Decomposition methods for quadratic programming

Lucas Létocart

LIPN - CNRS - Univ. Sorbonne Paris Nord

ROA 2022

Context

- In this work we aim at investigating a family of decompositions for Quadratic Problems (QPs).
- A generic QP reads as follows:

Quadratic Problem (BQP)

$$(QP) \quad \max\{f(x) = x^\top Q x + L^\top x | A x \le b, x \in X\}.$$

- $Q \in \mathbb{Q}^{n \times n}$ and not restricted to be convex.
- $L \in \mathbb{Q}^n$.
- $X \subseteq \mathbb{R}^n$ or $X \subseteq \mathbb{N}^n$.

Dantzig-Wolfe decomposition for Binary Quadratic Problems (BQPs) Alberto Ceselli (Univ. Milano) and Emiliano Traversi (Univ. Paris 13)

A generic BQP reads as follows:

Binary Quadratic Problem (BQP)

$$(BQP) \quad \max\{f(x) = x^{\top}Qx + L^{\top}x | Ax \le b, x \in \{0,1\}\}.$$

- Let A', A" and b', b" be a generic row partition of the constraint matrix A and of the rhs vector b.
- The continuous relaxation of (BQP) can be strengthened by convexifying the constraints A"x ≤ b" (i.e. imposing x ∈ conv{A"x ≤ b", x ∈ {0,1}}).

Simplicial decomposition for Convex Quadratic Problems (CQPs) Enrico Bettiol (Univ. Paris 13), Francesco Rinaldi (Univ. Padova), Emiliano Traversi (Univ. Paris 13)

A generic CQP reads as follows:

Convex Quadratic Problem (CQP)

$$(CQP)$$
 max $\{f(x) = x^{\top}Qx + L^{\top}x | Ax \leq b, x \in \mathbb{R}^n\}$.

- $Q \in \mathbb{Q}^{n \times n}$ convex.
- $L \in \mathbb{Q}^n$.
- The problem is decomposed keeping the original objective function in the master and the original constraints in the pricing.

Dantzig-Wolfe reformulation and Completely Positive relaxation for binary QCQPsEnrico Bettiol (Univ. Paris 13), Immanuel Bomze (Univ. of Vienna), Francesco Rinaldi (Univ. Padova), Emiliano Traversi (Univ. Paris 13)

A generic QCQP reads as follows:

Extended formulation

Introduction Dantzig Wolfe Reformulation Simplicial Decomposition Dantzig-Wolfe reformulation and Completely

DWR with a quadratic master problem

DWR with quadratic master problem I

$$(BQP_{DWR(A'')}) \max f(x)$$
(1)
s.t. $A'x \le b'$ $[\alpha]$ (2)
 $x_j = \sum_{p \in \mathcal{P}_{DWR(A'')}} x_j^p \lambda^p \quad j = 1, \dots, n$ $[\tau_j]$ (3)
 $\sum_{p \in \mathcal{P}_{DWR(A'')}} \lambda^p = 1$ $[\beta]$ (4)
 $x_j \in \{0, 1\} \qquad j = 1, \dots, n$ (5)
 $\lambda^p \ge 0 \qquad p \in \mathcal{P}_{DWR(A'')}$ (6)

Introduction Dantzig Wolfe Reformulation Simplicial Decomposition Dantzig-Wolfe reformulation and Completely

DWR with a quadratic master problem

DWR with quadratic master problem II

if f is convex and with $\mathcal{P}_{DWR(A'')}$ being the set of extreme points of $conv\{x|A''x \leq b'', x \in \{0,1\}\}.$

DWR with a quadratic master problem

DWR with quadratic master problem III

Convexification of the objective function

If the objective function is non convex, we need to replace f(x) by an equivalent convex objective function f'(x).

$$(BQP_{DWR(A'')}) \max f'(x)$$

$$s.t. \quad A'x \le b'$$

$$x_j = \sum_{p \in \mathcal{P}_{DWR(A'')}} x_j^p \lambda^p \qquad j = 1, \dots, n \quad [\tau_j] \quad (9)$$

$$\sum_{p \in \mathcal{P}_{DWR(A'')}} \lambda^p = 1 \qquad [\beta] \quad (10)$$

$$x_j \in \{0, 1\} \qquad j = 1, \dots, n \quad (11)$$

$$\lambda^p \ge 0 \qquad p \in \mathcal{P}_{DWR(A'')} \quad (12)$$

DWR with quadratic master problem IV

• Variables λ are partially enumerated by solving an additional *pricing* problem.

Let α , τ and β being the dual variables associated to the constraints in the continuous relaxation of $(BQP_{DWR(A'')})$.

Pricing problem

$$(\Pi_{BQP_{DWR(A'')}}(\tau^*,\beta^*)) \quad \max \quad \tau^{*\top}x + \beta^*$$
(13)

s.t. $A''x \le b''$ (14)

$$x_j \in \{0,1\}$$
 $j = 1, \dots, n$ (15)

If the optimal value of $(\prod_{BQP_{DWR(A'')}}(\tau^*, \beta^*))$ is greater than zero, then a column with positive reduced cost is found and added to the master.

Introduction Dantzig Wolfe Reformulation Simplicial Decomposition Dantzig-Wolfe reformulation and Completely

DWR with a quadratic master problem

DWR with quadratic master problem V

• $(BQP_{DWR}) \Rightarrow f(x)$ is quadratic, the pricing problem is (binary) linear.

DWR with a quadratic pricing problem

DWR with quadratic pricing problem I

The objective function can be rewritten directly in terms of the λ variables by introducing $f(\lambda) = \sum_{p \in \mathcal{P}_{DWR(A'')}} c_p \lambda_p$ with

$$c_p = f(x_p) = x_p^\top Q x_p + L^\top x_p .$$

 \overline{DWR} of constraints A''

$$(BQP_{\overline{DWR}(A'')}) \max \sum_{p \in \mathcal{P}_{DWR(A'')}} c_p \lambda_p$$
(16)
s.t. (8) - (12)

DWR with a quadratic pricing problem

DWR with quadratic pricing problem II

Pricing problem

$$(\Pi_{BQP_{\overline{DWR}(A'')}}(\tau^*, \beta^*)) \quad \max \quad x^\top Q x + L^\top x + \tau^{*\top} x + \beta^*$$
(17)
s.t. $A'' x \le b''$ (18)
 $x_j \in \{0, 1\}$ $j = 1, \dots, n$ (19)

where Q is not required to be convex.

• $(BQP_{\overline{DWR}}) \Rightarrow f(\lambda)$ is linear, the pricing problem is (binary) quadratic.

DWR with a quadratic pricing problem

DWR with quadratic pricing problem III

The objective function can still be modified using the convexified objective function f'(x). The pricing reduces to the following quadratic problem:

Pricing problem

$$(\Pi_{BQP_{\overline{DWR}(A'')}}(\tau^*,\beta^*)) \quad \max \quad f'(x) + \tau^{*\top}x + \beta^*$$
(20)

s.t.
$$A''x \le b''$$
 (21)

$$x_j \in \{0,1\}$$
 $j = 1, \dots, n$ (22)

Introduction Dantzig Wolfe Reformulation Simplicial Decomposition Dantzig-Wolfe reformulation and Completely

DWR applied to (kQKP)

(kQKP) Formulation I

Notations

- n : number of items
- a_j : weight of item j $(j = 1, \ldots, n)$
- b : capacity of the knapsack
- c_{ij} : profit associated with the selection of items *i* and *j* (*i*, *j* = 1,..., *n*)
- k : number of items to be filled in the knapsack

Assumptions

$$\begin{array}{l} c_{ij} \in \mathbb{N} \ i, j = 1, \dots, n, \ a_j \in \mathbb{N} \ j = 1, \dots, n, \ b \in \mathbb{N} \\ \max_{j=1,\dots,n} a_j \leq b < \sum_{j=1}^n a_j \\ k \in \{1,\dots,k_{max}\} \end{array}$$

DWR applied to (kQKP)

(kQKP) Formulation II

Mathematical formulation

$$(kQKP) \begin{cases} \max f(x) = \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{i} x_{j} \\ \text{s.t.} \qquad \sum_{j=1}^{n} a_{j} x_{j} \leq b \qquad (1) \\ \sum_{j=1}^{n} x_{j} = k \qquad (2) \\ x_{j} \in \{0, 1\} \qquad j = 1, \dots, n \end{cases}$$

- without constraint (2): the 0-1 quadratic knapsack problem (QKP)
- without constraint (1): the k-cluster problem

DWR applied to (kQKP)

Reformulations for (kQKP)

Reformulation of the feasible region $\{x | Ax \le b, x \in \{0, 1\}\}$ Dantzig-Wolfe Reformulation (a subset of constraints is substituted by its convex hull) \downarrow tighter formulation

The application of the QCR method leads to the following reformulation of (kQKP):

i-1

$$(kQKP^{conv}) \max f_{u,v}(x)$$
(23)
s.t. $\sum_{j=1}^{n} a_j x_j \le b$ (24)
 $\sum_{j=1}^{n} x_j = k$ (25)

$$x_j \in \{0, 1\}$$
 $j = 1, \dots, n$ (26)

with

$$f_{u,v}(x) = f(x) - \sum_{i=1}^{n} u_i \left(x_i^2 - x_i \right) - v \left(\sum_{j=1}^{n} x_j - k \right)^2$$
(27)

The application of the MIQCR method leads to the following reformulation of (kQKP):

$$\begin{array}{ll} (kQKP^{\text{impr. conv}}) & \max & f_{u,v,P,N}(x,y) & (28) \\ & \text{s.t.} & \sum_{j=1}^{n} a_{j}x_{j} \leq b & (29) \\ & & \sum_{j=1}^{n} x_{j} = k & (30) \\ & & y_{ij} \leq x_{i}, \ y_{ij} \leq x_{j} & i, j = 1, \dots, n & (31) \\ & & y_{ij} \geq 0, \ y_{ij} \geq x_{i} + x_{j} - 1 & i, j = 1, \dots, n & (32) \\ & & & x_{j} \in \{0, 1\} & j = 1, \dots, n & (33) \end{array}$$

with

$$f_{u,v,P,N}(x,y) = x^{T}(C - Diag(u) - P - N)x + u^{T}x + \sum_{i,j=1}^{n} (P_{ij} + N_{ij})y_{ij} - v\left(\sum_{j=1}^{n} x_{j} - k\right)^{2}$$

DWR applied to (kQKP)

DWR with a quadratic master problem

- PRO : linear pricing problem.
- CON : the objective function must be convex. \Rightarrow DWR must be applied to $(kQKP^{conv})$ or to $(kQKP^{impr. conv})$.

By applying one of the two convexification methods, we always obtain a convex quadratic (binary) optimization problem, whose objective function is of the form:

$$\max \sum_{i=1}^{n} \sum_{j=1}^{n} \tilde{q}_{ij} x_i x_j + \sum_{j=1}^{n} \tilde{l}_j x_j + \sum_{i=1}^{n} \sum_{j=1}^{n} \tilde{w}_{ij} y_{ij}$$

Introduction Dantzig Wolfe Reformulation Simplicial Decomposition Dantzig-Wolfe reformulation and Completely

DWR applied to (kQKP)

Reformulation of (kQKP^{conv}) I

$$(kQKP_{DWD(\Omega)}^{conv}) \max \sum_{i=1}^{n} \sum_{j=1}^{n} \tilde{q}_{ij} x_i x_j + \sum_{j=1}^{n} \tilde{l}_j x_j + \sum_{i=1}^{n} \sum_{j=1}^{n} \tilde{w}_{ij} y_{ij}$$
(34)
s.t. $\sum_{j=1}^{n} a_j x_j \le b$ (35)
 $\sum_{j=1}^{n} x_j = k$ (36)
 $x_j \in \{0, 1\}$ $j = 1, \dots, n$ (37)
 $y_{ij} = x_i x_j$ $i, j = 1, \dots, n$ (38)
 $x_j = \sum_{p \in \mathcal{P}} x_j^p \lambda^p$ $j = 1, \dots, n$ (39)
 $y_{ij} = \sum_{p \in \mathcal{P}} y_{ij}^p \lambda^p$ $i, j = 1, \dots, n$ (40)
 $\sum_{p \in \mathcal{P}} \lambda^p = 1$ (41)
 $\lambda^p \ge 0$ $p \in \mathcal{P}$

DWR applied to (kQKP)

Reformulation of (kQKP^{conv}) II

Constraints (47), (48) and (49) impose x and y to belong to a given polyhedron Ω , whose set of extreme points is denoted by \mathcal{P} . In our case, the following choices of Ω are possible:

$$\begin{split} \Omega_{\text{knap}} &= \text{conv. hull}\{(x, y) : \sum_{j=1}^{n} a_j x_j \leq b, y_{ij} = x_i x_j, i, j = 1, \dots, n, x_j \in \{0, 1\}, j = 1, \dots, n\} \\ \Omega_{\text{card}} &= \text{conv. hull}\{(x, y) : \sum_{j=1}^{n} x_j = k, y_{ij} = x_i x_j, i, j = 1, \dots, n, x_j \in \{0, 1\}, j = 1, \dots, n\} \\ \Omega_{\text{knap, card}} &= \text{conv. hull}\{(x, y) : \sum_{j=1}^{n} a_j x_j \leq b, \sum_{j=1}^{n} x_j = k, y_{ij} = x_i x_j, i, j = 1, \dots, n, x_j \in \{0, 1\}, j = 1, \dots, n\} \end{split}$$

with \mathcal{P}_{knap} , \mathcal{P}_{card} , $\mathcal{P}_{knap, card}$ being the corresponding sets of extreme points.

Other reformulation of $(kQKP^{conv})$ after variables substitutions

$$(kQ \mathcal{K} \mathcal{P}_{\overline{DWD}(\Omega)}^{\text{conv}}) \max \sum_{\rho \in \mathcal{P}} (\sum_{i=1}^{n} \sum_{j=1}^{n} \tilde{q}_{ij} x_{i}^{\rho} x_{j}^{\rho}) \lambda^{\rho} + \sum_{\rho \in \mathcal{P}} (\sum_{i=1}^{n} \sum_{j=1}^{n} \tilde{w}_{ij} y_{ij}^{\rho}) \lambda^{\rho}$$
(42)
s.t.
$$\sum_{\rho \in \mathcal{P}} (\sum_{j=1}^{n} a_{j} x_{j}^{\rho}) \lambda^{\rho} \leq b$$
(43)

$$\sum_{\rho \in \mathcal{P}} (\sum_{j=1}^{n} x_{j}^{\rho}) \lambda^{\rho} = k$$
(44)

$$x_{j} \in \{0, 1\}$$
(42)

$$y_{ij} \leq x_{i}, y_{ij} \leq x_{j}, y_{ij} \geq x_{i} + x_{j} - 1, y_{ij} \geq 0$$
(42)

$$y_{ij} \leq x_{i}, y_{ij} \leq x_{j}, y_{ij} \geq x_{i} + x_{j} - 1, y_{ij} \geq 0$$
(42)

$$y_{ij} = \sum_{\rho \in \mathcal{P}} x_{j}^{\rho} \lambda^{\rho}$$
(42)

$$y_{ij} = \sum_{\rho \in \mathcal{P}} y_{ij}^{\rho} \lambda^{\rho}$$
(42)

$$\sum_{\rho \in \mathcal{P}} \lambda^{\rho} = 1$$
(49)

$$\lambda^{\rho} \geq 0$$
(42)

Lucas Létocart (LIPN)

ROA

2022 22 / 72

Introduction Dantzig Wolfe Reformulation Simplicial Decomposition Dantzig-Wolfe reformulation and Completely

DWR applied to (kQKP)

Formulations Overview

			Convexification				
			orig	conv	impr conv		
	quad master	knap	NCM	kQKP ^{conv} DWD(knap)	kQKP ^{impr. conv} DWD(knap)		
		card	NCM	IPP	IPP		
Strenthening		knap+card	NCM	kQKP ^{conv} DWD(card,knap)	kQKP ^{impr. conv} DWD(card,knap) kQKP ^{impr. conv} DWD(knap)		
	lin master	knap	kQKP(knap)	$kQKP_{\overline{DWD}(knap)}^{conv}$			
		card	$kQKP_{\overline{DWD}(card)}$	kQKP ^{conv} DWD(card)	$kQKP_{\overline{DWD}(card)}^{impr.\conv}$		
		knap+card	POP	POP	POP		

DWR applied to (kQKP)

Hierarchy of reformulations

Numerical Results

Experimental environment

- Carried out on an Intel i7-2600 quad core 3.4 GHz with 8 GB of RAM, using only one core
- CSDP integrated into COIN-OR for solving SDP programs
- CPLEX 12.6.2 with default settings
- Average values over 10 instances
- $n \in \{50, 60, \dots, 100\}$
- $k \in [1, n/4]$, $b \in [50, 30k]$, a_j , $c_{ij} \in [1, 100]$

Introduction Dantzig Wolfe Reformulation

Numerical Results

		(kQKF	^{conv})	(kQKP ^{impr conv})		(kQKP ^{con}	(kQKP ^{conv} DWD(knap))		(kQKP ^{impr conv} DWD(knap, card)	
		Gap	Time	Gap	Time	Gap	Time	Gap	Time	
n	$\delta(\%)$									
50	25	102.65	0.02	30.89	1.05	38.36	1.97	29.15	9.30	
	50	150.56	0.06	25.25	0.94	31.05	3.04	23.66	9.71	
	75	230.29	0.12	105.16	1.09	114.26	1.55	100.88	8.06	
60	25	60.76	0.04	130.92	0.04	149.25	1.55	126.07	10.89	
	50	93.73	0.11	15.08	2.61	19.48	3.86	14.19	19.05	
	75	212.67	0.25	141.08	2.09	151.22	1.67	136.22	8.99	
70	25	130.23	0.06	38.03	5.11	46.84	4.82	36.52	33.25	
	50	177.07	0.19	72.81	4.27	80.44	6.83	70.77	54.37	
	75	382.36	0.44	56.26	3.45	63.77	3.25	54.57	22.19	
80	25	111.24	0.08	34.05	7.98	41.90	5.64	32.87	71.19	
	50	271.64	0.26	55.44	9.59	64.09	4.67	53.65	43.98	
	75	313.33	0.66	83.58	7.42	92.31	4.64	81.47	43.42	
90	25	118.45	0.13	112.80	13.75	129.31	4.74	109.63	44.66	
	50	248.57	0.48	83.15	12.38	92.19	4.52	81.65	66.75	
	75	388.68	1.06	37.90	5.63	42.13	6.95	37.12	102.54	
100	25	169.43	0.16	73.90	23.49	82.78	6.80	72.72	99.90	
	50	145.72	0.49	17.38	28.06	21.83	8.58	17.19	219.77	
	75	260.26	1.25	21.67	18.37	27.22	6.23	21.50	158.30	
Avg	25	115.46	0.08	70.10	8.57	81.41	4.25	67.83	44.86	
	50	181.22	0.26	44.85	9.64	51.51	5.25	43.52	68.94	
	75	297.93	0.63	74.28	6.34	81.82	4.05	71.96	57.25	
Avg		198.20	0.32	63.08	8.18	71.58	4.52	61.10	57.02	
ucas	Létocart	(LIPN)			ROA				2022	

Introduction Dantzig Wolfe Reformulation

27 / 72

Numerical Results

		(kQKP ^{conv})		(<i>kQKP</i> ^{impr conv} DWD(knap. card))		$kQKP_{\overline{DWD}(knap)}$		$kQKP_{\overline{DWD}(knap)}^{conv}$	
		Gap	Time	Gap	Time	Gap	Time	Gap	Time
n	$\delta(\%)$								
50	25	102.65	0.02	29.15	9.30	19.43	0.30	0.00	40.13
	50	150.56	0.06	23.66	9.71	28.97	0.08	0.00	34.72
	75	230.29	0.12	100.88	8.06	119.44	0.05	0.00	14.65
60	25	60.76	0.04	126.07	10.89	79.77	0.14	0.00	27.93
	50	93.73	0.11	14.19	19.05	13.13	0.25	0.00	32.54
	75	212.67	0.25	136.22	8.99	157.01	0.07	0.00	16.89
70	25	130.23	0.06	36.52	33.25	16.80	1.20	0.00	64.44
10	50	177.07	0.19	70.77	54.37	47.85	4.30	0.00	72.07
	75	382.36	0.44	54.57	22.19	65.16	0.15	0.00	55.08
80	25	111.24	0.08	32.87	71.19	11.67	210.59	0.00	78.04
	50	271.64	0.26	53.65	43.98	42.69	0.77	0.00	66.70
	75	313.33	0.66	81.47	43.42	95.92	14.00	0.00	85.52
90	25	118.45	0.13	109.63	44.66	57.50	1692.40	0.00	89.42
	50	248.57	0.48	81.65	66.75	63.79	190.64	0.00	102.25
	75	388.68	1.06	37.12	102.54	59.35	15.16	0.00	491.36
100	25	169.43	0.16	72.72	99.90	41.07	926.10	0.00	145.81
	50	145.72	0.49	17.19	219.77	14.75	577.86	0.00	289.12
	75	260.26	1.25	21.50	158.30	47.82	3.77	0.00	656.70
Avg	25	115.46	0.08	67.83	44.86	37.71	471.79	0.00	74.30
	50	181.22	0.26	43.52	68.94	35.20	128.98	0.00	99.57
	75	297.93	0.63	71.96	57.25	90.79	5.53	0.00	220.03
A	Avg	198.20	0.32	61.10	57.02	54.56	202.10	0.00	131.30
Lucas	Létocart ((LIPN)			ROA				2022

Numerical Results

The best reformulation I

$$\begin{split} k \mathcal{Q} \mathcal{K} \mathcal{P}_{\overline{\text{DWD}}(knap)}^{\text{conv}} \max & \sum_{p \in \mathcal{P}_{knap}} c_{u^*,v^*}^p \lambda^p \\ \text{s.t.} & x_j = \sum_{p \in \mathcal{P}_{knap}} x_j^p \lambda^p \qquad j = 1, \dots, n \quad [\phi_j] \\ & \sum_{p \in \mathcal{P}_{knap}} \sum_{j=1}^n x_j^p \lambda^p = k \qquad \qquad [\gamma] \\ & \sum_{p \in \mathcal{P}_{knap}} \lambda^p = 1 \qquad \qquad [\theta] \\ & \lambda^p \ge 0 \qquad \qquad p \in \mathcal{P}_{knap} \end{split}$$

with γ and θ the dual variables.

The best reformulation II

Denoting as γ^* and θ^* the optimal dual variables of a restricted master solution during a column generation iteration, the pricing problem can be written as follows:

$$\begin{array}{ll} \max & f_{u^{*},v^{*}}(x) + \sum_{i=1}^{n} \phi_{i}^{*} x_{i} + \gamma^{*} + \theta^{*} \\ \text{s.t.} & \sum_{j=1}^{n} a_{j} x_{j} \leq b \\ & x_{j} \in \{0,1\} \end{array} \qquad \qquad j = 1, \dots, n \end{array}$$

Outline

- 2 Dantzig Wolfe Reformulation
- Simplicial Decomposition
- Dantzig-Wolfe reformulation and Completely Positive relaxation for binary QCQPs
- **5** Block decomposition
- 6 Results and conclusions

Settings

The problem

$$\begin{array}{ll} \min & f(x) = x^T Q x + c^T x \\ s. t. & x \in X. \end{array}$$

where $x \in \mathbb{R}^n$, $X \subset \mathbb{R}^n$.

Hypotheses:

- $Q \in \mathbb{R}^{n \times n}$ is positive semidefinite and dense.
- X is a polytope.
- High number of variables and low number of constraints.

Introduction Dantzig Wolfe Reformulation Simplicial Decomposition Dantzig-Wolfe reformulation and Completely

Simplicial Decomposition

A column generation method

Simplicial Decomposition (SD)

- Master problem: original objective function, optimized over a simplex.
- Pricing problem: linear objective function, original domain.
- All the original constraints are in the pricing.
- Finite convergence.

Simplicial Decomposition

The master problem

At a k-th iteration, k vertices $x_1, \ldots x_k \in X$ are provided. $k \ll n$. Master problem

min
$$x^T Q x + c^T x$$

s. t. $x = \sum_{i=1}^k \omega_i x_i$,
 $\sum_{i=1}^k \omega_i = 1$,
 $\omega_i \ge 0$, $\forall i = 1, \dots, k$.

Simplicial Decomposition

The pricing problem

Pricing problem

 $\begin{array}{ll} \min & \nabla f(x_m)^T x \\ \text{s. t.} & x \in X. \end{array}$

- Linearization of the original objective function in the optimal point x_m of the master.
- Same dimension as the original problem.
- Same constraints as the original problem.

Contributions to the master problem

Master: SD - ACDM

Adapted Conjugate Direction Method (ACDM)

Main ideas:

- Based on the conjugate Directions Method.
- Reuse the informations from previous iteration.
- Exploit the special structure of the simplices generated.

The Conjugate Direction Method

- Two directions d₁, d₂ ∈ ℝ^k are conjugated with respect to the positive definite quadratic matrix Q ∈ ℝ^{k×k} if: d₁^T Qd₂ = 0.
- If we have a set of k conjugate directions $D = \{d_1, \ldots, d_k\}$, the minimum of $f(x) = x^T Q x + c^T x$ can be found in k steps by optimizing in sequence over the k conjugate directions.

Contributions to the master problem

Master: SD - ACDM

Adapted Conjugate Direction Method (ACDM)

- Reuse the information from the previous conjugate directions.
- Exploit the special structure of the simplices generated.

Main Steps

- At iteration k, we have a set of k 1 conjugate directions D from the previous iteration.
- The pricing provides a new point x_k (i.e., a new dimension).
- Find a new direction d_k connecting x_{k-1} with x_k and conjugate it w.r.t. the set D.

36 / 72

• Find new optimal point along this direction.

PRO: Most of the times, only one step.

CON: If the optimum is on a face, all the directions must be recalculated.
Contributions to the master problem

Master: SD - FGPM

A Fast Gradient Projection Method, (FGPM)

A more general method based on the projected gradient approach. Warmstart: start in the previous optimal point. Iteratively, given the k-th point $\tilde{x_k}$:

- compute the gradient $\nabla f(\tilde{x_k})$;
- project the point $y_k = \tilde{x_k} s \nabla f(\tilde{x_k})$ onto the simplex;
- if $y_k \neq \tilde{x_k}$, find α_k with an Armijo-like rule;

• compute
$$\tilde{x_{k+1}} = \tilde{x_k} + \alpha_k (p(y_k) - \tilde{x_k}).$$

Contributions to the master problem

Master solvers

ACDM

Contributions to the pricing problem

Pricing improvements I

Adding cuts

- Reduce the search region;
- exclude vectors that give ascent directions with respect to the previous partial optima;
- add cuts of the form

$$abla f(x_m^i)^T(x-x_m^i) \leq 0, \quad \exists i \in \{1,\ldots,k-1\}.$$

Early stopping

• Stop the computation before reaching the optimum, but ensure a descent direction: generate the point $\bar{x_k}$ s. t.

$$\nabla f(x_k)^T(\bar{x_k}-x_k)\leq -\varepsilon<0.$$

Contributions to the pricing problem

Pricing improvements II

Sifting

Consider the *Sifting* options for the Cplex solver in addition to the default primal simplex.

Sifting is a column generation algorithm:

- it solves the problem with a (small) subset of columns;
- it evaluates the reduced costs of the remaining columns;
- columns that violate the optimality condition are inserted.

Instances

Problem instances

Portfolio optimization problem (Markowitz's formulation) (Literature data) min $f(x) = x^T \Sigma x$ s. t. $r^T x \ge \mu$, $e^T x = 1$, $x \ge 0$.

General quadratic problems (Randomly generated) min $f(x) = x^T Q x + c^T x$ s. t. $Ax \ge b$, $0 \le x \le 1$.

Instances

Problem instances

Quadratic shortest path problems (Literature and randomly generated data)

min
$$f(x) = x^{\top} Qx + c^{\top} x$$

s. t. $\sum_{e \in \delta^+(s)} x_s = 1$,
 $\sum_{e \in \delta^+(v)} x_v - \sum_{e \in \delta^-(v)} x_v = 0$, $\forall v \neq s, t$
 $\sum_{e \in \delta^-(t)} x_t = 1$.

Multidimensional quadratic knapsack problem (Literature and randomly generated data)

min
$$f(x) = x^{\top}Qx + c^{\top}x$$

s. t. $\sum_{j=1}^{n} a_{ij}x_j \leq b_i$, $\forall i = 1, 2, ..., m$
 $0 \leq x \leq 1$.

Instances

- Portfolio Optimization (PO): 40 instances, dimension 225 to 10980.
- General quadratic :
 - small m (GS): 450 instances:
 - n = 2000 to 10000, m = 2 to 42.
 - large m (GL): 750 instances:
 - n = 2000 to 10000, m = n/32 to n/2.
- Quadratic shortest path problems : grid and random shortest path instances $(1000 \le n \le 10000)$: 102 instances.
- Multidimensional quadratic knapsack problem : 54 instances:
 - ORLib dataset and GK dataset ($n \ge 1000$).
 - Randomly generated instances (5000 $\leq n \leq$ 10000).

Hardware and software

Results

Results: Portfolio optimization problem I

Results

Results: Portfolio optimization problem II

Results

Results: General quadratic problems I

Figure: Performance profile GS, pricing options

Results

Results: General quadratic problems II

Results

Results: General quadratic problems III

Figure: Performance profile GL, pricing options

Results

Results: General quadratic problems IV

Results

Results: Quadratic shortest path problem I

Figure: Performance profiles for grid shortest path instances - pricing options (SD FGPM).

Results

Results: Quadratic shortest path problem II

Figure: Performance profiles for grid shortest path instances - master solvers.

Results

Results: Quadratic shortest path problem III

Figure: Performance profile for random shortest path instances - pricing options (SD ACDM).

Results

Results: Quadratic shortest path problem IV

Figure: Performance profile for random shortest path instances - master solvers.

Results: Multidimensional quadratic knapsack problem I

Figure: Performance profile for multidimensional knapsack instances - pricing options (SD ACDM).

Results: Multidimensional quadratic knapsack problem II

Figure: Performance profile for multidimensional knapsack instances - master solvers.

The model

Generic formulation

min
$$f(x) = x^{\top} \overline{Q} x + q^{\top} x$$

s. t. $x^{\top} \overline{A}_i x + a_i^{\top} x \le b_i$, $\forall i = 1..., m$
 $x \in \{0, 1\}^n$.

 $egin{aligned} & x \in \mathbb{R}^n, n \in \mathbb{N}, \ & ar{Q}, \, ar{A}_i \in \mathcal{S}^n \ & ar{q}, \, oldsymbol{a}_i \in \mathbb{R}^n \ & oldsymbol{b}_i \in \mathbb{R}, \end{aligned}$

The model

Generic formulation

min
$$f(x) = x^{\top} \overline{Q} x + q^{\top} x$$

s. t. $x^{\top} \overline{A}_i x + a_i^{\top} x \leq b_i$, $\forall i = 1..., m$
 $x \in \{0, 1\}^n$.

 $egin{aligned} & x \in \mathbb{R}^n, n \in \mathbb{N}, \ & ar{Q}, \ ar{A}_i \in \mathcal{S}^n \ & ar{q}, \ & ar{a}_i \in \mathbb{R}^n \ & ar{b}_i \in \mathbb{R}, \end{aligned}$

Compact formulation

Since
$$x_i^2 = x_i$$
:
Let $Q = ar{Q} + \operatorname{I} q$, $A_i = ar{A}_i + \operatorname{I} a_i o$

$$\min x^{\top} Qx$$

s. t. $x^{\top} A_i x \leq b_i, \quad \forall i$
 $x \in \{0, 1\}^n.$

Extended space

Matrix space

The problem can be written in matrix form:

Extended formulation

$$\langle M, X \rangle := \operatorname{Tr}(M^{\top}X).$$

$$\begin{array}{l} \min \langle Q, X \rangle \\ \text{s. t.} \quad \langle A_i, X \rangle \leq b_i, \quad \forall i = 1 \dots, m \\ X = xx^T \\ x \in \{0, 1\}^n \end{array}$$

Relaxing constraint

We relax the constraint

 $X = xx^T$

and let X be in the *convex hull* of 0-1 rk-1 matrices:

$$egin{aligned} X &= \sum_{
ho=1}^{2^n} x_
ho x_
ho^ op \lambda_
ho \ \sum_{
ho=1}^{2^n} \lambda_
ho &= 1 \ \lambda &\geq 0 \ x_
ho \in \{0,1\}^n. \end{aligned}$$

Relaxing constraint

We relax the constraint

 $X = xx^T$

and let X be in the *convex hull* of 0-1 rk-1 matrices:

$$egin{aligned} X &= \sum_{
ho=1}^{2^n} x_
ho x_
ho^ op \lambda_
ho \ \sum_{
ho=1}^{2^n} \lambda_
ho &= 1 \ \lambda &\geq 0 \ x_
ho \in \{0,1\}^n. \end{aligned}$$

Definition: (Restricted) Boolean Quadric Polytope (BQP) of size n

$$BQP_n = Conv \{ X \in \mathbb{R}^{n \times n} | X = xx^{\top}, x \in \{0, 1\}^n \}$$

Some relations

The CP and PSD cones:

We recall that the Completely Positive (CP) and the Positive Semi Definite (PSD) cones are respectively:

$$CP_n = Conv \{ X \in \mathbb{R}^{n \times n} | X = xx^{\top}, x \in \mathbb{R}^n, x \ge 0 \}$$

$$PSD_n = Conv \{ X \in \mathbb{R}^{n \times n} | X = xx^{\top}, x \in \mathbb{R}^n \}$$

Then,

$$BQP_n \subset CP_n \subset PSD_n$$
.

Lower bounds

Hence the lower bound (LB) obtained with our relaxation is stronger than the CP and PSD bounds:

$$LB_{BQP} \geq LB_{CP} \geq LB_{PSD}.$$

The Dantzig - Wolfe approach

A column generation algorithm

Let $\mathcal{P} := \{1, \dots, 2^n\}$. Then, we have:

Formulation

 $\begin{array}{ll} \min \ \langle Q, X \rangle \\ (1) & \text{s. t. } \langle A_i, X \rangle \leq b_i, \quad \forall i = 1 \dots, m \\ X = \sum_{p \in \mathcal{P}} \bar{X}_p \lambda_p \\ & \sum_{p \in \mathcal{P}} \lambda_p = 1 \\ \lambda_p \geq 0 \quad \forall p \in \mathcal{P} \\ \bar{X}_p = \bar{x}_p \bar{x}_p^\top \quad \forall p \in \mathcal{P} \\ \bar{x}_p \in \{0, 1\}^n \quad \forall p \in \mathcal{P}. \end{array}$

The Dantzig - Wolfe approach

A column generation algorithm

Let $\mathcal{P} := \{1, \dots, 2^n\}$. Then, we have:

Formulation

(1) min $\langle Q, X \rangle$ (1) s. t. $\langle A_i, X \rangle \leq b_i$, $\forall i = 1..., m$ $X = \sum_{p \in \mathcal{P}} \bar{X}_p \lambda_p$ $\sum_{p \in \mathcal{P}} \lambda_p = 1$ $\lambda_p \geq 0 \quad \forall p \in \mathcal{P}$ $\bar{X}_p = \bar{x}_p \bar{x}_p^\top \quad \forall p \in \mathcal{P}$ $\bar{x}_p \in \{0,1\}^n \quad \forall p \in \mathcal{P}.$

The Dantzig - Wolfe approach

A column generation algorithm

Let $\mathcal{P} := \{1, \dots, 2^n\}$. Then, we have:

Formulation

 $\min \langle Q, X \rangle$ (1) s. t. $\langle A_i, X \rangle \leq b_i$, $\forall i = 1..., m$ $X = \sum_{p \in \mathcal{P}} \bar{X}_p \lambda_p$ $\sum_{p \in \mathcal{P}} \lambda_p = 1$ $\lambda_p \geq 0 \quad \forall p \in \mathcal{P}$ $\bar{X}_p = \bar{x}_p \bar{x}_p^\top \quad \forall p \in \mathcal{P}$ $\bar{x}_p \in \{0, 1\}^n \quad \forall p \in \mathcal{P}.$

The Dantzig - Wolfe approach

Master and Pricing problems

Let
$$\bar{\mathfrak{P}} \subset \mathfrak{P}$$
, $\bar{X}_{p} := x_{p}x_{p}^{\top}$, $p \in \bar{\mathfrak{P}}$

Restricted Master Problem (RMP)

$$\begin{array}{ll} \min \langle Q, X \rangle \\ \text{s. t.} & \langle A_i, X \rangle \leq b_i, \quad \forall i = 1 \dots, m \\ & X = \sum_{\rho \in \bar{\mathfrak{P}}} \bar{X}_{\rho} \lambda_{\rho} \\ & \sum_{\rho \in \bar{\mathfrak{P}}} \lambda_{\rho} = 1 \\ & \lambda_{\rho} \geq 0 \quad \forall \rho \in \bar{\mathfrak{P}}. \end{array}$$

The Dantzig - Wolfe approach

Master and Pricing problems

RMP, reduced form

$$\begin{split} \min & \sum_{\rho \in \bar{\mathfrak{P}}} \langle Q, X_{\rho} \rangle \lambda_{\rho} \\ \text{s. t.} & \sum_{\rho \in \bar{\mathfrak{P}}} \langle A_i, X_{\rho} \rangle \lambda_{\rho} \leq b_i, \quad \forall i = 1 \dots, m \qquad [\pi] \\ & \sum_{\rho \in \bar{\mathfrak{P}}} \lambda_{\rho} = 1 \qquad [\pi_0] \\ & \lambda_{\rho} \geq 0 \quad \forall \rho \in \bar{\mathfrak{P}}. \end{split}$$

The Dantzig - Wolfe approach

Master and Pricing problems

Dual problem

$$\begin{array}{l} \max \ b^{\top}\pi + \pi_{0} \\ \text{s. t. } \sum_{i=1}^{m} \langle A_{i}, \bar{X}_{p} \rangle \pi_{i} + \pi_{0} \leq \langle Q, \bar{X}_{p} \rangle, \quad \forall p \in \bar{\mathcal{P}} \\ \pi \leq 0 \end{array}$$

Pricing problem

min
$$\langle Q, X \rangle - \sum_{i=1}^{m} \langle A_i, X \rangle \pi_i^* - \pi_0^*$$

s. t. $X = xx^\top$
 $x \in \{0, 1\}^n$

The Dantzig - Wolfe approach

CP reformulation for Binary Quadratic Problems

The following problems are equivalent (Burer, 2009):

Completely Positive reformulation

Binary Quadratic Problems

min
$$x^{\top}Qx + q^{\top}x$$

s. t. $a_i^{\top}x = b_i, \quad \forall i = 1..., m$
 $x \in \{0, 1\}^n.$

$$\min \langle Q, \bar{X} \rangle + q_0^\top x$$

s. t. $a_i^\top x = b_i, \quad \forall i = 1..., m$
 $a_i^\top \bar{X} a_i = b_i^2, \quad \forall i = 1..., m$
 $x_j = \bar{X}_{jj} \quad \forall j = 1, ..., n$
 $\begin{pmatrix} 1 & x^\top \\ x & \bar{X} \end{pmatrix} \in CP_{n+1}.$

Hence, we have an exact reformulation for binary QPs with linear equalities (no branching needed).

Block structure

Notations

Let:

• $\underline{b_j} \subset \{1, \ldots, n\} \forall j = 1, \ldots, k;$

•
$$\bigcup_{j=1}^k \underline{b_j} = \{1, \ldots, n\};$$

•
$$\underline{B_j} = \underline{b_j} \times \underline{b_j} \forall j = 1, \dots, k.$$

A Block structure is $\underline{\mathcal{B}}_k = \bigcup_{j=1}^k \underline{B}_j$.

Block decomposable problems

A problem is block decomposable if all nonzero entries of Q, A_i belong to \mathcal{B}_k .

 $\forall X \in \mathbb{R}^{n imes n}$ we indicate with

$$X^{B_j} := \{X_{p,q} | p, q \in \underline{b_j}\} \in \mathbb{R}^{d_j imes d_j} \quad orall j = 1, \dots, k$$

the restriction of X to a block j; d_j is the dimension of $\underline{b_j}$. $\forall j = 1, \dots k$, for $M = Q, A_i \ \forall i = 1, \dots m$ let $M^j := M^{B_j}$, with $M_{p,q} = 0 \ \forall p, q \in \underline{b_j} \setminus (\underline{b_1}, \dots, \underline{b_{j-1}})$.

Block formulation

Block decomposition

Block-decomposed Master Program formulation

$$\begin{array}{l} \min \ \sum_{j=1}^{k} \langle Q^{j}, Y_{j} \rangle \\ \text{(2)} \quad \text{s. t.} \ \sum_{j=1}^{k} \langle A_{i}^{j}, Y_{j} \rangle \leq b_{i}, \quad \forall i = 1 \dots, m \\ Y_{j}^{B_{j} \cap B_{h}} = Y_{h}^{B_{j} \cap B_{h}} \quad \forall 1 \leq j < h \leq k \\ Y_{j} = \sum_{l=1}^{2^{d_{j}}} \mu_{l}^{j}(y_{j}^{l})(y_{j}^{l})^{\top} \quad \forall j = 1, \dots, k \\ \sum_{l=1}^{2^{d_{i}}} \mu_{l}^{j} = 1 \quad \forall j = 1, \dots, k \\ \mu_{l}^{j} \geq 0 \quad \forall l = 1, \dots, 2^{d_{j}}, \forall j = 1, \dots, k \\ y_{j}^{l} \in \{0, 1\}^{d_{j}} \quad \forall l = 1, \dots, 2^{d_{j}} \forall j = 1, \dots, k \end{array}$$

k.

Block formulation

Block-decomposed restricted master and pricing

Let
$$\overline{\mathcal{P}}_j \subseteq \{1, \ldots, 2^{d_j}\} \, \forall j = 1, \ldots, k$$
. Then:

Block-decomposed RMP

$$\begin{array}{ll} \min & \sum_{j=1}^{k} \langle Q^{j}, Y_{j} \rangle \\ \text{s. t. } \sum_{j=1}^{k} \langle A_{i}^{j}, Y_{j} \rangle \leq b_{i}, \quad \forall i = 1 \dots, m \qquad [\alpha] \\ & Y_{j}^{B_{j} \cap B_{h}} = Y_{h}^{B_{j} \cap B_{h}} \quad \forall 1 \leq j < h \leq k \qquad [\beta^{j,h}] \\ & Y_{j} = \sum_{l \in \bar{\mathfrak{P}}_{j}} \mu_{l}^{j}(y_{j}^{\prime})(y_{j}^{\prime})^{\top} \quad \forall j = 1, \dots, k \qquad [\pi^{j}] \\ & \sum_{l \in \bar{\mathfrak{P}}_{j}} \mu_{l}^{j} = 1 \quad \forall j = 1, \dots, k \qquad [\pi^{j}_{0}] \\ & \mu_{l}^{j} \geq 0 \quad \forall l \in \bar{\mathfrak{P}}_{j}, \forall j = 1, \dots, k. \end{array}$$

Block formulation

Block-decomposed restricted master and pricing

Dual problem

$$\max b^{\top} \alpha + \sum_{j=1}^{k} \pi_{0}^{j}$$

s. t.
$$\sum_{i=1}^{m} A_{i}^{j} \alpha_{i} + \sum_{h=1,h>j}^{k} C^{j,h} \beta^{j,h} - \sum_{h=1,h< j}^{k} C^{j,h} \beta^{j,h} + \pi^{j} = Q^{j} \quad \forall j = 1, \dots, k$$
$$- \langle (y_{j}^{\prime}) (y_{j}^{\prime})^{\top}, \pi^{j} \rangle + \pi_{0}^{j} \leq 0, \quad \forall l \in \overline{\mathcal{P}}$$
$$\alpha \leq 0,$$

where $(C^{j,h})_{p,q} = 1$ if $(p,q) \in \underline{B}_j \cap \underline{B}_h$, 0 otherwise.

Pricing problems

$$\begin{array}{l} \min \ \left\langle \pi^{j^{*}}, \, Y_{j} \right\rangle - \pi_{0}^{j^{*}} \\ \text{s. t. } Y_{j} = y_{j} y_{j}^{\top} \\ y_{j} \in \{0, 1\}^{d_{j}} \ \forall j = 1, \dots, k. \end{array}$$

Lucas Létocart (LIPN)

2022 68 / 72
Comparison of the formulations

Equivalence problem between (1) and (2)

First inclusion " \supseteq "

If X, λ are feasible for (1), $\exists Y_j$, μ_j^l feasible for (2), s.t. $X^{B_j} = Y_j \forall j = 1, \dots, k$?

Comparison of the formulations

Equivalence problem between (1) and (2)

First inclusion " \supseteq "

If X, λ are feasible for (1), \exists Y_j, μ_j^l feasible for (2), s.t. $X^{B_j} = Y_j \forall j = 1, \dots, k$?

Answer

Yes, always. Hence (2) always gives a valid lower bound.

Comparison of the formulations

Equivalence problem between (1) and (2)

First inclusion " \supseteq "

If X, λ are feasible for (1), \exists Y_j, μ_j^l feasible for (2), s.t. $X^{B_j} = Y_j \forall j = 1, \dots, k$?

Answer

Yes, always. Hence (2) always gives a valid lower bound.

Second inclusion " \subseteq "

If Y_j , μ_j^l are feasible for (2), $\exists X$, λ feasible for (1), s.t. $X^{B_j} = Y_j \forall j = 1, \dots, k$?

Comparison of the formulations

Equivalence problem between (1) and (2)

First inclusion " \supseteq "

If X, λ are feasible for (1), \exists Y_j, μ_j^l feasible for (2), s.t. $X^{B_j} = Y_j \forall j = 1, \dots, k$?

Answer

Yes, always. Hence (2) always gives a valid lower bound.

Second inclusion " \subseteq "

If Y_j , μ_j^l are feasible for (2), $\exists X$, λ feasible for (1), s.t. $X^{B_j} = Y_j \ \forall j = 1, \dots, k$?

Answer

It depends on the block structure.

Comparison of the formulations

Counterexample

Let Q, $A_i \in \mathbb{R}^{4 \times 4}$ have the following block structure:

$$\underline{b_1} = \{1, 2\}, \underline{b_2} = \{2, 3\}, \underline{b_3} = \{3, 4\}, \underline{b_4} = \{1, 4\}.$$

Then:

A feasible solution for (2)

given by:

 $\frac{1}{2} \begin{pmatrix} 1 & 1 & & 0 \\ 1 & 1 & 1 & \\ & 1 & 1 & 1 \\ 0 & & 1 & 1 \end{pmatrix},$

$$\begin{split} Y_{j} &= \frac{1}{2} \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \quad j = 1, 2, 3 \\ Y_{4} &= \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \end{split}$$

it cannot be *completed* to a solution to (1).

Matrix completion problem

BQP completion problem

Definitions

- Let $M \in \mathbb{R}^{n \times n}$, symmetric.
 - *M* is partial if some entries are not specified;
 - a specification graph of M has n vertices and edges $\{i, j\}$ if $M_{i,j}$ is specified;
 - *M* is partial BQP if \forall fully specified principal submatrix *N*, *N* \in *BQP*;
 - if *M* is *partial BQP*, it is BQP completable if $\exists N \in BQP_n$ fully specified, $N_{i,j} = M_{i,j}$ where $M_{i,j}$ is specified;
 - a graph G is BQP completable if *every* partial BQP matrix with specification graph G is BQP completable.

BQP completion problem \leftrightarrow " \subseteq " inclusion:

Which graphs are BQP completable?

Matrix completion problem

Theoretical results

Known results: PSD and CP completion problems

- A graph is PSD-completable iff it is chordal;
- A graph is CP-completable iff it is block-clique.

Matrix completion problem

Theoretical results

Known results: PSD and CP completion problems

- A graph is PSD-completable iff it is chordal;
- A graph is CP-completable iff it is block-clique.

BQP completion problem

- If G is not chordal, it is not BQP-completable;
- If G is chordal, is it BQP-completable?

Matrix completion problem

Theoretical results

Known results: PSD and CP completion problems

- A graph is PSD-completable iff it is chordal;
- A graph is CP-completable iff it is block-clique.

BQP completion problem

- If G is not chordal, it is not BQP-completable;
- If G is chordal, is it BQP-completable?
 - if the max size d of intersections is 2: yes;
 - if d > 2: work in progress.

Preliminary results

Instances

We selected some instances from the *QPlib* library. We compared with the root node bound provided by SDP relaxation: SDP solver: *BiqCrunch* (BC)

Results

Instance	Opt val	BC-bound		BC-cuts		CP-base		CP-blocks	
		Bound	T (s)	Bound	T (s)	Bound	T (s)	Bound	T (s)
QPLIB-1976	-9594	-51092	41	-45075	324	-44898	7	-44898	0.14
QPLIB-2017	-22984	-83215	490	-78525	1609	-78215	433	-78215	0.42
QPLIB-2029	-34704	-220262	856	-220262	900	-101334	2128	-101334	0.54
QPLIB-2036	-30590	-136227	1006	-127166	3287	-126386	391	-126386	0.07
QPLIB-2055	3389110	1999554	21	2209752	104	2314020	92	-	t.l.
QPLIB-2060	2528144	1466569	36	1703346	655	1707160	153	-	t.l.
QPLIB-2085	7034580	4705157	85	5420526	2642	5432400	1066	-	t.l.
QPLIB-2096	7068000	5826148	82	6305261	2679	6312620	1210	-	t.l.

Table: Root node bound and time for QCQP instances.

Lucas Létocart	(LIPN)
----------------	--------