y_{i j} \geq x_{i}+x_{j}-1, y_{i j} \geq 0 \tag{46}\\
& i, j=1, \ldots, n \\
& j=1, \ldots, n \tag{47}\\
& i, j=1, \ldots, n \\
& y_{i j}=\sum_{p \in \mathcal{P}} y_{i j}^{p} \lambda^{p} \tag{48}\\
& \sum_{p \in \mathcal{P}} \lambda^{p}=1 \tag{49}\\
& \lambda^{p} \geq 0
\end{align*}
$$

Formulations Overview

			Convexification		
			orig	conv	impr conv
Strenthening	quad master	knap	NCM	$k Q K P_{\mathrm{DWD}(k n a p)}^{\text {conv }}$	$k Q K P_{\mathrm{DWD}(k n a p)}^{\text {impr. conv }}$
		card	NCM	IPP	IPP
		knap+card	NCM	$k Q K P_{\mathrm{DWD}(\text { card }, k n a p)}^{\mathrm{conv}}$	$k Q K P_{\mathrm{DWD}}^{\mathrm{impr} . \text { conv }(c a r d, k n a p)}$
	lin master	knap	$k Q K P_{\overline{\operatorname{DWD}}(\text { knap })}$	$k Q K P \frac{\mathrm{conv}}{\mathrm{DWD}}{ }_{\text {knap })}$	$k Q K P \frac{\text { impr. conv }}{\overline{\mathrm{DWD}}(k n a p)}$
		card	$k Q K P_{\overline{\overline{D W D}} \text { (card) }}$	$k Q K P \frac{\mathrm{conv}}{\mathrm{DWD}(c a r d)}$	$k Q K P_{\overline{\mathrm{DWD}}(\text { card })}^{\mathrm{impr} \text { conv }}$
		knap+card	POP	POP	POP

DWR applied to (kQKP)

Hierarchy of reformulations

Experimental environment

- Carried out on an Intel i7-2600 quad core 3.4 GHz with 8 GB of RAM, using only one core
- CSDP integrated into COIN-OR for solving SDP programs
- CPLEX 12.6.2 with default settings
- Average values over 10 instances
- $n \in\{50,60, \ldots, 100\}$
- $k \in[1, n / 4], b \in[50,30 k], a_{j}, c_{i j} \in[1,100]$

n	$\delta(\%)$	($\left.k Q K P^{\text {conv }}\right)$		($k Q K P^{\text {impr conv }}$)		$\left(k Q K P_{\mathrm{DWD}(\mathrm{knap})}^{\mathrm{conv}}\right)$		$\left(k Q K P_{\mathrm{DWD}(\mathrm{knap}, \text { card })}^{\mathrm{impr} \text { conv }}\right)$	
		Gap	Time	Gap	Time	Gap	Time	Gap	Time
50	25	102.65	0.02	30.89	1.05	38.36	1.97	29.15	9.30
	50	150.56	0.06	25.25	0.94	31.05	3.04	23.66	9.71
	75	230.29	0.12	105.16	1.09	114.26	1.55	100.88	8.06
60	25	60.76	0.04	130.92	0.04	149.25	1.55	126.07	10.89
	50	93.73	0.11	15.08	2.61	19.48	3.86	14.19	19.05
	75	212.67	0.25	141.08	2.09	151.22	1.67	136.22	8.99
70	25	130.23	0.06	38.03	5.11	46.84	4.82	36.52	33.25
	50	177.07	0.19	72.81	4.27	80.44	6.83	70.77	54.37
	75	382.36	0.44	56.26	3.45	63.77	3.25	54.57	22.19
80	25	111.24	0.08	34.05	7.98	41.90	5.64	32.87	71.19
	50	271.64	0.26	55.44	9.59	64.09	4.67	53.65	43.98
	75	313.33	0.66	83.58	7.42	92.31	4.64	81.47	43.42
90	25	118.45	0.13	112.80	13.75	129.31	4.74	109.63	44.66
	50	248.57	0.48	83.15	12.38	92.19	4.52	81.65	66.75
	75	388.68	1.06	37.90	5.63	42.13	6.95	37.12	102.54
100	25	169.43	0.16	73.90	23.49	82.78	6.80	72.72	99.90
	50	145.72	0.49	17.38	28.06	21.83	8.58	17.19	219.77
	75	260.26	1.25	21.67	18.37	27.22	6.23	21.50	158.30
Avg	25	115.46	0.08	70.10	8.57	81.41	4.25	67.83	44.86
	50	181.22	0.26	44.85	9.64	51.51	5.25	43.52	68.94
	75	297.93	0.63	74.28	6.34	81.82	4.05	71.96	57.25
Avg		198.20	0.32	63.08	8.18	71.58	4.52	61.10	57.02

The best reformulation I

$$
\begin{array}{llll}
k Q K P \frac{\text { conv }}{\mathrm{DWD}(k n a p)} \max & \sum_{p \in \mathcal{P}_{\text {knap }}} c_{u^{*}, \nu^{*}}^{p} \lambda^{p} & \\
\text { s.t. } & x_{j}=\sum_{p \in \mathcal{P}_{\text {knap }}} x_{j}^{p} \lambda^{p} \quad j=1, \ldots, n \quad\left[\phi_{j}\right] \\
& \sum_{p \in \mathcal{P}_{\text {knap }}} \sum_{j=1}^{n} x_{j}^{p} \lambda^{p}=k & & {[\gamma]} \\
& \sum_{p \in \mathcal{P}_{\text {knap }}} \lambda^{p}=1 & {[\theta]} \\
& \lambda^{p} \geq 0 & p \in \mathcal{P}_{\text {knap }}
\end{array}
$$

with γ and θ the dual variables.

The best reformulation II

Denoting as γ^{*} and θ^{*} the optimal dual variables of a restricted master solution during a column generation iteration, the pricing problem can be written as follows:

$$
\begin{array}{ll}
\max & f_{u^{*}, \nu^{*}}(x)+\sum_{i=1}^{n} \phi_{i}^{*} x_{i}+\gamma^{*}+\theta^{*} \\
\text { s.t. } & \sum_{j=1}^{n} a_{j} x_{j} \leq b \\
& x_{j} \in\{0,1\} \\
j=1, \ldots, n
\end{array}
$$

Outline

(1) Introduction
(2) Dantzig Wolfe Reformulation
(3) Simplicial Decomposition
4. Dantzig-Wolfe reformulation and Completely Positive relaxation for binary QCQPs
(5) Block decomposition
(6) Results and conclusions

Settings

The problem

$$
\min f(x)=x^{T} Q x+c^{T} x
$$

s.t. $x \in X$.
where $x \in \mathbb{R}^{n}, X \subset \mathbb{R}^{n}$.

Hypotheses:

- $Q \in \mathbb{R}^{n \times n}$ is positive semidefinite and dense.
- X is a polytope.
- High number of variables and low number of constraints.

A column generation method

Simplicial Decomposition (SD)

- Master problem: original objective function, optimized over a simplex.
- Pricing problem: linear objective function, original domain.
- All the original constraints are in the pricing.
- Finite convergence.

The master problem

At a k-th iteration, k vertices $x_{1}, \ldots x_{k} \in X$ are provided. $k \ll n$.
Master problem

$$
\begin{array}{ll}
\min & x^{T} Q x+c^{T} x \\
\text { s. t. } & x=\sum_{i=1}^{k} \omega_{i} x_{i} \\
& \sum_{i=1}^{k} \omega_{i}=1 \\
& \omega_{i} \geq 0, \quad \forall i=1, \ldots, k
\end{array}
$$

The pricing problem

Pricing problem

$$
\begin{array}{cl}
\min & \nabla f\left(x_{m}\right)^{T} x \\
\text { s. t. } & x \in X .
\end{array}
$$

- Linearization of the original objective function in the optimal point x_{m} of the master.
- Same dimension as the original problem.
- Same constraints as the original problem.

Master: SD - ACDM

Adapted Conjugate Direction Method (ACDM)
Main ideas:

- Based on the conjugate Directions Method.
- Reuse the informations from previous iteration.
- Exploit the special structure of the simplices generated.

The Conjugate Direction Method

- Two directions $d_{1}, d_{2} \in \mathbb{R}^{k}$ are conjugated with respect to the positive definite quadratic matrix $Q \in \mathbb{R}^{k \times k}$ if: $d_{1}^{T} Q d_{2}=0$.
- If we have a set of k conjugate directions $D=\left\{d_{1}, \ldots, d_{k}\right\}$, the minimum of $f(x)=x^{T} Q x+c^{T} x$ can be found in k steps by optimizing in sequence over the k conjugate directions.

Master: SD - ACDM

Adapted Conjugate Direction Method (ACDM)

- Reuse the information from the previous conjugate directions.
- Exploit the special structure of the simplices generated.

Main Steps

- At iteration k, we have a set of $k-1$ conjugate directions D from the previous iteration.
- The pricing provides a new point x_{k} (i.e., a new dimension).
- Find a new direction d_{k} connecting x_{k-1} with x_{k} and conjugate it w.r.t. the set D.
- Find new optimal point along this direction.

PRO: Most of the times, only one step.
CON: If the obtimum is on a face, all the directions must be recalculated

Master: SD - FGPM

A Fast Gradient Projection Method, (FGPM)
A more general method based on the projected gradient approach. Warmstart: start in the previous optimal point. Iteratively, given the k -th point $\tilde{x_{k}}$:

- compute the gradient $\nabla f\left(\tilde{x}_{k}\right)$;
- project the point $y_{k}=\tilde{x_{k}}-s \nabla f\left(\tilde{x_{k}}\right)$ onto the simplex;
- if $y_{k} \neq \tilde{x}_{k}$, find α_{k} with an Armijo-like rule;
- compute $x_{k+1}=\tilde{x_{k}}+\alpha_{k}\left(p\left(y_{k}\right)-\tilde{x_{k}}\right)$.

Master solvers

Pricing improvements I

Adding cuts

- Reduce the search region;
- exclude vectors that give ascent directions with respect to the previous partial optima;
- add cuts of the form

$$
\nabla f\left(x_{m}^{i}\right)^{T}\left(x-x_{m}^{i}\right) \leq 0, \quad \exists i \in\{1, \ldots, k-1\}
$$

Early stopping

- Stop the computation before reaching the optimum, but ensure a descent direction: generate the point $\overline{x_{k}}$ s. t.

$$
\nabla f\left(x_{k}\right)^{T}\left(\overline{x_{k}}-x_{k}\right) \leq-\varepsilon<0
$$

Pricing improvements II

Sifting

Consider the Sifting options for the Cplex solver in addition to the default primal simplex.
Sifting is a column generation algorithm:

- it solves the problem with a (small) subset of columns;
- it evaluates the reduced costs of the remaining columns;
- columns that violate the optimality condition are inserted.

Problem instances

Portfolio optimization problem
(Markowitz's formulation)
(Literature data)
$\min f(x)=x^{\top} \Sigma x$
s. t. $r^{\top} x \geq \mu$,

$$
\begin{array}{r}
e^{T} x=1 \\
x \geq 0
\end{array}
$$

$\min f(x)=x^{T} Q x+c^{T} x$
s. t. $A x \geq b$,

$$
0 \leq x \leq 1
$$

General quadratic problems (Randomly generated)

Problem instances

Quadratic shortest path problems
(Literature and randomly generated data)

Multidimensional quadratic knapsack problem (Literature and randomly generated data)

$$
\min f(x)=x^{\top} Q x+c^{\top} x
$$

s. t. $\sum_{e \in \delta^{+}(s)} x_{s}=1$,

$$
\sum_{e \in \delta^{+}(v)} x_{v}-\sum_{e \in \delta^{-}(v)} x_{v}=0, \quad \forall v \neq s, t
$$

$$
\sum_{e \in \delta^{-}(t)} x_{t}=1
$$

$\min f(x)=x^{\top} Q x+c^{\top} x$
s. t. $\quad \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}, \quad \forall i=1,2, \ldots, m$

$$
0 \leq x \leq 1
$$

Instances

- Portfolio Optimization (PO): 40 instances, dimension 225 to 10980.
- General quadratic:
- small m (GS): 450 instances:

$$
n=2000 \text { to } 10000, m=2 \text { to } 42
$$

- large m (GL): 750 instances:

$$
n=2000 \text { to } 10000, m=n / 32 \text { to } n / 2
$$

- Quadratic shortest path problems : grid and random shortest path instances (1000 $\leq n \leq 10000$) : 102 instances.
- Multidimensional quadratic knapsack problem : 54 instances:
- ORLib dataset and GK dataset ($n \geq 1000$).
- Randomly generated instances ($5000 \leq n \leq 10000$).

Hardware and software
(1) IBM Ilog Cplex v.12.6.2.

Results: Portfolio optimization problem I

Figure: Performance profile PO, pricing options

Results: Portfolio optimization problem II

Figure: Performance profile PO, master solvers

Results: General quadratic problems I

Figure: Performance profile GS, pricing options

Results: General quadratic problems II

Figure: Performance profile GS, master solvers

Results: General quadratic problems III

Figure: Performance profile GL, pricing options

Results: General quadratic problems IV

Figure: Performance profile GL, master solvers

Results: Quadratic shortest path problem I

Figure: Performance profiles for grid shortest path instances - pricing options (SD FGPM).

Results: Quadratic shortest path problem II

Figure: Performance profiles for grid shortest path instances - master solvers.

Results: Quadratic shortest path problem III

Figure: Performance profile for random shortest path instances - pricing options (SD ACDM).

Results: Quadratic shortest path problem IV

Figure: Performance profile for random shortest path instances - master solvers.

Results: Multidimensional quadratic knapsack problem I

Default
Cuts
Early Stopping
Cuts+Early Stopping
Network
Network+Cuts
Network + Early Stopping
Network+Cuts+Early Stopping
Cplex

Figure: Performance profile for multidimensional knapsack instances - pricing options (SD ACDM).

Results: Multidimensional quadratic knapsack problem II

Figure: Performance profile for multidimensional knapsack instances - master solvers.

The model

Generic formulation

$$
\begin{aligned}
\min & f(x)=x^{\top} \bar{Q} x+q^{\top} x \\
\text { s. t. } & x^{\top} \bar{A}_{i} x+a_{i}^{\top} x \leq b_{i}, \quad \forall i=1 \ldots, m \\
& x \in\{0,1\}^{n} .
\end{aligned}
$$

$$
\begin{gathered}
x \in \mathbb{R}^{n}, n \in \mathbb{N}, \\
\bar{Q}, \overline{A_{i}} \in \mathcal{S}^{n} \\
q, a_{i} \in \mathbb{R}^{n} \\
b_{i} \in \mathbb{R},
\end{gathered}
$$

The model

Generic formulation

$$
\begin{array}{rlr}
\min f(x) & =x^{\top} \bar{Q} x+q^{\top} x & x \in \mathbb{R}^{n}, n \in \mathbb{N}, \\
\text { s. t. } \quad x^{\top} \bar{A}_{i} x+a_{i}^{\top} x \leq b_{i}, \quad \forall i=1 \ldots, m & \bar{Q}, \bar{A}_{i} \in \mathcal{S}^{n} \\
& x \in\{0,1\}^{n} . & q, a_{i} \in \mathbb{R}^{n} \\
& b_{i} \in \mathbb{R},
\end{array}
$$

Compact formulation

Since $x_{i}^{2}=x_{i}$:
Let $Q=\bar{Q}+\mathrm{I} q, A_{i}=\bar{A}_{i}+\mathrm{I} a_{i} \rightarrow$

$$
\min x^{\top} Q x
$$

s. t. $\quad x^{\top} A_{i} x \leq b_{i}, \quad \forall i$
$x \in\{0,1\}^{n}$.

Matrix space

The problem can be written in matrix form:

Extended formulation

$$
\langle M, X\rangle:=\operatorname{Tr}\left(M^{\top} X\right) .
$$

$$
\begin{array}{ll}
\min & \langle Q, X\rangle \\
\text { s. t. } & \left\langle A_{i}, X\right\rangle \leq b_{i}, \quad \forall i=1 \ldots, m \\
& X=x x^{\top} \\
& x \in\{0,1\}^{n}
\end{array}
$$

Relaxing constraint
We relax the constraint

$$
X=x x^{T}
$$

and let X be in the convex hull of 0-1 rk-1 matrices:

$$
\begin{aligned}
& X=\sum_{p=1}^{2^{n}} x_{p} x_{p}^{\top} \lambda_{p} \\
& \sum_{p=1}^{2^{n}} \lambda_{p}=1 \\
& \lambda \geq 0 \\
& x_{p} \in\{0,1\}^{n} .
\end{aligned}
$$

Relaxing constraint
We relax the constraint

$$
X=x x^{T}
$$

and let X be in the convex hull of 0-1 rk-1 matrices:

$$
\begin{aligned}
& X=\sum_{p=1}^{2^{n}} x_{p} x_{p}^{\top} \lambda_{p} \\
& \sum_{p=1}^{2^{n}} \lambda_{p}=1 \\
& \lambda \geq 0 \\
& x_{p} \in\{0,1\}^{n} .
\end{aligned}
$$

Definition: (Restricted) Boolean Quadric Polytope (BQP) of size n

$$
B Q P_{n}=\operatorname{Conv}\left\{X \in \mathbb{R}^{n \times n} \mid X=x x^{\top}, x \in\{0,1\}^{n}\right\}
$$

Some relations

The CP and PSD cones:
We recall that the Completely Positive (CP) and the Positive Semi Definite (PSD) cones are respectively:

$$
\begin{aligned}
C P_{n} & =\operatorname{Conv}\left\{X \in \mathbb{R}^{n \times n} \mid X=x x^{\top}, x \in \mathbb{R}^{n}, x \geq 0\right\} \\
P S D_{n} & =\operatorname{Conv}\left\{X \in \mathbb{R}^{n \times n} \mid X=x x^{\top}, x \in \mathbb{R}^{n}\right\}
\end{aligned}
$$

Then,

$$
B Q P_{n} \subset C P_{n} \subset P S D_{n} .
$$

Lower bounds
Hence the lower bound (LB) obtained with our relaxation is stronger than the CP and PSD bounds:

$$
L B_{B Q P} \geq L B_{C P} \geq L B_{P S D}
$$

A column generation algorithm

Let $\mathcal{P}:=\left\{1, \ldots, 2^{n}\right\}$. Then, we have:
Formulation

$$
\min \langle Q, X\rangle
$$

(1) \quad s. t. $\left\langle A_{i}, X\right\rangle \leq b_{i}, \quad \forall i=1 \ldots, m$

$$
\begin{aligned}
& X=\sum_{p \in \mathcal{P}} \bar{X}_{p} \lambda_{p} \\
& \sum_{p \in \mathcal{P}} \lambda_{p}=1 \\
& \lambda_{p} \geq 0 \quad \forall p \in \mathcal{P} \\
& \bar{X}_{p}=\bar{x}_{p} \bar{x}_{p}^{\top} \quad \forall p \in \mathcal{P} \\
& \bar{x}_{p} \in\{0,1\}^{n} \quad \forall p \in \mathcal{P} .
\end{aligned}
$$

A column generation algorithm

Let $\mathcal{P}:=\left\{1, \ldots, 2^{n}\right\}$. Then, we have:
Formulation
(1) \quad s. t. $\left\langle A_{i}, X\right\rangle \leq b_{i}, \quad \forall i=1 \ldots, m$

$$
\begin{aligned}
& X=\sum_{p \in \mathcal{P}} \bar{X}_{p} \lambda_{p} \\
& \sum_{p \in \mathcal{P}} \lambda_{p}=1 \\
& \lambda_{p} \geq 0 \quad \forall p \in \mathcal{P} \\
& \bar{X}_{p}=\bar{X}_{p} \bar{x}_{p}^{\top} \quad \forall p \in \mathcal{P} \\
& \bar{x}_{p} \in\{0,1\}^{n} \quad \forall p \in \mathcal{P} .
\end{aligned}
$$

A column generation algorithm

Let $\mathcal{P}:=\left\{1, \ldots, 2^{n}\right\}$. Then, we have:
Formulation
(1) \quad s. t. $\left\langle A_{i}, X\right\rangle \leq b_{i}, \quad \forall i=1 \ldots, m$

$$
\begin{aligned}
& X=\sum_{p \in \mathcal{P}} \bar{X}_{p} \lambda_{p} \\
& \sum_{p \in \mathcal{P}} \lambda_{p}=1 \\
& \lambda_{p} \geq 0 \quad \forall p \in \mathcal{P} \\
& \bar{X}_{p}=\bar{x}_{p} \bar{x}_{p}^{\top} \quad \forall p \in \mathcal{P} \\
& \bar{x}_{p} \in\{0,1\}^{n} \quad \forall p \in \mathcal{P} .
\end{aligned}
$$

Master and Pricing problems

$$
\text { Let } \overline{\mathcal{P}} \subset \mathcal{P}, \quad \bar{X}_{p}:=x_{p} x_{p}^{\top}, p \in \overline{\mathcal{P}}
$$

Restricted Master Problem (RMP)

$$
\begin{array}{ll}
\min & \langle Q, X\rangle \\
\text { s. t. } & \left\langle A_{i}, X\right\rangle \leq b_{i}, \quad \forall i=1 \ldots, m \\
& X=\sum_{p \in \overline{\mathcal{P}}} \bar{X}_{p} \lambda_{p} \\
& \sum_{p \in \overline{\mathcal{P}}} \lambda_{p}=1 \\
& \lambda_{p} \geq 0 \quad \forall p \in \overline{\mathcal{P}} .
\end{array}
$$

Master and Pricing problems

RMP,reduced form

$$
\begin{aligned}
\min & \sum_{p \in \overline{\mathcal{P}}}\left\langle Q, X_{p}\right\rangle \lambda_{p} \\
\text { s. t. } & \sum_{p \in \overline{\mathcal{P}}}\left\langle A_{i}, X_{p}\right\rangle \lambda_{p} \leq b_{i}, \quad \forall i=1 \ldots, m \\
& \sum_{p \in \overline{\mathcal{P}}} \lambda_{p}=1 \\
& \lambda_{p} \geq 0 \quad \forall p \in \overline{\mathcal{P}}
\end{aligned}
$$

Master and Pricing problems

Dual problem

$$
\begin{aligned}
& \max b^{\top} \pi+\pi_{0} \\
& \text { s. t. } \sum_{i=1}^{m}\left\langle A_{i}, \bar{X}_{p}\right\rangle \pi_{i}+\pi_{0} \leq\left\langle Q, \bar{X}_{p}\right\rangle, \quad \forall p \in \overline{\mathcal{P}} \\
& \quad \pi \leq 0
\end{aligned}
$$

Pricing problem

$$
\begin{aligned}
& \min \langle Q, X\rangle-\sum_{i=1}^{m}\left\langle A_{i}, X\right\rangle \pi_{i}^{*}-\pi_{0}^{*} \\
& \text { s. t. } X=x x^{\top} \\
& \quad x \in\{0,1\}^{n}
\end{aligned}
$$

CP reformulation for Binary Quadratic Problems

The following problems are equivalent (Burer, 2009):

> Completely Positive reformulation

Binary Quadratic Problems

$$
\begin{array}{ll}
\min & x^{\top} Q x+q^{\top} x \\
\text { s. t. } & a_{i}^{\top} x=b_{i}, \quad \forall i=1 \ldots, m \\
& x \in\{0,1\}^{n} .
\end{array}
$$

$$
\begin{array}{ll}
\min & \langle Q, \bar{X}\rangle+q_{0}^{\top} x \\
\text { s. t. } & a_{i}^{\top} x=b_{i}, \quad \forall i=1 \ldots, m \\
& a_{i}^{\top} \bar{X} a_{i}=b_{i}^{2}, \quad \forall i=1 \ldots, m \\
& x_{j}=\bar{X}_{j j} \quad \forall j=1, \ldots n \\
& \left(\begin{array}{cc}
1 & x^{\top} \\
x & \bar{X}
\end{array}\right) \in C P_{n+1} .
\end{array}
$$

Hence, we have an exact reformulation for binary QPs with linear equalities (no branching needed).

Notations

Let:

- $\underline{b_{j}} \subset\{1, \ldots, n\} \forall j=1, \ldots, k$;
- $\bigcup_{j=1}^{k} \underline{b_{j}}=\{1, \ldots, n\}$;
- $\underline{B_{j}}=\underline{b_{j}} \times \underline{b_{j}} \forall j=1, \ldots, k$.

A Block structure is $\underline{\mathcal{B}_{k}}=\bigcup_{j=1}^{k} \underline{B_{j}}$.
Block decomposable problems
A problem is block decomposable if all nonzero entries of Q, A_{i} belong to $\underline{\mathcal{B}_{k}}$.
$\forall X \in \mathbb{R}^{n \times n}$ we indicate with

$$
X^{B_{j}}:=\left\{X_{p, q} \mid p, q \in \underline{b_{j}}\right\} \in \mathbb{R}^{d_{j} \times d_{j}} \quad \forall j=1, \ldots, k
$$

the restriction of X to a block $j ; d_{j}$ is the dimension of b_{j}.
$\forall j=1, \ldots k$, for $M=Q, A_{i} \forall i=1, \ldots m$ let $M^{j}:=M^{B_{j}}$, with
$M_{p, q}=0 \forall p, q \in \underline{b_{j}} \backslash\left(\underline{b_{1}}, \ldots, \underline{b_{j-1}}\right)$.

Block decomposition

Block-decomposed Master Program formulation

$$
\begin{array}{ll}
\min & \sum_{j=1}^{k}\left\langle Q^{j}, Y_{j}\right\rangle \\
\text { s. t. } & \sum_{j=1}^{k}\left\langle A_{i}^{j}, Y_{j}\right\rangle \leq b_{i}, \quad \forall i=1 \ldots, m \\
& Y_{j}^{B_{j} \cap B_{h}}=Y_{h}^{B_{j} \cap B_{h}} \quad \forall 1 \leq j<h \leq k \\
& Y_{j}=\sum_{l=1}^{2^{d_{j}}} \mu_{l}^{j}\left(y_{j}^{\prime}\right)\left(y_{j}^{\prime}\right)^{\top} \quad \forall j=1, \ldots, k \\
& \sum_{l=1}^{2^{d_{i}}} \mu_{l}^{j}=1 \quad \forall j=1, \ldots, k \\
& \mu_{l}^{j} \geq 0 \quad \forall I=1, \ldots 2^{d_{j}}, \forall j=1, \ldots, k . \\
& y_{j}^{\prime} \in\{0,1\}^{d_{j}} \quad \forall I=1, \ldots, 2^{d_{j}} \forall j=1, \ldots, k .
\end{array}
$$

Block-decomposed restricted master and pricing

Let $\overline{\mathcal{P}}_{j} \subseteq\left\{1, \ldots, 2^{d_{j}}\right\} \forall j=1, \ldots, k$. Then:
Block-decomposed RMP

$$
\begin{array}{ll}
\min & \sum_{j=1}^{k}\left\langle Q^{j}, Y_{j}\right\rangle \\
\text { s. t. } & \sum_{j=1}^{k}\left\langle A_{i}^{j}, Y_{j}\right\rangle \leq b_{i}, \quad \forall i=1 \ldots, m \quad[\alpha] \\
Y_{j}^{B_{j} \cap B_{h}}=Y_{h}^{B_{j} \cap B_{h}} \quad \forall 1 \leq j<h \leq k \quad\left[\beta^{j, h}\right] \\
Y_{j}=\sum_{l \in \overline{\mathcal{P}}_{j}} \mu_{l}^{j}\left(y_{j}^{\prime}\right)\left(y_{j}^{\prime}\right)^{\top} \quad \forall j=1, \ldots, k \quad\left[\pi^{j}\right] \\
& \sum_{l \in \overline{\mathcal{P}}_{j}} \mu_{l}^{j}=1 \quad \forall j=1, \ldots, k \\
\mu_{l}^{j} \geq 0 \quad \forall I \in \overline{\mathcal{P}}_{j}, \forall j=1, \ldots, k .
\end{array}
$$

Block formulation

Block-decomposed restricted master and pricing

Dual problem

$$
\begin{aligned}
& \max b^{\top} \alpha+\sum_{j=1}^{k} \pi_{0}^{j} \\
& \text { s. t. } \sum_{i=1}^{m} A_{i}^{j} \alpha_{i}+\sum_{h=1, h>j}^{k} C^{j, h} \beta^{j, h}-\sum_{h=1, h<j}^{k} C^{j, h} \beta^{j, h}+\pi^{j}=Q^{j} \quad \forall j=1, \ldots, k \\
& \quad-\left\langle\left(y_{j}^{\prime}\right)\left(y_{j}^{\prime}\right)^{\top}, \pi^{j}\right\rangle+\pi_{0}^{j} \leq 0, \quad \forall I \in \overline{\mathcal{P}} \\
& \\
& \quad \alpha \leq 0,
\end{aligned}
$$

where $\left(C^{j, h}\right)_{p, q}=1$ if $(p, q) \in \underline{B}_{j} \cap \underline{B}_{h}, 0$ otherwise.
Pricing problems

$$
\begin{aligned}
& \min \left\langle\pi^{j^{*}}, Y_{j}\right\rangle-\pi_{0}^{j^{*}} \\
& \text { s. t. } Y_{j}=y_{j} y_{j}^{\top} \\
& \qquad y_{j} \in\{0,1\}_{\text {ROA }}^{d_{j}} \quad \forall j=1, \ldots, k .
\end{aligned}
$$

Equivalence problem between (1) and (2)

First inclusion " \supseteq "
If X, λ are feasible for (1), $\exists Y_{j}, \mu_{j}^{\prime}$ feasible for (2), s.t. $X^{B_{j}}=Y_{j} \forall j=1, \ldots, k$?

Equivalence problem between (1) and (2)

First inclusion " \supseteq "
If X, λ are feasible for (1), $\exists Y_{j}, \mu_{j}^{\prime}$ feasible for (2), s.t. $X^{B_{j}}=Y_{j} \forall j=1, \ldots, k$?

Answer
Yes, always. Hence (2) always gives a valid lower bound.

Equivalence problem between (1) and (2)

First inclusion " \supseteq "
If X, λ are feasible for (1), $\exists Y_{j}, \mu_{j}^{\prime}$ feasible for (2), s.t. $X^{B_{j}}=Y_{j} \forall j=1, \ldots, k$?

Answer
Yes, always. Hence (2) always gives a valid lower bound.

Second inclusion " \subseteq "
If Y_{j}, μ_{j}^{\prime} are feasible for (2), $\exists X, \lambda$ feasible for (1), s.t. $X^{B_{j}}=Y_{j} \forall j=1, \ldots, k$?

Equivalence problem between (1) and (2)

First inclusion " \supseteq "
If X, λ are feasible for (1), $\exists Y_{j}, \mu_{j}^{\prime}$ feasible for (2), s.t. $X^{B_{j}}=Y_{j} \forall j=1, \ldots, k$?

Answer
Yes, always. Hence (2) always gives a valid lower bound.

Second inclusion " \subseteq "
If Y_{j}, μ_{j}^{\prime} are feasible for (2), $\exists X, \lambda$ feasible for (1), s.t. $X^{B_{j}}=Y_{j} \forall j=1, \ldots, k$?

Answer
It depends on the block structure.

Counterexample

Let $Q, A_{i} \in \mathbb{R}^{4 \times 4}$ have the following block structure:

$$
\underline{b_{1}}=\{1,2\}, \underline{b_{2}}=\{2,3\}, \underline{b_{3}}=\{3,4\}, \underline{b_{4}}=\{1,4\} .
$$

Then:
A feasible solution for (2)
given by:

$$
\frac{1}{2}\left(\begin{array}{llll}
1 & 1 & & 0 \\
1 & 1 & 1 & \\
& 1 & 1 & 1 \\
0 & & 1 & 1
\end{array}\right), \quad \begin{array}{ll}
Y_{j} & =\frac{1}{2}\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)+\frac{1}{2}\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) \quad j=1,2,3 \\
Y_{4}=\frac{1}{2}\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)+\frac{1}{2}\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right),
\end{array}
$$

it cannot be completed to a solution to (1).

BQP completion problem

Definitions

Let $M \in \mathbb{R}^{n \times n}$, symmetric.

- M is partial if some entries are not specified;
- a specification graph of M has n vertices and edges $\{i, j\}$ if $M_{i, j}$ is specified;
- M is partial BQP if \forall fully specified principal submatrix $N, N \in B Q P$;
- if M is partial $B Q P$, it is $B Q P$ completable if $\exists N \in B Q P_{n}$ fully specified, $N_{i, j}=M_{i, j}$ where $M_{i, j}$ is specified;
- a graph G is BQP completable if every partial BQP matrix with specification graph G is BQP completable.

BQP completion problem \leftrightarrow " \subseteq " inclusion:
Which graphs are BQP completable?

Theoretical results

Known results: PSD and CP completion problems

- A graph is PSD-completable iff it is chordal;
- A graph is CP-completable iff it is block-clique.

Theoretical results

Known results: PSD and CP completion problems

- A graph is PSD-completable iff it is chordal;
- A graph is CP-completable iff it is block-clique.

BQP completion problem

- If G is not chordal, it is not BQP-completable;
- If G is chordal, is it BQP-completable?

Theoretical results

Known results: PSD and CP completion problems

- A graph is PSD-completable iff it is chordal;
- A graph is CP-completable iff it is block-clique.

BQP completion problem

- If G is not chordal, it is not BQP-completable;
- If G is chordal, is it BQP-completable?
- if the max size d of intersections is 2 : yes;
- if $d>2$: work in progress.

Preliminary results

Instances

We selected some instances from the QPlib library.
We compared with the root node bound provided by SDP relaxation: SDP solver: BiqCrunch (BC)

Results

Instance	Opt val	BC-bound		BC-cuts		CP-base		CP-blocks	
		Bound	T (s)						
QPLIB-1976	-9594	-51092	41	-45075	324	-44898	7	-44898	0.14
QPLIB-2017	-22984	-83215	490	-78525	1609	-78215	433	-78215	0.42
QPLIB-2029	-34704	-220262	856	-220262	900	-101334	2128	-101334	0.54
QPLIB-2036	-30590	-136227	1006	-127166	3287	-126386	391	-126386	0.07
QPLIB-2055	3389110	1999554	21	2209752	104	2314020	92	-	t.I.
QPLIB-2060	2528144	1466569	36	1703346	655	1707160	153	-	t.I.
QPLIB-2085	7034580	4705157	85	5420526	2642	5432400	1066	-	t.I.
QPLIB-2096	7068000	5826148	82	6305261	2679	6312620	1210	-	t.I.

Table: Root node bound and time for QCQP instances.

