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MRLRP B&C for VRPIRF B&P for VRPIRF

The Multicommodity-Ring Location Routing Problem
An instance: scenario and demands
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Figure 1: A MRLRP instance: gates, sites, delivery and pickup demands, SPLs
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MRLRP B&C for VRPIRF B&P for VRPIRF

The Multicommodity-Ring Location Routing Problem
An instance: solution
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Figure 2: A solution to the previous instance
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MRLRP B&C for VRPIRF B&P for VRPIRF

The Multicommodity-Ring Location Routing Problem
Problem definition

Gates
Sources/destinations of delivery/pick-up goods

Ring
IUDCs with fixed installation cost and capacity
I ring arcs with

I fixed installation cost and capacity
I per-load-unit transportation cost

Routing
I vehicles with maximum load and trip length
I separate service of pickup and delivery demands
I service routes may be open
⇒ SPLs are additional ending points⇒ same fleet for UDCs and SPLs
⇒ fleet rebalancing constraints on SPLs and UDCs
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MRLRP B&C for VRPIRF B&P for VRPIRF

The Multicommodity-Ring Location Routing Problem
Problem definition

Strategic analysis
ITime-independent scenario
IGoods type is not considered

Decisions
I install UDCs and ring
Igates-UDCs, ring flows
Idemands assignment to UDCs

Objective function
Minimize the sum of:
I installation costs
I flow transportation costs
I routing costs
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MRLRP B&C for VRPIRF B&P for VRPIRF

MILP model for MRLRP

Decision variables
1. ring variables yu ∈ {0, 1}, zuv ∈ {0, 1}
2. service variables χku ∈ {0, 1}
3. second-level routing variables xr ∈ {0, 1}
4. first-level flow variables

Iϕku ≥ 0, ϕuk ≥ 0 (gates-UDCs flows)
Iϕdk

uv ≥ 0, ϕpk
uv ≥ 0 (ring flows)

Iφku ≥ 0, φuk ≥ 0 (UDC capacity upper bound)

Objective function

min
∑
u∈U

Fuyu +
∑
u∈U
k∈K

(ckuϕku +cukϕuk ) +
∑

uv∈AU

guv zuv +
∑

uv∈AU
k∈K

cuv (ϕpk
uv + ϕdk

uv ) +
∑
r∈R

c(r)xr
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Constraints
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∑

u∈U
ϕku =

∑
i∈Dk

qi ∀k ∈ K gates-UDC flows∑
u∈U

ϕuk =
∑

i∈Pk

qi ∀k ∈ K

ϕuk + ϕku ≤ χku
∑

i∈Pk∪Dk

qi ∀k ∈ K , u ∈ U

χku ≤ yu ∀k ∈ K , u ∈ U∑
u∈U
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v∈U\u
ϕdk
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−p
u
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v∈U\u
ϕ
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vu =

∑
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ϕ
pk
uv + ϕuk ∀k ∈ K , u ∈ U
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MRLRP B&C for VRPIRF B&P for VRPIRF

The GALW Matheuristic
A Four-stage Decomposition Heuristic

1–Route Generator
Generation of a set of delivery/pick-up service routes
I construction + local search

2–Assignment Subproblem
Solution of a MILP assignment subproblem to:
I choose a subset of UDC
I assign demands to UDCs at both first and second level
I constraints: fleet balance, UDCs capacity

3–Ring Construction
The chosen UDCs are connected by solving a Symmetric TSP

4–Ring MultiFlow Subproblem
Solution of a LP ring multiflow with capacities and demands problem
I routing of indirect shipments
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MRLRP B&C for VRPIRF B&P for VRPIRF

GALW: a Matheuristic Approach
Stage 1: Route Generator

Generation of a route m
I first demand: random choice of one with a less-than-average # of visits
Inearest neighbor step considering both head and tail insertion:

d ′ = arg min
d∈D\m

pQ
q(m) + q(d)

Q
+ pC

c(m) + c(d)
C

+ pω
ω(d)
γ

I2-opt local search
Igeneration of m ends when no more demands can be added

How to obtain a good route set R

Imany route subsets R
t

with different maximal length
Ieach demand is served by at least ω feasible sequences of demands per

route subset
Iendpoints combination
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MRLRP B&C for VRPIRF B&P for VRPIRF

GALW: a Matheuristic Approach
Stage 2: Assignment Subproblem

Decision variables
1. UDC variables yu ∈ {0, 1}
2. service variables χku ∈ {0, 1}
3. second-level routing variables xr ∈ {0, 1}
4. first-level flow variables

Iϕku ≥ 0, ϕuk ≥ 0 (gates-UDCs flows)
Iφku ≥ 0, φuk ≥ 0 (UDC capacity upper bound)

Objective function

min
∑
u∈U

Fuyu +
∑
u∈U
k∈K

(ckuϕku +cukϕuk ) +
∑
r∈R

c(r)xr +
∑
u∈U

o=3...N

Fu,o ξ
u
o +

∑
u∈U
k∈K

cu fφ(φku , φuk )
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GALW: a Matheuristic Approach
Stage 2: Assignment Subproblem
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Figure 3: Solution of GALW stage2.
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MRLRP B&C for VRPIRF B&P for VRPIRF

GALW: a Matheuristic Approach
Stage 3: Ring Construction
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Figure 4: Solution of GALW stage3.
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MRLRP B&C for VRPIRF B&P for VRPIRF

GALW: a Matheuristic Approach
Stage 4: Ring Multiflow Subproblem
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Figure 5: Solution of GALW stage4.
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MRLRP B&C for VRPIRF B&P for VRPIRF

Computational Results

MRLRP instances
Derived from benchmark CLRP instances taken from [5] with MRLRP
additional features
[5] C.Prins, C.Prodhon, R.Wolfler Calvo, Solving the capacitated location-routing problem by a GRASP

complemented by a learning process and a path relinking. 4OR, 4(3):221–238, 2006.

Computational evaluation
Iaim: to establish how:

I the hardness of an instance is affected its dimensional features
I the decomposition process affects GALW performance

I collections of MRLRP instances, subdivided in scenarios:
I different scenarios⇒ different |U| or |K | or |L| or |D| = |P|
I in a scenario: different ring costs

Methods
Three methods are evaluated and compared:
IExact method (X): Branch&Bound on MILP model with complete route set
IGALW (H)
IHybrid method (Y): Branch&Bound on MILP model with GALW’s route set
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MRLRP B&C for VRPIRF B&P for VRPIRF

Computational Results
Small-sized instances

Features Exact(X ) GALW Hybrid(Y )
Instance |K | |U| |L| |D| N q M %r T/% #ps %X t #ps %Y %X T/%

galwc01-0-L|L 5 5 5 15 5 70 50 3.5 24.8 21503 2.1 3.6 3122 0.0 2.1 3.6
galwc01-1-L|L 5 5 5 20 5 70 50 3.3 48.7 37839 3.3 5.2 4033 0.1 3.2 4.8
galwc01-2-L|L 5 10 5 15 10 70 50 4.5 642.5 64737 6.2 29.2 8388 2.4 3.9 37.3
galwc01-3-L|L 10 5 5 15 5 70 50 4.7 16.8 21503 3.8 4.7 3068 2.5 1.4 2.3
galwc01-4-L|L 5 5 10 15 5 70 50 4.4 31.0 31503 2.5 5.0 4348 0.0 2.5 2.7

average 4.1 152.8 35417 3.6 9.5 4592 1.0 2.6 10.1
galwc02-0-L|L 5 5 5 15 5 70 50 5.7 8.0 14066 1.4 2.2 2319 0.0 1.4 1.6
galwc02-1-L|L 5 5 5 20 5 70 50 6.0 13.3 33616 0.9 3.4 3253 0.1 0.8 1.9
galwc02-2-L|L 5 10 5 15 10 70 50 5.0 59.7 39438 3.6 5.3 4707 0.1 3.5 7.5
galwc02-3-L|L 10 5 5 15 5 70 50 3.2 2.8 14066 0.3 2.7 2324 0.1 0.2 1.4
galwc02-4-L|L 5 5 10 15 5 70 50 6.3 8.0 23190 0.2 3.1 3478 0.0 0.2 2.0

average 5.2 18.4 24875 1.3 3.3 3216 0.1 1.2 2.9
galwc03-0-L|L 5 5 5 15 5 150 65 18.6 10.8 18761 2.1 2.7 2082 0.0 2.1 2.2
galwc03-1-L|L 5 5 5 20 5 150 65 16.0 113.8 68987 3.7 4.0 3513 1.5 2.2 3.8
galwc03-2-L|L 5 10 5 15 10 150 65 19.2 181.9 79140 0.6 27.1 8449 0.0 0.6 13.7
galwc03-3-L|L 10 5 5 15 5 150 65 18.6 11.3 18761 2.7 2.5 2085 0.0 2.7 1.8
galwc03-4-L|L 5 5 10 15 5 150 65 18.1 22.7 31590 1.9 3.2 3319 0.0 1.9 2.7

average 18.1 68.1 43448 2.2 7.9 3890 0.3 1.9 4.8

Table 1: Numerical results of the three methods.
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MRLRP B&C for VRPIRF B&P for VRPIRF

Computational Results
Medium-sized instances

Features GALW Hybrid(Y )
Instance |K | |U| |L| |D| N q M t #ps %Y T/%

galwc04-0-L|L 5 5 5 25 5 70 60 4.0 3180 3.0 3.9
galwc04-1-L|L 5 5 5 40 5 70 60 10.0 7376 2.0 8.3
galwc04-2-L|L 5 10 5 25 10 70 60 12.7 9428 1.4 33.2
galwc04-3-L|L 10 5 5 25 5 70 60 4.4 3155 1.1 4.1
galwc04-4-L|L 5 5 10 25 5 70 60 4.7 4448 0.6 4.2

average 7.2 5517 1.6 10.7
galwc05-0-L|L 5 5 5 25 5 150 65 8.9 4791 0.7 7.4
galwc05-1-L|L 5 5 5 40 5 150 65 26.2 10902 0.3 23.1
galwc05-2-L|L 5 10 5 25 10 150 65 25.7 13286 3.0 31.1
galwc05-3-L|L 10 5 5 25 5 150 65 8.7 4752 0.0 8.9
galwc05-4-L|L 5 5 10 25 5 150 65 10.6 6936 0.0 9.0

average 16.0 8133 0.8 15.9

Table 2: Numerical results of GALW and the hybrid method.
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MRLRP B&C for VRPIRF B&P for VRPIRF

Computational Results
Big-sized instances

Features GALW Hybrid(Y )
Instance |K | |U| |L| |D| N q M t #ps %Y T/%

galwc06-0-L|L 5 5 10 50 5 70 50 20.7 6350 0.5 20.1
galwc06-1-L|L 5 5 10 80 5 70 50 59.7 16593 0.7 271.0
galwc06-2-L|L 5 10 10 50 10 70 50 64.2 15019 0.0 69.8
galwc06-3-L|L 10 5 10 50 5 70 50 21.6 6412 0.1 16.9
galwc06-4-L|L 5 5 15 50 5 70 50 22.7 9334 0.5 21.0

average 37.8 10742 0.4 79.8
galwc07-0-L|L 5 5 10 50 5 70 50 25.2 10814 0.0 18.0
galwc07-1-L|L 5 5 10 80 5 70 50 131.2 28020 0.6 768.3
galwc07-2-L|L 5 10 10 50 10 70 50 250.1 26212 0.2 281.1
galwc07-3-L|L 10 5 10 50 5 70 50 39.7 10912 0.2 55.7
galwc07-4-L|L 5 5 15 50 5 70 50 27.7 13963 0.1 23.8

average 94.8 17984 0.2 229.4
galwc08-0-L|L 5 10 10 50 10 70 50 474.8 14835 2.0 2681.4
galwc08-1-L|L 5 10 10 80 10 70 50 499.0 36996 −∞ (+∞)
galwc08-2-L|L 5 15 10 50 15 70 50 621.3 27451 -18.6 (28.9%)
galwc08-3-L|L 10 10 10 50 10 70 50 842.8 14691 -0.1 (2.0%)
galwc08-4-L|L 5 10 15 50 10 70 50 399.7 19571 5.8 879.2

average 567.5 22709 -2.7 2690.2

Table 3: Numerical results of GALW and the hybrid method
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MRLRP B&C for VRPIRF B&P for VRPIRF

Plan

Multicommodity-Ring Location Routing Problem (MRLRP)

Branch&Cut for the VRP with Intermediate Replenishment Facilities (VRPIRF)

Branch&Price for the VRP with Intermediate Replenishment Facilities
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MRLRP B&C for VRPIRF B&P for VRPIRF

VRP with Intermediate Replenishment Facilities (VRPIRF)

Figure 6: A VRPIRF instance: the depot (blue), the facilities (red), and the customers
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MRLRP B&C for VRPIRF B&P for VRPIRF

VRP with Intermediate Replenishment Facilities (VRPIRF)

Figure 6: A solution to the previous instance: rotation of first vehicle
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MRLRP B&C for VRPIRF B&P for VRPIRF

VRP with Intermediate Replenishment Facilities (VRPIRF)

Figure 6: A solution to the previous instance: rotation of second vehicle
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MRLRP B&C for VRPIRF B&P for VRPIRF

VRP with Intermediate Replenishment Facilities (VRPIRF)
Problem Definition

Actors
I set of customers with a demand and a service time
Ia depot, the base of a fleet of homogeneous vehicles with fixed capacity
Ia set of replenishment facilities, with a recharge time each

Distinctive Features
Imulti-trip: vehicles can replenish at facilities when empty⇒ rotation
I the depot has no replenishment purposes
Ia vehicle’s rotation must:

I start and end at the depot
I not exceed a given maximum shift length

Objective
Find a minimum-cost set of rotations that visit each client exactly once
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MRLRP B&C for VRPIRF B&P for VRPIRF

Main features of the MILP model for VRPIRF
Replenishment arcs

Replenishment arcs
They represent stops at facilities to recharge in between two customers
⇒ no facility nodes
⇒ the depot is the only node with in/outdegree greater than 1
⇒ a rotation becomes very similar to a classical CVRP route
⇒ connectivity of rotations can be assured in a much stronger way
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Main features of the MILP model for VRPIRF
Replenishment arcs

Replenishment arcs
They represent stops at facilities to recharge in between two customers
⇒ no facility nodes
⇒ the depot is the only node with in/outdegree greater than 1
⇒ a rotation becomes very similar to a classical CVRP route
⇒ connectivity of rotations can be assured in a much stronger way

Figure 7: The same rotation with replenishment arcs and without.
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MRLRP B&C for VRPIRF B&P for VRPIRF

Main features of the MILP model for VRPIRF
Arrival times

Arrival times
They allow to keep track of time on a partial path from the depot:

(∀i ∈ C)
∑

j∈V\{i}

zij =
∑

j∈V\{i}

zji +
∑

j∈V\{i}

tijxij +
∑

j∈C\{i}

uijwij ; zi∆ ≤ Txi∆

⇒ maximal shift length is enforced without vehicle index
⇒ dramatic reduction of symmetry issues
⇒ connectivity of integer solutions as a side effect
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Arrival times
They allow to keep track of time on a partial path from the depot:

(∀i ∈ C)
∑

j∈V\{i}

zij =
∑

j∈V\{i}

zji +
∑

j∈V\{i}

tijxij +
∑

j∈C\{i}

uijwij ; zi∆ ≤ Txi∆

⇒ maximal shift length is enforced without vehicle index
⇒ dramatic reduction of symmetry issues
⇒ connectivity of integer solutions as a side effect

Figure 8: In this rotation, z4∆ ≤ T is sufficient to enforce the maximum shift length.
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MRLRP B&C for VRPIRF B&P for VRPIRF

A MILP 2-Index Formulation for VRPIRF

Decision variables
1. base arc variables xij ∈ {0, 1}
2. replenishment arc variables wij ∈ {0, 1}
3. arrival time variables zij ≥ 0

Objective function

min
∑
ij∈A0

dij xij +
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MRLRP B&C for VRPIRF B&P for VRPIRF

A MILP 2-Index Formulation for VRPIRF

Objective function

min
∑
ij∈A0

dij xij +
∑

ij∈AP

fij wij

Constraints

s.t. x(δ−0 (∆)) + w(AP) ≥ κ(C) min nr of routes

x(δ+
0 (i)) + w(δ+

P(i)) = x(δ−0 (i)) + w(δ−P (i)) ∀i∈C clients service

x(δ+
0 (i)) + w(δ+

P(i)) = 1 ∀i∈C
x(δ−0 (∆)) ≤ nK depot degree

x(δ+
0 (∆)) = x(δ−0 (∆))

x(A0(S)) ≤ |S| − κ(S) ∀S∈S(C) capacity

z∆i = t∆i x∆i ∀i∈C arrival times

(t∆i +tij )xij +(t∆i +uij )wij≤zij≤(T−tj∆)(xij +wij ) ∀i∈C, j∈C\{i}∑
j∈V\{i}

zij =
∑

j∈V\{i}
zji +

∑
j∈V\{i}

tij xij +
∑

j∈C\{i}
uij wij ∀i∈C

(t∆i + ti∆)xi∆ ≤ zi∆ ≤ Txi∆ ∀i∈C max shift length

xij ,wij ∈ {0, 1}, zij ≥ 0
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MRLRP B&C for VRPIRF B&P for VRPIRF

Separation

Capacity constraints
Separated as classical capacity constraints on base arcs only
I solution transformation to symmetric, one-depot support graph is required
I separated using CVRPSEP (see [18]) routines and imposed as rounded capacity

inequalities (RCI)

x(A0(S)) ≤ |S| − r(S) = |S| − d 1
Q

∑
i∈S qie

[18] J.Lysgaard, A.N.Letchford, R.W.Eglese, A new branch-and-cut algorithm for the capacitated vehicle routing
problem. Mathematical Programming, 100(2):423–445, 2004.

Valid inequalities
IConnectivity valid inequalities exploit the rotation structure, imposed as SECS on

both base and replenishment arcs:

(∀S ∈ S(C)) x(A0(S)) + w(AP(S)) ≤ |S| − 1

IMultistar inequalities: given nucleus N ⊂ C and satellites S ⊆ C \ N (see [19])

α(N,S)
∑

ij∈A(N)

xij + β(N,S)
∑

ij∈A(C:S)

xij ≤ γ(N,S)

[19] J.Lysgaard, A.N.Letchford, R.W.Eglese, Multistars, partial multistars and the capacitated vehicle routing
problem. Mathematical Programming, 94(1):21–40, 2002.
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MRLRP B&C for VRPIRF B&P for VRPIRF

Computational Results

Benchmark Instances
I instances taken from Crevier et al. (see [?]) and Tarantilis et al. (see [?])
I features: from 48 to 288 customers, 2 to 7 facilities, 2 to 8 vehicles

Computational Strategy
I smaller instances (48 to 75 customers):

I complete computation
I time limit: 3600–5400s on both root node and Branch&Bound search
IBranch&Bound search fed with the best known solution (see [?]) as initial UB

Ibigger instances (96+ customers):
I cutting plane algorithm at root (time limit: 3600–7200s)
I the gap with the best known solution is reported

26 / 38



MRLRP B&C for VRPIRF B&P for VRPIRF

Computational Results

Benchmark Instances
I instances taken from Crevier et al. (see [?]) and Tarantilis et al. (see [?])
I features: from 48 to 288 customers, 2 to 7 facilities, 2 to 8 vehicles

Computational Strategy
I smaller instances (48 to 75 customers):

I complete computation
I time limit: 3600–5400s on both root node and Branch&Bound search
IBranch&Bound search fed with the best known solution (see [?]) as initial UB

Ibigger instances (96+ customers):
I cutting plane algorithm at root (time limit: 3600–7200s)
I the gap with the best known solution is reported

26 / 38



MRLRP B&C for VRPIRF B&P for VRPIRF

Computational Results

instance n f nK T1 =T23 t1 t23 BKS %1 %
23

50c3d2v 50 2 2 3600 4.51 42.44 2209.83 1.89 0.00
50c3d4v 50 2 4 3600 1.37 3600.12 2368.33 11.07 9.61
50c3d6v 50 2 6 3600 2.07 3600.01 2999.29 11.57 11.11
50c5d2v 50 4 2 3600 3.75 386.21 2608.25 2.18 0.00
50c5d4v 50 4 4 3600 2.01 3600.01 3086.58 8.27 6.98
50c5d6v 50 4 6 3600 1.97 3600.01 3548.88 12.44 9.90
50c7d2v 50 6 2 3600 5.78 437.26 3353.08 2.11 0.00
50c7d4v 50 6 4 3600 3.92 3600.01 3380.27 2.88 0.25
50c7d6v 50 6 6 3600 2.33 3600.01 4074.43 11.94 10.08

75c3d2v 75 2 2 5400 36.19 4101.01 2678.79 1.62 0.00
75c3d4v 75 2 4 5400 26.44 5400.31 2746.73 2.94 1.44
75c3d6v 75 2 6 5400 59.33 5400.04 3393.88 7.85 7.65
75c5d2v 75 4 2 5400 40.71 5400.28 3373.68 3.48 2.43
75c5d4v 75 4 4 5400 16.78 5400.25 3553.46 6.07 5.54
75c5d6v 75 4 6 5400 20.24 5400.06 4184.65 8.13 7.97
75c7d2v 75 6 2 5400 42.71 5400.01 3569.01 1.90 0.63
75c7d4v 75 6 4 5400 13.64 5400.22 3822.09 4.99 4.22
75c7d6v 75 6 6 5400 12.49 5400.10 4239.76 7.62 6.76

Table 4: Results on Tarantilis et al. instances with 50 to 75 customers.
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MRLRP B&C for VRPIRF B&P for VRPIRF

Computational Results

instance n f nK T12 t1 t2 BKS %1 %2

100c3d3v 100 2 3 3600 170.76 34.84 3123.51 2.47 2.47
100c3d5v 100 2 5 3600 62.75 76.81 3548.44 13.58 13.58
100c3d7v 100 2 7 3600 372.76 2692.72 4235.30 9.40 9.32
100c5d3v 100 4 3 3600 244.81 84.93 4053.95 2.60 2.47
100c5d5v 100 4 5 3600 17.12 25.49 4413.16 9.36 9.23
100c5d7v 100 4 7 3600 84.26 49.56 5142.52 13.71 13.62
100c7d3v 100 6 3 3600 158.96 62.10 4207.79 5.41 5.41
100c7d5v 100 6 5 3600 54.55 54.67 4412.85 10.25 10.25
100c7d7v 100 6 7 3600 94.58 61.94 4869.65 10.46 10.46

125c4d3v 125 3 3 3600 465.86 158.00 3916.01 2.47 2.36
125c4d5v 125 3 5 3600 117.57 156.57 4308.44 9.36 9.36
125c4d7v 125 3 7 3600 289.77 162.71 4664.38 10.87 10.87
125c6d3v 125 5 3 3600 329.12 103.28 4063.25 2.55 2.55
125c6d5v 125 5 5 3600 791.67 1041.44 4760.46 6.25 6.15
125c6d7v 125 5 7 3600 265.55 148.37 5164.02 7.83 7.81
125c8d3v 125 7 3 3600 992.42 135.43 4534.14 3.97 3.97
125c8d5v 125 7 5 3600 1839.76 1765.75 4947.00 5.08 5.08
125c8d7v 125 7 7 3600 1184.34 2489.37 5334.91 6.94 6.94

Table 5: Results on Tarantilis et al. instances with 100 and 125 customers.
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MRLRP B&C for VRPIRF B&P for VRPIRF

Computational Results

instance n f nK T12 t1 t2 BKS %1 %2

150c4d3v 150 3 3 3600 2060.68 464.98 4049.47 2.09 2.09
150c4d5v 150 3 5 3600 1566.35 2933.70 4618.71 7.28 7.28
150c4d7v 150 3 7 3600 1311.58 3827.35 5118.40 9.82 9.82
150c6d3v 150 5 3 3600 940.12 138.51 4057.08 4.12 4.09
150c6d5v 150 5 5 3600 3620.32 4855.28 5.96
150c6d7v 150 5 7 3600 3798.86 5695.25 7.95
150c8d3v 150 7 3 3600 1749.28 247.99 4641.29 3.15 3.08
150c8d5v 150 7 5 3600 424.25 251.98 5065.10 6.41 6.41
150c8d7v 150 7 7 3600 444.10 327.18 5605.82 9.08 9.08

175c4d4v 175 3 4 3600 3652.25 4692.53 3.40
175c4d6v 175 3 6 3600 3458.49 142.12 4816.54 4.13 4.13
175c4d8v 175 3 8 3600 3664.08 5830.62 9.87
175c6d4v 175 5 4 3600 3813.19 5000.89 4.53
175c6d6v 175 5 6 3600 2685.38 1304.21 5291.62 5.38 5.38
175c6d8v 175 5 8 3600 2708.57 1089.71 6034.21 9.94 9.94
175c8d4v 175 7 4 3600 3731.42 5747.72 5.29
175c8d6v 175 7 6 3600 2836.71 961.12 5914.00 5.00 5.00
175c8d8v 175 7 8 3600 3764.96 6766.54 8.39

Table 6: Results on Tarantilis et al. instances with 150 and 175 customers.
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MRLRP B&C for VRPIRF B&P for VRPIRF

Computational Results

instance n f nK T1 =T23 t1 t23 BKS %1 %
23

a1 48 2 6 3600 5.77 3600.22 1179.79 7.70 6.91
d1 48 3 5 3600 7.93 3600.02 1059.42 7.67 6.44
a2 48 4 4 3600 0.76 3600.04 997.94 6.96 5.71

g1 72 4 5 5400 60.28 5400.02 1181.13 4.77 4.59
j1 72 5 4 5400 33.40 5400.08 1115.77 5.46 4.46
g2 72 6 4 5400 7.85 5400.06 1152.92 5.76 4.65

Table 7: Results on Crevier et al. instances with 48 to 72 customers.
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MRLRP B&C for VRPIRF B&P for VRPIRF

Computational Results

instance n f nK T12 t1 t2 BKS %1 %2

b1 96 2 4 3600 115.95 54.56 1217.07 3.38 3.37
e1 96 3 5 3600 59.40 25.51 1309.12 2.48 2.05
b2 96 4 4 3600 56.38 28.79 1291.18 3.88 3.87

h1 144 4 4 3600 1487.26 588.42 1545.50 4.26 4.25
k1 144 5 4 3600 622.59 187.87 1573.20 3.89 3.89
c2 144 4 4 3600 1016.70 195.45 1715.59 3.86 3.86
h2 144 6 4 3600 1160.07 133.82 1575.27 4.34 4.34

c1 192 2 5 3600 2755.35 871.72 1866.75 3.61 3.55
f1 192 3 4 3600 3543.95 61.81 1570.40 2.36 2.36
d2 192 4 3 3600 3808.18 1854.03 3.92

i1 216 4 4 7200 6090.99 1823.72 1922.17 2.85 2.85
l1 216 5 4 7200 7751.10 1863.27 3.23
i2 216 6 3 7200 7341.02 1919.73 3.89

e2 240 4 3 7200 7394.10 1916.67 4.43

f2 288 4 3 7200 7201.17 2230.30 7.28
j2 288 6 3 7200 8472.73 2247.68 3.13

Table 8: Results on Crevier et al. instances with 96 to 288 customers.
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MRLRP B&C for VRPIRF B&P for VRPIRF

Plan

Multicommodity-Ring Location Routing Problem (MRLRP)

Branch&Cut for the VRP with Intermediate Replenishment Facilities (VRPIRF)

Branch&Price for the VRP with Intermediate Replenishment Facilities
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MRLRP B&C for VRPIRF B&P for VRPIRF

A MILP Extended Formulation

Decision variables

1. route variables xk
r ∈ {0, 1}

2. usage variables x̃k ∈ {0, 1}
3. activity variables y k

p ∈ {0, 1}

Objective function

min
∑
k∈K

∑
r∈R

cr xk
r
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MRLRP B&C for VRPIRF B&P for VRPIRF

A MILP Extended Formulation

Objective function

min
∑
k∈K

∑
r∈R

cr xk
r

Constraints

s.t.
∑

r∈R

∑
k∈K

ai
r xk

r ≥ 1 ∀i ∈ C clients service∑
r∈R

ai
r e′pr xk

r ≤ yk
p ≤ x̃k ∀k ∈ K , p ∈ F , i ∈ C vehicle activity at facilities∑

r∈R
(e′pr − e′′pr ) xk

r = 0 ∀k ∈ K , p ∈ F depot degree∑
r∈R

tr xk
r ≤ T x̃k ∀k ∈ K max shift length∑

r∈R
e′∆r xk

r =
∑

r∈R
e′′∆r xk

r = x̃k ∀k ∈ K vehicle activity and usage∑
r∈R

b′sr xk
r ≥ yk

p ∀k ∈ K , p ∈ F , s ∈ Sp foreconnectivity∑
r∈R

b′′sr xk
r ≥ yk

p ∀k ∈ K , p ∈ F , s ∈ Sp backconnectivity

x̃k
, xk

r , y
k
p ∈ {0, 1}
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MRLRP B&C for VRPIRF B&P for VRPIRF

A MILP Extended Formulation
Main features

Route variables
Iembedded structural information
⇒ better representation of connectivity constraints w.r.t. a 3-index compact model

Ion the other hand: they are in exponential number
⇒ the solving calls for a Column Generation approach

Facility Graph
I connectivity constraints defined on subset of facilities (rather than nodes)
I connectivity constraints can be statically generated
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A Branch&Price algorithm for the VRPIRF
Pricing Problem

Pricing Problem
I the Pricing Problem delivers routes (and not rotations)
I it can be seen as an Elementary Shortest Path Problem with Resource

Constraint (ESPPRC)
I solved with a Dynamic Programming (DP) algorithm inspired by that of [20]
I the expression of the reduced costs

ck
r =

∑
ij∈A

bij
r ·(dij − τij ·β?k )−

∑
i∈C

ai
r ·(α?i + τi ·β?k +

∑
p∈F

e′pr ·ϕ?kpi)

− e′∆r ·µ′
?

k − e′′∆r ·µ′′
?

k −
∑
p∈F

1
2 (e
′p
r + e′′pr )·τp ·β?k −

∑
p∈F

(e′pr − e′′pr )·θ?kp

−
∑
s⊆F

∑
p∈s

((
e′∆r +

∑
q/∈s

e′qr
)(∑

q∈s

e′′qr
)
·δ′?kps +

(∑
q∈s

e′qr
)(

e′′∆r +
∑
q/∈s

e′′qr
)
·δ′′?kps

)
calls for the solving of a pricing problem per vehicle and per starting point

[20] D.Feillet, P.Dejax, M.Gendreau, C.Gueguen, An exact algorithm for the elementary shortest path problem with
resource constraints: Application to some vehicle routing problems. Networks, 44(3):216–229, 2004.
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Dominance Level
The dominance rule of [20] compares cost, resources, unreachable nodes.
Different dominance levels are used to accelerate ESPPRC convergence
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The dominance rule of [20] compares cost, resources, unreachable nodes.
Different dominance levels are used to accelerate ESPPRC convergence

q-paths
A completion bound based on q-paths and through-q-routes is used (see [21]).
A new label is discarded if the sum of its cost and such bound is nonnegative.
[21] N.Christofides, A.Mingozzi, P.Toth, Exact algorithms for the vehicle routing problem, based on spanning tree

and shortest path relaxations. Mathematical Programming, 20(1):255–282, 1981.
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A new label is discarded if the sum of its cost and such bound is nonnegative.
[21] N.Christofides, A.Mingozzi, P.Toth, Exact algorithms for the vehicle routing problem, based on spanning tree

and shortest path relaxations. Mathematical Programming, 20(1):255–282, 1981.

ng-paths
ng-paths allow to forbid n-loops, n ≥ 2 (see [22]).
They are used to further restrain combinatorial explosion:
Ian initial neighborhood for each customer
Iwe replace the unreachable nodes with the forbidden nodes of an ng-path
⇒ the number of potential label on a node decreases dramatically

I if a nonelementary path occurs⇒ enlarge the neighborhood and repeat.
Experimentally this rarely happens⇒ the use of ng-paths pays off

[22] R.Baldacci, A.Mingozzi, R.Roberti, New Route Relaxation and Pricing Strategies for the Vehicle Routing
Problem. Operations Research, 59(5):1269–1283, 2011.
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A Branch&Price algorithm for the VRPIRF
Branching

Branching rules
Three Problem-tailored Branching rules are defined and applied in this order:
1. branching on the number of vehicles: either we use no more than
b
∑

k∈K x̃kc vehicles, or at least d
∑

k∈K x̃ke
2. branching on the activity variables y k

p ⇒ the Pricing Problems related to
vehicle k and facility p are affected

3. branching on arc variables:

x?ij =
∑
r∈R

bij
r ·x?r

We seek for the node with the highest number of fractional outgoing arc
variables and impose one half of them to be 0 in each child node
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A Branch&Price algorithm for the VRPIRF
Preliminary computational results

instance B&P B&C
tr %r tr %r

50c3d2v 182 4.87 9 1.65
50c3d4v 655 17.83 9 10.72
50c3d6v 386 39.40 14 11.32
50c5d2v 138 5.10 10 1.81
50c5d4v 146 16.39 12 7.61
50c5d6v 216 31.86 15 10.41
50c7d2v 36 3.48 15 1.92
50c7d4v 66 4.31 11 2.38
50c7d6v 111 24.25 15 11.08

a1 55 7.07 41 7.59
d1 89 6.12 39 7.62
a2 1144 11.33 6 6.68

instance B&P B&C
tr %r tr %r

75c3d2v +∞ 54 1.62
75c3d4v +∞ 50 2.84
75c3d6v +∞ 178 7.78
75c5d2v 866 1.45 64 3.39
75c5d4v +∞ 40 6.01
75c5d6v 708 13.10 58 8.13
75c7d2v +∞ 57 1.73
75c7d4v +∞ 36 4.88
75c7d6v +∞ 34 7.14

g1 916 4.83 136 4.76
j1 +∞ 57 5.40
g2 +∞ 30 5.26

Figure 9: Comparison of the Branch&Cut and the Branch&Price algorithms. Both are
asked to perform a cutting plane at the root node on a sample of small instances,
under a 1200s time limit.
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A Branch&Price algorithm for the VRPIRF

A weakness of the model
The connectivity constraints have a weaker impact than the connectivity valid
inequalities of the Branch&Cut algorithm

Figure 10: Detection of a fractional solution of a small instance that would be cut in the
Branch&Cut algorithm but not in the Branch&Price algorithm.
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