Solving Strategic and Tactical Optimization Problems in City Logistics

Optimisation Stratégique et Tactique en Logistique Urbaine

2021

Plan

Multicommodity-Ring Location Routing Problem (MRLRP)

Branch \& Cut for the VRP with Intermediate Replenishment Facilities (VRPIRF)

Branch\&Price for the VRP with Intermediate Replenishment Facilities

Plan

Multicommodity-Ring Location Routing Problem (MRLRP)

Branch \& Cut for the VRP with Intermediate Replenishment Facilities (VRPIRF)

Branch \& Price for the VRP with Intermediate Replenishment Facilities

Plan

Multicommodity-Ring Location Routing Problem (MRLRP)

Branch\&Cut for the VRP with Intermediate Replenishment Facilities (VRPIRF)

Branch \& Price for the VRP with Intermediate Replenishment Facilities

Plan

Multicommodity-Ring Location Routing Problem (MRLRP)

Branch\&Cut for the VRP with Intermediate Replenishment Facilities (VRPIRF)

Branch\&Price for the VRP with Intermediate Replenishment Facilities

The Multicommodity-Ring Location Routing Problem

Figure 1: A MRLRP instance: gates, sites, delivery and pickup demands, SPLs

The Multicommodity-Ring Location Routing Problem An instance: solution

Figure 2: A solution to the previous instance

The Multicommodity-Ring Location Routing Problem
 Problem definition

Gates

Sources/destinations of delivery/pick-up goods

The Multicommodity-Ring Location Routing Problem
 Problem definition

Gates

Sources/destinations of delivery/pick-up goods

Ring

- UDCs with fixed installation cost and capacity
- ring arcs with
- fixed installation cost and capacity
- per-load-unit transportation cost

The Multicommodity-Ring Location Routing Problem Problem definition

Gates

Sources/destinations of delivery/pick-up goods

Ring

- UDCs with fixed installation cost and capacity
- ring arcs with
- fixed installation cost and capacity
- per-load-unit transportation cost

Routing

- vehicles with maximum load and trip length
- separate service of pickup and delivery demands
- service routes may be open
\Rightarrow SPLs are additional ending points \Rightarrow same fleet for UDCs and SPLs
\Rightarrow fleet rebalancing constraints on SPLs and UDCs

The Multicommodity-Ring Location Routing Problem
 Problem definition

Strategic analysis

- Time-independent scenario
- Goods type is not considered

The Multicommodity-Ring Location Routing Problem
Problem definition

Strategic analysis

- Time-independent scenario
- Goods type is not considered

Decisions

- install UDCs and ring
- gates-UDCs, ring flows
- demands assignment to UDCs

The Multicommodity-Ring Location Routing Problem

 Problem definition
Strategic analysis

- Time-independent scenario
- Goods type is not considered

Decisions

- install UDCs and ring
- gates-UDCs, ring flows
- demands assignment to UDCs

Objective function
Minimize the sum of:

- installation costs
- flow transportation costs
- routing costs

MILP model for MRLRP

Decision variables

1. ring variables $y_{u} \in\{0,1\}, z_{u v} \in\{0,1\}$
2. service variables $\chi_{k u} \in\{0,1\}$
3. second-level routing variables $x_{r} \in\{0,1\}$
4. first-level flow variables

- $\varphi_{k u} \geq 0, \varphi_{u k} \geq 0$ (gates-UDCs flows)
- $\varphi_{u v}^{d k} \geq 0, \varphi_{u v}^{p k} \geq 0$ (ring flows)
- $\phi_{k u} \geq 0, \phi_{u k} \geq 0$ (UDC capacity upper bound)

MILP model for MRLRP

Decision variables

1. ring variables $y_{u} \in\{0,1\}, z_{u v} \in\{0,1\}$
2. service variables $\chi_{k u} \in\{0,1\}$
3. second-level routing variables $x_{r} \in\{0,1\}$
4. first-level flow variables $\varphi_{k u} \geq 0, \varphi_{u k} \geq 0, \varphi_{u v}^{d k} \geq 0, \varphi_{u v}^{p k} \geq 0, \phi_{k u} \geq 0, \phi_{u k} \geq 0$

Objective function

$$
\min \sum_{u \in U} F_{u} y_{u}+\sum_{\substack{u \in U \\ k \in K}}\left(c_{k u} \varphi_{k u}+c_{u k} \varphi_{u k}\right)+\sum_{u v \in A_{u}} g_{u v} z_{u v}+\sum_{\substack{u v \in A_{U} \\ k \in K}} c_{u v}\left(\varphi_{u v}^{p k}+\varphi_{u v}^{d k}\right)+\sum_{r \in \mathscr{R}} c(r) x_{r}
$$

Cost terms:

- UDC installation
- UDC-gates flows
- ring installation
- ring flows
-Second level routing

MILP model for MRLRP

Objective function

$$
\min \sum_{u \in U} F_{u} y_{u}+\sum_{\substack{u \in U \\ k \in K}}\left(c_{k u} \varphi_{k u}+c_{u k} \varphi_{u k}\right)+\sum_{u v \in A_{U}} g_{u v} z_{u v}+\sum_{\substack{u v \in A_{U} \\ k \in K}} c_{u v}\left(\varphi_{u v}^{p k}+\varphi_{u v}^{d k}\right)+\sum_{r \in \mathscr{R}} c(r) x_{r}
$$

Constraints

$$
\begin{array}{ll}
\text { s.t. } \sum_{u \in U} \varphi_{k u}=\sum_{i \in D_{k}} q_{i} & \forall k \in K \quad \text { gates-UDC flows } \\
\sum_{u \in U} \varphi_{u k}=\sum_{i \in P_{k}} q_{i} & \forall k \in K \\
\varphi_{u k}+\varphi_{k u} \leq \chi_{k u} \sum_{i \in P_{k} \cup D_{k}} q_{i} & \forall k \in K, u \in U \\
\chi_{k u} \leq y_{u} & \forall k \in K, u \in U \\
\sum_{u \in U} \chi_{k u} \leq B & \forall k \in K \\
\varphi_{k u}+\sum_{v \in U \backslash u} \varphi_{V u}^{d k}=\sum_{v \in U \backslash u} \varphi_{u v}^{d k}+\sum_{r \in \mathscr{R}_{u}^{+d}} q_{k}(r) x_{r} & \forall k \in K, u \in U \text { UDC flow conservation } \\
\sum_{r \in \mathscr{R}_{u}^{-p}} q_{k}(r) x_{r}+\sum_{v \in U \backslash u} \varphi_{v u}^{p k}=\sum_{v \in U \backslash u} \varphi_{u v}^{p k}+\varphi_{u k} & \forall k \in K, u \in U
\end{array}
$$

MILP model for MRLRP

Objective function

$$
\min \sum_{u \in U} F_{u} y_{u}+\sum_{\substack{u \in U \\ k \in K}}\left(c_{k u} \varphi_{k u}+c_{u k} \varphi_{u k}\right)+\sum_{u v \in A_{U}} g_{u v} z_{u v}+\sum_{\substack{u v \in A_{u} \\ k \in K}} c_{u v}\left(\varphi_{u v}^{p k}+\varphi_{u v}^{d k}\right)+\sum_{r \in \mathscr{R}} c(r) x_{r}
$$

Constraints

$$
\begin{aligned}
& \text { s.t. } \sum_{r \in \mathscr{R}_{i}} x_{r}=1 \\
& x_{r} \leq y_{u} \leq \sum_{r \in \mathscr{R}_{u}^{+d}} x_{r}+\sum_{r \in \mathscr{R}_{u}^{--}} x_{r} \quad \forall r \in \mathscr{R}_{u}^{+} \cup \mathscr{R}_{u}^{-}, u \in U \text { logical constraints } \\
& -\delta_{h}^{-} \leq \sum_{r \in \mathscr{R}_{h}^{-}} x_{r}-\sum_{r \in \mathscr{R}_{h}^{+}} x_{r} \leq \delta_{h}^{+} \quad \forall h \in U \cup L \\
& \begin{array}{ll}
\sum_{\substack{v \in U \\
u<v}} z_{u v}+\sum_{\substack{v \in U \\
v<u}} z_{v u}=2 y_{u} & \forall u \in U \\
\sum_{\substack{u \in S \\
v \in S \\
u<v}} z_{u v}+\sum_{\substack{u \notin S \\
v \in S \\
u<v}} z_{u v} \geq 2\left(y_{w}+y_{w^{\prime}}-1\right) & \forall S \in \mathcal{S}_{U}, w \in S, w^{\prime} \in U S
\end{array}
\end{aligned}
$$

MILP model for MRLRP

Objective function

$$
\min \sum_{u \in U} F_{u} y_{u}+\sum_{\substack{u \in U \\ k \in K}}\left(c_{k u} \varphi_{k u}+c_{u k} \varphi_{u k}\right)+\sum_{u v \in A_{U}} g_{u v} z_{u v}+\sum_{\substack{u v \in A_{U} \\ k \in K}} c_{u v}\left(\varphi_{u v}^{p k}+\varphi_{u v}^{d k}\right)+\sum_{r \in \mathscr{R}} c(r) x_{r}
$$

Constraints

$$
\begin{array}{lll}
\text { s.t. } & \sum_{k \in K}\left(\varphi_{u v}^{d k}+\varphi_{u v}^{p k}\right) \leq q_{u v} z_{u v} & \forall(u, v) \in A_{U}^{\prime} \\
\sum_{k \in K}\left(\varphi_{v u}^{d k}+\varphi_{v u}^{p k}\right) \leq q_{v u} z_{u v} & \text { ring arcs capacity } \\
\sum_{k \in K}\left(\phi_{k u}+\varphi_{k u}+\phi_{u k}+\varphi_{u k}\right) \leq Q_{u} y_{u} & \forall u \in U & \text { UDC capacity } \\
\phi_{k u} \geq \sum_{r \in \mathscr{R}_{u}^{+d}} q_{k}(r) x_{r}-\varphi_{k u} & \forall k \in K, u \in U & \\
& \phi_{u k} \geq \sum_{r \in \mathscr{R}_{u}^{-p}}^{\prime} q_{k}(r) x_{r}-\varphi_{u k} & \forall k \in K, u \in U \\
& & \\
\sum_{u \in U} y_{u} \leq N & \text { budget constraint } \\
y_{u}, z_{u v}, \chi_{k u}, x_{r} \in\{0,1\}, \varphi_{u v}^{p k}, \varphi_{u v}^{d k}, \varphi_{k u}, \varphi_{u k}, \phi_{u k}, \phi_{k u} \geq 0 &
\end{array}
$$

The GALW Matheuristic

A Four-stage Decomposition Heuristic

1-Route Generator

Generation of a set of delivery/pick-up service routes

- construction + local search

The GALW Matheuristic

A Four-stage Decomposition Heuristic

1-Route Generator

Generation of a set of delivery/pick-up service routes

- construction + local search

2-Assignment Subproblem

Solution of a MILP assignment subproblem to:

- choose a subset of UDC
- assign demands to UDCs at both first and second level
- constraints: fleet balance, UDCs capacity

The GALW Matheuristic

A Four-stage Decomposition Heuristic

1-Route Generator

Generation of a set of delivery/pick-up service routes

- construction + local search

2-Assignment Subproblem

Solution of a MILP assignment subproblem to:

- choose a subset of UDC
- assign demands to UDCs at both first and second level
- constraints: fleet balance, UDCs capacity

3-Ring Construction

The chosen UDCs are connected by solving a Symmetric TSP

The GALW Matheuristic

A Four-stage Decomposition Heuristic

1-Route Generator

Generation of a set of delivery/pick-up service routes

- construction + local search

2-Assignment Subproblem

Solution of a MILP assignment subproblem to:

- choose a subset of UDC
- assign demands to UDCs at both first and second level
- constraints: fleet balance, UDCs capacity

3-Ring Construction

The chosen UDCs are connected by solving a Symmetric TSP
4-Ring MultiFlow Subproblem
Solution of a LP ring multiflow with capacities and demands problem

- routing of indirect shipments

GALW: a Matheuristic Approach

Stage 1: Route Generator

Generation of a route m

- first demand: random choice of one with a less-than-average \# of visits
- nearest neighbor step considering both head and tail insertion:

$$
d^{\prime}=\arg \min _{d \in D \backslash m} p_{Q} \frac{q(m)+q(d)}{Q}+p_{C} \frac{c(m)+c(d)}{C}+p_{\omega} \frac{\omega(d)}{\gamma}
$$

- 2-opt local search
- generation of m ends when no more demands can be added

GALW: a Matheuristic Approach

Stage 1: Route Generator

Generation of a route m

- first demand: random choice of one with a less-than-average \# of visits
- nearest neighbor step considering both head and tail insertion:

$$
d^{\prime}=\arg \min _{d \in D \backslash m} p_{Q} \frac{q(m)+q(d)}{Q}+p_{C} \frac{c(m)+c(d)}{C}+p_{\omega} \frac{\omega(d)}{\gamma}
$$

- 2-opt local search
- generation of m ends when no more demands can be added

How to obtain a good route set $\overline{\mathscr{R}}$

- many route subsets $\overline{\mathscr{R}}^{t}$ with different maximal length
- each demand is served by at least ω feasible sequences of demands per route subset
- endpoints combination

GALW: a Matheuristic Approach

Stage 2: Assignment Subproblem

Decision variables

1. UDC variables $y_{u} \in\{0,1\}$
2. service variables $\chi_{k u} \in\{0,1\}$
3. second-level routing variables $x_{r} \in\{0,1\}$
4. first-level flow variables

- $\varphi_{k u} \geq 0, \varphi_{u k} \geq 0$ (gates-UDCs flows)
- $\phi_{k u} \geq 0, \phi_{u k} \geq 0$ (UDC capacity upper bound)

GALW: a Matheuristic Approach

Stage 2: Assignment Subproblem

Decision variables

1. UDC variables $y_{u} \in\{0,1\}$
2. service variables $\chi_{k u} \in\{0,1\}$
3. second-level routing variables $x_{r} \in\{0,1\}$
4. first-level flow variables $\varphi_{k u} \geq 0, \varphi_{u k} \geq 0, \phi_{k u} \geq 0, \phi_{u k} \geq 0$

Objective function

$$
\min \sum_{u \in U} F_{u} y_{u}+\sum_{\substack{u \in U \\ k \in K}}\left(c_{k u} \varphi_{k u}+c_{u k} \varphi_{u k}\right)+\sum_{r \in \mathscr{R}} c(r) x_{r}+\sum_{\substack{u \in U \\ o=3 \ldots N}} F_{u, o} \xi_{o}^{u}+\sum_{\substack{u \in U \\ k \in K}} \overline{c_{u}} f_{\phi}\left(\phi_{k u}, \phi_{u k}\right)
$$

Cost terms:

- UDC installation
- UDC-gates flows
- Second level routing
- Ring construction costs estimate
- Ring flows costs estimate

GALW: a Matheuristic Approach

Stage 2: Assignment Subproblem

Objective function

$$
\min \sum_{u \in U} F_{u} y_{u}+\sum_{\substack{u \in U \\ k \in K}}\left(c_{k u} \varphi_{k u}+c_{u k} \varphi_{u k}\right)+\sum_{r \in \mathscr{R}} c(r) x_{r}+\sum_{\substack{u \in U \\ o=3 \ldots N}} F_{u, o} \xi_{o}^{u}+\sum_{\substack{u \in U \\ k \in K}} \overline{c_{u}} f_{\phi}\left(\phi_{k u}, \phi_{u k}\right)
$$

Constraints

s.t. $\sum_{u \in U} \varphi_{k u}=\sum_{i \in D_{k}} q_{i}$	$\forall k \in K$	gates-UDC flows
$\sum_{u \in U} \varphi_{u k}=\sum_{i \in P_{k}} q_{i}$	$\forall k \in K$	
$\varphi_{u k}+\varphi_{k u} \leq \chi_{k u} \sum_{i \in P_{k} \cup D_{k}} q_{i}$	$\forall k \in K, u \in U$	
$\chi_{k u} \leq y_{u}$	$\forall k \in K, u \in U$	
$\sum_{u \in U} \chi_{k u} \leq B$	$\forall k \in K$	
$\sum_{r \in \mathscr{R}_{i}} x_{r}=1$	$\forall i \in P \cup D$	demands service
	$x_{r} \leq y_{u} \leq \sum_{r \in \mathscr{R}_{u}^{+d}} x_{r}+\sum_{r \in \mathscr{R}_{u}^{-p}} x_{r}$	$\forall r \in \mathscr{R}_{u}^{+} \cup \mathscr{R}_{u}^{-}, u \in U$
	$\sum_{u \in U} y_{u} \leq N^{\prime}$	logical constraints

GALW: a Matheuristic Approach

Stage 2: Assignment Subproblem
Objective function

$$
\min \sum_{u \in U} F_{u} y_{u}+\sum_{\substack{u \in U \\ k \in K}}\left(c_{k u} \varphi_{k u}+c_{u k} \varphi_{u k}\right)+\sum_{r \in \mathscr{R}} c(r) x_{r}+\sum_{\substack{u \in U \\ o=3 \ldots N}} F_{u, o} \xi_{o}^{u}+\sum_{\substack{u \in U \\ k \in K}} \overline{c_{u}} f_{\phi}\left(\phi_{k u}, \phi_{u k}\right)
$$

Constraints

$$
\begin{array}{lll}
\text { s.t. }-\delta_{h}^{-} \leq \sum_{r \in \mathscr{R}_{h}^{-}} x_{r}-\sum_{r \in \mathscr{R}_{h}^{+}} x_{r} \leq \delta_{h}^{+} & \forall h \in U \cup L & \text { fleet rebalancing } \\
\sum_{k \in K}\left(\phi_{k u}+\varphi_{k u}+\phi_{u k}+\varphi_{u k}\right) \leq Q_{u} y_{u} & \forall u \in U & \text { UDC capacity } \\
\phi_{k u} \geq \sum_{r \in \mathscr{R}_{u}^{+d}} q_{k}(r) x_{r}-\varphi_{k u} & \forall k \in K, u \in U & \\
\phi_{u k} \geq \sum_{r \in \mathscr{R}_{u}^{-}} q_{k}(r) x_{r}-\varphi_{u k} & \forall k \in K, u \in U & \\
\sum_{k \in K} f_{\phi}\left(\phi_{k u}, \phi_{u k}\right) \leq \bar{q}_{u} y_{u} & \forall u \in U & \text { outgoing flows bound } \\
\frac{\xi_{0}^{u}=f_{\xi}\left(y_{u}: u \in U\right)}{y_{u}, z_{u v}, \chi_{k u}, x_{r} \in\{0,1\}, \varphi_{k u}, \varphi_{u k}, \phi_{u k}, \phi_{k u} \geq 0} & \forall u \in U, o \in\{3, \ldots, N\} & \text { ring estimate }
\end{array}
$$

GALW: a Matheuristic Approach

Stage 2: Assignment Subproblem

Figure 3: Solution of GALW stage2.

GALW: a Matheuristic Approach

Stage 2: Assignment Subproblem

Figure 3: Solution of GALW stage2.

GALW: a Matheuristic Approach

Stage 3: Ring Construction

Figure 4: Solution of GALW stage3.

GALW: a Matheuristic Approach

Stage 4: Ring Multiflow Subproblem

Figure 5: Solution of GALW stage4.

Computational Results

MRLRP instances

Derived from benchmark CLRP instances taken from [5] with MRLRP additional features
[5] C.Prins, C.Prodhon, R.Wolfler Calvo, Solving the capacitated location-routing problem by a GRASP complemented by a learning process and a path relinking. 4OR, 4(3):221-238, 2006.

Computational Results

MRLRP instances

Derived from benchmark CLRP instances taken from [5] with MRLRP additional features
[5] C.Prins, C.Prodhon, R.Wolfler Calvo, Solving the capacitated location-routing problem by a GRASP complemented by a learning process and a path relinking. 4OR, 4(3):221-238, 2006.

Computational evaluation

- aim: to establish how:
- the hardness of an instance is affected its dimensional features
- the decomposition process affects GALW performance
- collections of MRLRP instances, subdivided in scenarios:
- different scenarios \Rightarrow different $|U|$ or $|K|$ or $|L|$ or $|D|=|P|$
- in a scenario: different ring costs

Computational Results

MRLRP instances

Derived from benchmark CLRP instances taken from [5] with MRLRP additional features
[5] C.Prins, C.Prodhon, R.Wolfler Calvo, Solving the capacitated location-routing problem by a GRASP complemented by a learning process and a path relinking. 4OR, 4(3):221-238, 2006.

Computational evaluation

- aim: to establish how:
- the hardness of an instance is affected its dimensional features
- the decomposition process affects GALW performance
- collections of MRLRP instances, subdivided in scenarios:
- different scenarios \Rightarrow different $|U|$ or $|K|$ or $|L|$ or $|D|=|P|$
- in a scenario: different ring costs

Methods

Three methods are evaluated and compared:

- Exact method (X): Branch\&Bound on MILP model with complete route set
- GALW (H)
- Hybrid method (Y): Branch \& Bound on MILP model with GALW's route set

Computational Results

Small-sized instances

	Features								$\operatorname{Exact}(X)$			GALW				Hybrid (Y)	
Instance	$\|K\|$	U	\|	$\|D\|$	N		9	M	\% ${ }^{r}$	T/\%	\#ps	$\%^{x}$		\#ps	\% ${ }^{r}$	\% ${ }^{x}$	T/\%
galwc01-0-L\|L	5	5	5	15	5	70	70	50	3.5	24.8	21503	2.1	3.6	3122	0.0	2.1	3.6
galwc01-1-L\|L	5	5	5	20	5	70	0	50	3.3	48.7	37839	3.3	5.2	4033	0.1	3.2	4.8
galwc01-2-L\|L	5	10	5	15	10	70	0	50	4.5	642.5	64737	6.2	29.2	8388	2.4	3.9	37.3
galwc01-3-L\|L	10	5	5	15	5	70	0	50	4.7	16.8	21503	3.8	4.7	3068	2.5	1.4	2.3
galwc01-4-L\|L	5	5	10	15	5	70	0	50	4.4	31.0	31503	2.5	5.0	4348	0.0	2.5	2.7
average									4.1	152.8	35417	3.6	9.5	4592	1.0	2.6	10.1
galwc02-0-L\|L	5	5		15	5	70	70	5	5.7	8.0	14066	1.4	2.2	2319	0.0	1.4	1.6
galwc02-1-L\|L	5	5	5	20	5		0	50	6.0	13.3	33616	0.9	3.4	3253	0.1	0.8	1.9
galwc02-2-L\|L	5	10	5	15	10	70	0	50	5.0	59.7	39438	3.6	5.3	4707	0.1	3.5	7.5
galwc02-3-L\|L	10	5	5	15	5	70	0	50	3.2	2.8	14066	0.3	2.7	2324	0.1	0.2	1.4
galwc02-4-L\|L	5	5	10	15	5	70	0	50	6.3		23190	0.2	3.1	3478	0.0	0.2	2.0
average									5.2	18.4	24875	1.3	3.3	3216	0.1	1.2	2.9
galwc03-0-L \|L	5	5	5	15	5	150	0	65	18.6	10.8	18761	2.1	2.7	2082	0.0	2.1	2.2
galwc03-1-L\|L	5	5	5	20	5	150	0	65	16.0	113.8	68987	3.7	4.0	3513	1.5	2.2	3.8
galwc03-2-L\|L	5	10	5	15	10	150		65	19.2	181.9	79140	0.6	27.1	8449	0.0	0.6	13.7
galwc03-3-L\|L	10	5	5	15	5	150		65	18.6	11.3	18761	2.7	2.5	2085	0.0	2.7	1.8
galwc03-4-L\|L	5	5	10	15	5	150		65	18.1	22.7	31590	1.9	3.2	3319	0.0	1.9	2.7
average									18.1	68.1	43448	2.2	7.9	3890	0.3	1.9	4.8

Table 1: Numerical results of the three methods.

Computational Results

Medium-sized instances

Instance	Features								GALW			$\begin{array}{r} \operatorname{Hybrid}(Y) \\ T / \% \\ \hline \end{array}$	
	$\|K\|$	$\|U\|$	\| 4		\| \mid \|	N		q	M	t	\#ps	\% ${ }^{r}$	
galwc04-0-L\|L	5	5	5	525	5	70	0	60	4.0	3180	3.0	3.9	
galwc04-1-L ${ }_{\text {L }}$	5	5	5	540	5	70	0	60	10.0	7376	2.0	8.3	
galwc04-2-L\|L	5	10	5	525	10	70	0	60	12.7	9428	1.4	33.2	
galwc04-3-L\|L	10	5	5	525	5	70	0	60	4.4	3155	1.1	4.1	
galwc04-4-L\|L	5	5	10	025	5	70	0	60	4.7	4448	0.6	4.2	
average									7.2	5517	1.6	10.7	
galwc05-0-L \|L	5	5	5	525	5	150		65	8.9	4791	0.7	7.4	
galwc05-1-L\|L	5	5	5	540	5	150		65	26.2	10902	0.3	23.1	
galwc05-2-L\|L	5	10	5	525	10	150		65	25.7	13286	3.0	31.1	
galwc05-3-L\|L	10	5	5	525	5	150		65	8.7	4752	0.0	8.9	
galwc05-4-L\|L	5	5	510	025	5	150		65	10.6	6936	0.0	9.0	
average									16.0	8133	0.8	15.9	

Table 2: Numerical results of GALW and the hybrid method.

Computational Results

Big-sized instances

Instance	Features							GALW			$\operatorname{Hybrid}(Y)$	
	$\|K\|$		\|L		$\|D\|$	N		M	t	\#ps	\% ${ }^{r}$	T/\%
galwc06-0-L\|L	5	5	10	50	5	70	50	20.7	6350	0.5	20.1	
galwc06-1-L\|L	5	5	10	80	5	70	50	59.7	16593	0.7	271.0	
galwc06-2-L\|L	5	10	10	50	10	70	50	64.2	15019	0.0	69.8	
galwc06-3-L\|L	10	5	10	50	5	70	50	21.6	6412	0.1	16.9	
galwc06-4-L\|L	5	5	15	50	5	70	50	22.7	9334	0.5	21.0	
average								37.8	10742	0.4	79.8	
galwc07-0-L\|L	5	5	10	50	5	70	50	25.2	10814	0.0	18.0	
galwc07-1-L\|L	5	5	10	80	5	70	50	131.2	28020	0.6	768.3	
galwc07-2-L\|L	5	10	10	50	10	70	50	250.1	26212	0.2	281.1	
galwc07-3-L\|L	10	5	10	50	5	70	50	39.7	10912	0.2	55.7	
galwc07-4-L\|L	5	5	15	50	5	70	50	27.7	13963	0.1	23.8	
average								94.8	17984	0.2	229.4	
galwc08-0-L\|L	5	10	10	50	10	70	50	474.8	14835	2.0	2681.4	
galwc08-1-L\|L	5	10	10	80	10	70	50	499.0	36996	$-\infty$	($+\infty$)	
galwc08-2-L\|L	5	15	10	50	15	70	50	621.3	27451	-18.6	(28.9\%)	
galwc08-3-L\|L	10	10	10	50	10	70	50	842.8	14691	-0.1	(2.0\%)	
galwc08-4-L\|L	5	10	15	50	10	70	50	399.7	19571	5.8	879.2	
average								567.5	22709	-2.7	2690.2	

Table 3: Numerical results of GALW and the hybrid method

Plan

Multicommodity-Ring Location Routing Problem (MRLRP)

Branch\&Cut for the VRP with Intermediate Replenishment Facilities (VRPIRF)

Branch\&Price for the VRP with Intermediate Replenishment Facilities

VRP with Intermediate Replenishment Facilities (VRPIRF)

Figure 6: A VRPIRF instance: the depot (blue), the facilities (red), and the customers

VRP with Intermediate Replenishment Facilities (VRPIRF)

-
-

Figure 6: A solution to the previous instance: rotation of first vehicle

VRP with Intermediate Replenishment Facilities (VRPIRF)

Figure 6: A solution to the previous instance: rotation of second vehicle

VRP with Intermediate Replenishment Facilities (VRPIRF)
Problem Definition

Actors

- set of customers with a demand and a service time
\rightarrow a depot, the base of a fleet of homogeneous vehicles with fixed capacity
- a set of replenishment facilities, with a recharge time each

VRP with Intermediate Replenishment Facilities (VRPIRF)

Problem Definition

Actors

set of customers with a demand and a service time

- a depot, the base of a fleet of homogeneous vehicles with fixed capacity
Δ a set of replenishment facilities, with a recharge time each

Distinctive Features

- multi-trip: vehicles can replenish at facilities when empty \Rightarrow rotation
- the depot has no replenishment purposes
- a vehicle's rotation must:
- start and end at the depot
- not exceed a given maximum shift length

VRP with Intermediate Replenishment Facilities (VRPIRF)

Problem Definition

Actors

- set of customers with a demand and a service time
- a depot, the base of a fleet of homogeneous vehicles with fixed capacity
- a set of replenishment facilities, with a recharge time each

Distinctive Features

- multi-trip: vehicles can replenish at facilities when empty \Rightarrow rotation
- the depot has no replenishment purposes
- a vehicle's rotation must:
- start and end at the depot
- not exceed a given maximum shift length

Objective

Find a minimum-cost set of rotations that visit each client exactly once

Main features of the MILP model for VRPIRF

Replenishment arcs

Replenishment arcs

They represent stops at facilities to recharge in between two customers \Rightarrow no facility nodes
\Rightarrow the depot is the only node with in/outdegree greater than 1
\Rightarrow a rotation becomes very similar to a classical CVRP route
\Rightarrow connectivity of rotations can be assured in a much stronger way

Main features of the MILP model for VRPIRF

Replenishment arcs

Replenishment arcs

They represent stops at facilities to recharge in between two customers \Rightarrow no facility nodes
\Rightarrow the depot is the only node with in/outdegree greater than 1
\Rightarrow a rotation becomes very similar to a classical CVRP route
\Rightarrow connectivity of rotations can be assured in a much stronger way

Figure 7: The same rotation with replenishment arcs and without.

Main features of the MILP model for VRPIRF

Arrival times

Arrival times

They allow to keep track of time on a partial path from the depot:

$$
(\forall i \in C) \sum_{j \in V \backslash\{i\}} z_{i j}=\sum_{j \in V \backslash\{i\}} z_{j i}+\sum_{j \in V \backslash\{i\}} t_{i j} x_{i j}+\sum_{j \in C \backslash\{i\}} u_{i j} w_{i j} ; \quad z_{i \Delta} \leq T x_{i \Delta}
$$

\Rightarrow maximal shift length is enforced without vehicle index
\Rightarrow dramatic reduction of symmetry issues
\Rightarrow connectivity of integer solutions as a side effect

Main features of the MILP model for VRPIRF

Arrival times

Arrival times

They allow to keep track of time on a partial path from the depot:

$$
(\forall i \in C) \sum_{j \in V \backslash\{i\}} z_{i j}=\sum_{j \in V \backslash\{i\}} z_{j i}+\sum_{j \in V \backslash\{i\}} t_{i j} x_{i j}+\sum_{j \in C \backslash\{i\}} u_{i j} w_{i j} ; \quad z_{i \Delta} \leq T x_{i \Delta}
$$

\Rightarrow maximal shift length is enforced without vehicle index
\Rightarrow dramatic reduction of symmetry issues
\Rightarrow connectivity of integer solutions as a side effect

Figure 8: In this rotation, $z_{4 \Delta} \leq T$ is sufficient to enforce the maximum shift length.

A MILP 2-Index Formulation for VRPIRF

Decision variables

1. base arc variables $x_{i j} \in\{0,1\}$
2. replenishment arc variables $w_{i j} \in\{0,1\}$
3. arrival time variables $z_{i j} \geq 0$

A MILP 2-Index Formulation for VRPIRF

Decision variables

1. base arc variables $x_{i j} \in\{0,1\}$
2. replenishment arc variables $w_{i j} \in\{0,1\}$
3. arrival time variables $z_{i j} \geq 0$

Objective function

$$
\min \sum_{i j \in A_{0}} d_{i j} x_{i j}+\sum_{i j \in A_{p}} f_{i j} w_{i j}
$$

A MILP 2-Index Formulation for VRPIRF

Objective function

```
min}\mp@subsup{\sum}{ij\in\mp@subsup{A}{0}{}}{}\mp@subsup{d}{ij}{}\mp@subsup{x}{ij}{}+\mp@subsup{\sum}{ij\in\mp@subsup{A}{P}{}}{}\mp@subsup{f}{ij}{}\mp@subsup{w}{ij}{
```


Constraints

$$
\begin{array}{lll}
\text { s.t. } & x\left(\delta_{0}^{-}(\Delta)\right)+w\left(A_{P}\right) \geq \kappa(C) & \text { min nr of routes } \\
x\left(\delta_{0}^{+}(i)\right)+w\left(\delta_{P}^{+}(i)\right)=x\left(\delta_{0}^{-}(i)\right)+w\left(\delta_{P}^{-}(i)\right) & \forall i \in C & \text { clients service } \\
x\left(\delta_{0}^{+}(i)\right)+w\left(\delta_{P}^{+}(i)\right)=1 & \forall i \in C & \\
x\left(\delta_{0}^{-}(\Delta)\right) \leq n_{K} & & \text { depot degree } \\
x\left(\delta_{0}^{+}(\Delta)\right)=x\left(\delta_{0}^{-}(\Delta)\right) & \forall S \in \mathcal{S}(C) & \text { capacity } \\
x\left(A_{0}(S)\right) \leq|S|-\kappa(S) & \forall i \in C & \text { arrival times } \\
z_{\Delta i}=t_{\Delta i} x_{\Delta i} & & \\
\left(t_{\Delta i}+t_{i j}\right) x_{i j}+\left(t_{\Delta i}+u_{i j}\right) w_{i j} \leq z_{i j} \leq\left(T-t_{j \Delta}\right)\left(x_{i j}+w_{i j}\right) & \forall i \in C, j \in C \backslash\{i\} & \\
\sum_{j \in V \backslash\{i\}} z_{i j}=\sum_{j \in V \backslash i j} z_{j i}+\sum_{j \in V \backslash\{i\}} t_{i j}+\sum_{j \in C \backslash\{i\}} u_{i j} w_{i j} & \forall i \in C & \\
\left(t_{\Delta i}+t_{i \Delta}\right) x_{i \Delta} \leq z_{i \Delta} \leq T x_{i \Delta} & \forall i \in C & \\
\hline x_{i j}, w_{i j} \in\{0,1\}, z_{i j} \geq 0 & &
\end{array}
$$

Separation

Capacity constraints

Separated as classical capacity constraints on base arcs only

- solution transformation to symmetric, one-depot support graph is required
- separated using CVRPSEP (see [18]) routines and imposed as rounded capacity inequalities (RCI)

$$
x\left(A_{0}(S)\right) \leq|S|-r(S)=|S|-\left\lceil\frac{1}{Q} \sum_{i \in S} q_{i}\right\rceil
$$

[18] J.Lysgaard, A.N.Letchford, R.W.Eglese, A new branch-and-cut algorithm for the capacitated vehicle routing problem. Mathematical Programming, 100(2):423-445, 2004.

Separation

Capacity constraints

Separated as classical capacity constraints on base arcs only

- solution transformation to symmetric, one-depot support graph is required
- separated using CVRPSEP (see [18]) routines and imposed as rounded capacity inequalities (RCI)

$$
x\left(A_{0}(S)\right) \leq|S|-r(S)=|S|-\left\lceil\frac{1}{Q} \sum_{i \in S} q_{i}\right\rceil
$$

[18] J.Lysgaard, A.N.Letchford, R.W.Eglese, A new branch-and-cut algorithm for the capacitated vehicle routing problem. Mathematical Programming, 100(2):423-445, 2004.

Valid inequalities

- Connectivity valid inequalities exploit the rotation structure, imposed as SECS on both base and replenishment arcs:

$$
(\forall S \in \mathcal{S}(C)) \quad x\left(A_{0}(S)\right)+w\left(A_{P}(S)\right) \leq|S|-1
$$

- Multistar inequalities: given nucleus $N \subset C$ and satellites $S \subseteq C \backslash N$ (see [19])

$$
\alpha(N, S) \sum_{i j \in A(N)} x_{i j}+\beta(N, S) \sum_{i j \in A(C: S)} x_{i j} \leq \gamma(N, S)
$$

[19] J.Lysgaard, A.N.Letchford, R.W.Eglese, Multistars, partial multistars and the capacitated vehicle routing problem. Mathematical Programming, 94(1):21-40, 2002.

Computational Results

Benchmark Instances

- instances taken from Crevier et al. (see [?]) and Tarantilis et al. (see [?])
- features: from 48 to 288 customers, 2 to 7 facilities, 2 to 8 vehicles

Computational Results

Benchmark Instances

- instances taken from Crevier et al. (see [?]) and Tarantilis et al. (see [?]) - features: from 48 to 288 customers, 2 to 7 facilities, 2 to 8 vehicles

Computational Strategy

- smaller instances (48 to 75 customers):
- complete computation
- time limit: 3600-5400s on both root node and Branch\&Bound search
- Branch\&Bound search fed with the best known solution (see [?]) as initial UB
- bigger instances (96+ customers):
- cutting plane algorithm at root (time limit: 3600-7200s)
- the gap with the best known solution is reported

Computational Results

instance	n	f	n_{K}	$T_{1}=T_{23}$	t_{1}	t_{23}	BKS	\% ${ }^{1}$	\% ${ }^{23}$
50 c 3 d 2 v	50	2	2	3600	4.51	42.44	2209.83	1.89	0.00
50 c 3 d 4 v	50	2	4	3600	1.37	3600.12	2368.33	11.07	9.61
50 c 3 d 6 v	50	2	6	3600	2.07	3600.01	2999.29	11.57	11.11
50 c 5 d 2 v	50	4	2	3600	3.75	386.21	2608.25	2.18	0.00
50 c 5 d 4 v	50	4	4	3600	2.01	3600.01	3086.58	8.27	6.98
50 c 5 d 6 v	50	4	6	3600	1.97	3600.01	3548.88	12.44	9.90
$50 c 7 d 2 v$	50	6	2	3600	5.78	437.26	3353.08	2.11	0.00
50 c 7 d 4 v	50	6	4	3600	3.92	3600.01	3380.27	2.88	0.25
50c7d6v	50	6	6	3600	2.33	3600.01	4074.43	11.94	10.08
75 c 3 d 2 v	75	2	2	5400	36.19	4101.01	2678.79	1.62	0.00
75 c 3 d 4 v	75	2	4	5400	26.44	5400.31	2746.73	2.94	1.44
75c3d6v	75	2	6	5400	59.33	5400.04	3393.88	7.85	7.65
75c5d2v	75	4	2	5400	40.71	5400.28	3373.68	3.48	2.43
75c5d4v	75	4	4	5400	16.78	5400.25	3553.46	6.07	5.54
75c5d6v	75	4	6	5400	20.24	5400.06	4184.65	8.13	7.97
75 c 7 d 2 v	75	6	2	5400	42.71	5400.01	3569.01	1.90	0.63
75c7d4v	75	6	4	5400	13.64	5400.22	3822.09	4.99	4.22
75c7d6v	75	6	6	5400	12.49	5400.10	4239.76	7.62	6.76

Table 4: Results on Tarantilis et al. instances with 50 to 75 customers.

Computational Results

instance	n	f		T_{12}	t_{1}	t_{2}	BKS	\% ${ }^{1}$	\% ${ }^{2}$
100c3d3v	100	2	3	3600	170.76	34.84	3123.51	2.47	2.47
100c3d5v	100	2	5	3600	62.75	76.81	3548.44	13.58	13.58
100c3d7v	100	2	7	3600	372.76	2692.72	4235.30	9.40	9.32
100c5d3v	100	4	3	3600	244.81	84.93	4053.95	2.60	2.47
100c5d5v	100	4	5	3600	17.12	25.49	4413.16	9.36	9.23
100c5d7v	100	4	7	3600	84.26	49.56	5142.52	13.71	13.62
100c7d3v	100	6	3	3600	158.96	62.10	4207.79	5.41	5.41
100c7d5v	100	6	5	3600	54.55	54.67	4412.85	10.25	10.25
100c7d7v	100	6	7	3600	94.58	61.94	4869.65	10.46	10.46
125c4d3v	12	3	3	3600	465.86	158.00	3916.01	2.47	2.36
125c4d5v	125	3	5	3600	117.57	156.57	4308.44	9.36	9.36
125c4d7v	125	3	7	3600	289.77	162.71	4664.38	10.87	10.87
125c6d3v	125	5	3	3600	329.12	103.28	4063.25	2.55	2.55
125c6d5v	125	5	5	3600	791.67	1041.44	4760.46	6.25	6.15
125c6d7v	125	5	7	3600	265.55	148.37	5164.02	7.83	7.81
125c8d3v	125	7	3	3600	992.42	135.43	4534.14	3.97	3.97
125c8d5v	125	7	5	3600	1839.76	1765.75	4947.00	5.08	5.08
125c8d7v	125	7	7	3600	1184.34	2489.37	5334.91	6.94	6.94

Table 5: Results on Tarantilis et al. instances with 100 and 125 customers.

Computational Results

instance	n	f	n_{K}	T_{12}	t_{1}	t_{2}	BKS	\% ${ }^{1}$	\% ${ }^{2}$
150c4d3v	150	3	3	3600	2060.68	464.98	4049.47	2.09	2.09
150c4d5v	150	3	5	3600	1566.35	2933.70	4618.71	7.28	7.28
150c4d7v	150	3	7	3600	1311.58	3827.35	5118.40	9.82	9.82
150c6d3v	150	5	3	3600	940.12	138.51	4057.08	4.12	4.09
150c6d5v	150	5	5	3600	3620.32		4855.28	5.96	
150c6d7v	150	5	7	3600	3798.86		5695.25	7.95	
150c8d3v	150	7	3	3600	1749.28	247.99	4641.29	3.15	3.08
150c8d5v	150	7	5	3600	424.25	251.98	5065.10	6.41	6.41
150c8d7v	150	7	7	3600	444.10	327.18	5605.82	9.08	9.08
175c4d4v	175	3	4	3600	3652.25		4692.53	3.40	
$175 c 4 d 6 v$	175	3	6	3600	3458.49	142.12	4816.54	4.13	4.13
$175 c 4 d 8 v$	175	3	8	3600	3664.08		5830.62	9.87	
175c6d4v	175	5	4	3600	3813.19		5000.89	4.53	
175c6d6v	175	5	6	3600	2685.38	1304.21	5291.62	5.38	5.38
175c6d8v	175	5	8	3600	2708.57	1089.71	6034.21	9.94	9.94
175c8d4v	175	7	4	3600	3731.42		5747.72	5.29	
175c8d6v	175	7	6	3600	2836.71	961.12	5914.00	5.00	5.00
175c8d8v	175	7	8	3600	3764.96		6766.54	8.39	

Table 6: Results on Tarantilis et al. instances with 150 and 175 customers.

Computational Results

instance	n	f		$T_{1}=T_{23}$	t_{1}	t_{23}	BKS	\% ${ }^{1}$	\% ${ }^{23}$
a1	48	2	6	3600	5.77	3600.22	1179.79	7.70	6.91
d1	48	3	5	3600	7.93	3600.02	1059.42	7.67	6.44
a2	48	4	4	3600	0.76	3600.04	997.94	6.96	5.71
g1	72	4	5	5400	60.28	5400.02	1181.13	4.77	4.59
j1	72	5	4	5400	33.40	5400.08	1115.77	5.46	4.46
g2	72	6	4	5400	7.85	5400.06	1152.92	5.76	4.65

Table 7: Results on Crevier et al. instances with 48 to 72 customers.

Computational Results

instance	n	f	n_{K}	T_{12}	t_{1}	t_{2}	BKS	\% ${ }^{1}$	\% ${ }^{2}$
b1	96	2	4	3600	115.95	54.56	1217.07	3.38	3.37
e1	96	3	5	3600	59.40	25.51	1309.12	2.48	2.05
b2	96	4	4	3600	56.38	28.79	1291.18	3.88	3.87
h1	144	4	4	3600	1487.26	588.42	1545.50	4.26	4.25
k1	144	5	4	3600	622.59	187.87	1573.20	3.89	3.89
c2	144	4	4	3600	1016.70	195.45	1715.59	3.86	3.86
h2	144	6	4	3600	1160.07	133.82	1575.27	4.34	4.34
c1	192	2	5	3600	2755.35	871.72	1866.75	3.61	3.55
f1	192	3	4	3600	3543.95	61.81	1570.40	2.36	2.36
d2	192	4	3	3600	3808.18		1854.03	3.92	
i1	216	4	4	7200	6090.99	1823.72	1922.17	2.85	2.85
11	216	5	4	7200	7751.10		1863.27	3.23	
i2	216	6	3	7200	7341.02		1919.73	3.89	
e2	240	4	3	7200	7394.10		1916.67	4.43	
f2	288	4	3	7200	7201.17		2230.30	7.28	
j2	288	6	3	7200	8472.73		2247.68	3.13	

Table 8: Results on Crevier et al. instances with 96 to 288 customers.

Plan

Multicommodity-Ring Location Routing Problem (MRLRP)

Branch\&Cut for the VRP with Intermediate Replenishment Facilities (VRPIRF)

Branch \& Price for the VRP with Intermediate Replenishment Facilities

A MILP Extended Formulation

Decision variables

1. route variables $x_{r}^{k} \in\{0,1\}$
2. usage variables $\widetilde{x}^{k} \in\{0,1\}$
3. activity variables $y_{p}^{k} \in\{0,1\}$

A MILP Extended Formulation

Decision variables

1. route variables $x_{r}^{k} \in\{0,1\}$
2. usage variables $\widetilde{x}^{k} \in\{0,1\}$
3. activity variables $y_{p}^{k} \in\{0,1\}$

Objective function
$\min \sum_{k \in K} \sum_{r \in \mathscr{R}} c_{r} x_{r}^{k}$

A MILP Extended Formulation

Objective function

```
min}\mp@subsup{\sum}{k\inK}{}\mp@subsup{\sum}{r\in\mathscr{R}}{}\mp@subsup{c}{r}{}\mp@subsup{x}{r}{k
```


Constraints

$$
\begin{array}{lll}
\text { s.t. } & \forall i \in C & \text { clients service } \\
\sum_{r \in \mathscr{R}} \sum_{k \in K} a_{r}^{i} x_{r}^{k} \geq 1 & \forall k \in K, p \in F, i \in C & \text { vehicle activity at facilities } \\
\sum_{r \in \mathscr{R}} a_{r}^{i} e_{r}^{\prime p} x_{r}^{k} \leq y_{p}^{k} \leq \widetilde{x}^{k} & \forall k \in K, p \in F & \text { depot degree } \\
\sum_{r \in \mathscr{R}}\left(e_{r}^{\prime p}-e_{r}^{\prime \prime p}\right) x_{r}^{k}=0 & \forall k \in K & \text { max shift length } \\
\sum_{r \in \mathscr{R}} t_{r} x_{r}^{k} \leq T \widetilde{x}^{k} & \forall k \in K, p \in F, s \in \mathcal{S}_{p} & \text { foreconnectivity } \\
\sum_{r \in \mathscr{R}} e_{r}^{\prime \Delta} x_{r}^{k}=\sum_{r \in \mathscr{R}} e_{r}^{\prime \prime \Delta} x_{r}^{k}=\widetilde{x}^{k} & \forall k \in K & \text { vehicle activity and usage } \\
\sum_{r \in \mathscr{R}} b_{r}^{\prime s} x_{r}^{k} \geq y_{p}^{k} & \forall k \in K, p \in F, s \in \mathcal{S}_{p} & \text { backconnectivity } \\
\sum_{r \in \mathscr{R}} b_{r}^{\prime \prime s} x_{r}^{k} \geq y_{p}^{k} & & \\
\hline
\end{array}
$$

A MILP Extended Formulation

Main features

Route variables

- embedded structural information
\Rightarrow better representation of connectivity constraints w.r.t. a 3-index compact model
- on the other hand: they are in exponential number
\Rightarrow the solving calls for a Column Generation approach

A MILP Extended Formulation

Main features

Route variables

- embedded structural information
\Rightarrow better representation of connectivity constraints w.r.t. a 3-index compact model
\rightarrow on the other hand: they are in exponential number
\Rightarrow the solving calls for a Column Generation approach

Facility Graph

- connectivity constraints defined on subset of facilities (rather than nodes)
- connectivity constraints can be statically generated

A Branch\&Price algorithm for the VRPIRF

Pricing Problem

Pricing Problem

- the Pricing Problem delivers routes (and not rotations)
- it can be seen as an Elementary Shortest Path Problem with Resource Constraint (ESPPRC)
- solved with a Dynamic Programming (DP) algorithm inspired by that of [20]
- the expression of the reduced costs

$$
\begin{aligned}
\bar{c}_{r}^{k} & =\sum_{i j \in A} b_{r}^{i j} \cdot\left(d_{i j}-\tau_{i j} \cdot \beta_{k}^{\star}\right)-\sum_{i \in C} a_{r}^{i} \cdot\left(\alpha_{i}^{\star}+\tau_{i} \cdot \beta_{k}^{\star}+\sum_{p \in F} e_{r}^{\prime p} \cdot \varphi_{k p i}^{\star}\right) \\
& -e_{r}^{\prime \Delta} \cdot \mu_{k}^{\prime \star}-e_{r}^{\prime \prime \Delta} \cdot \mu_{k}^{\prime \prime \star}-\sum_{p \in F} \frac{1}{2}\left(e_{r}^{\prime p}+e_{r}^{\prime \prime p}\right) \cdot \tau_{p} \cdot \beta_{k}^{\star}-\sum_{p \in F}\left(e_{r}^{\prime p}-e_{r}^{\prime \prime p}\right) \cdot \theta_{k p}^{\star} \\
& -\sum_{s \subseteq F} \sum_{p \in s}\left(\left(e_{r}^{\prime \Delta}+\sum_{q \notin s} e_{r}^{\prime q}\right)\left(\sum_{q \in s} e_{r}^{\prime \prime q}\right) \cdot \delta_{k p s}^{\prime \star}+\left(\sum_{q \in s} e_{r}^{\prime q}\right)\left(e_{r}^{\prime \prime \Delta}+\sum_{q \notin s} e_{r}^{\prime \prime q}\right) \cdot \delta_{k p s}^{\prime \prime \star}\right)
\end{aligned}
$$

calls for the solving of a pricing problem per vehicle and per starting point
[20] D.Feillet, P.Dejax, M.Gendreau, C.Gueguen, An exact algorithm for the elementary shortest path problem with resource constraints: Application to some vehicle routing problems. Networks, 44(3):216-229, 2004.

A Branch \& Price algorithm for the VRPIRF

Pricing Problem

Pricing Problem

- the Pricing Problem delivers routes (and not rotations)
- it can be seen as an Elementary Shortest Path Problem with Resource Constraint (ESPPRC)
- solved with a Dynamic Programming (DP) algorithm inspired by that of [20]
- the expression of the reduced costs calls for the solving of a pricing problem per vehicle and per starting point
[20] D.Feillet, P.Dejax, M.Gendreau, C.Gueguen, An exact algorithm for the elementary shortest path problem with resource constraints: Application to some vehicle routing problems. Networks, 44(3):216-229, 2004.

Dominance Level

The dominance rule of [20] compares cost, resources, unreachable nodes. Different dominance levels are used to accelerate ESPPRC convergence

A Branch \& Price algorithm for the VRPIRF

Pricing Problem

Dominance Level

The dominance rule of [20] compares cost, resources, unreachable nodes. Different dominance levels are used to accelerate ESPPRC convergence

q-paths

A completion bound based on q-paths and through- q-routes is used (see [21]). A new label is discarded if the sum of its cost and such bound is nonnegative.
[21] N.Christofides, A.Mingozzi, P.Toth, Exact algorithms for the vehicle routing problem, based on spanning tree and shortest path relaxations. Mathematical Programming, 20(1):255-282, 1981.

A Branch\&Price algorithm for the VRPIRF

Pricing Problem

q-paths

A completion bound based on q-paths and through-q-routes is used (see [21]). A new label is discarded if the sum of its cost and such bound is nonnegative.
[21] N.Christofides, A.Mingozzi, P.Toth, Exact algorithms for the vehicle routing problem, based on spanning tree and shortest path relaxations. Mathematical Programming, 20(1):255-282, 1981.

$n g$-paths

$n g$-paths allow to forbid n-loops, $n \geq 2$ (see [22]).
They are used to further restrain combinatorial explosion:

- an initial neighborhood for each customer
- we replace the unreachable nodes with the forbidden nodes of an $n g$-path \Rightarrow the number of potential label on a node decreases dramatically
- if a nonelementary path occurs \Rightarrow enlarge the neighborhood and repeat. Experimentally this rarely happens \Rightarrow the use of $n g$-paths pays off
[22] R.Baldacci, A.Mingozzi, R.Roberti, New Route Relaxation and Pricing Strategies for the Vehicle Routing Problem. Operations Research, 59(5):1269-1283, 2011.

A Branch \& Price algorithm for the VRPIRF

Branching

Branching rules

Three Problem-tailored Branching rules are defined and applied in this order:

1. branching on the number of vehicles: either we use no more than $\left\lfloor\sum_{k \in K} \widetilde{x}^{k}\right\rfloor$ vehicles, or at least $\left\lceil\sum_{k \in K} \widetilde{x}^{k}\right\rceil$
2. branching on the activity variables $y_{p}^{k} \Rightarrow$ the Pricing Problems related to vehicle k and facility p are affected
3. branching on arc variables:

$$
x_{i j}^{\star}=\sum_{r \in \mathscr{R}} b_{r}^{j j} \cdot x_{r}^{\star}
$$

We seek for the node with the highest number of fractional outgoing arc variables and impose one half of them to be 0 in each child node

A Branch \& Price algorithm for the VRPIRF

Preliminary computational results

instance	B\&P		B\&C	
	t_{r}	\%r	t_{r}	\%r
50c3d2v	182	4.87	9	1.65
50 c 3 d 4 v	655	17.83	9	10.72
50 c 3 d 6 v	386	39.40	14	11.32
50 c 5 d 2 v	138	5.10	10	1.81
50 c 5 d 4 v	146	16.39	12	7.61
50 c 5 d 6 v	216	31.86	15	10.41
50 c 7 d 2 v	36	3.48	15	1.92
50 c 7 d 4 v	66	4.31	11	2.38
50 c 7 d 6 v	111	24.25	15	11.08
a1	55	7.07	41	7.59
d1	89	6.12	39	7.62
a2	1144	11.33	6	6.68

instance	B\&P		B\&C	
	t_{r}	\% ${ }_{\text {r }}$	t_{r}	\%r
75c3d2v		$+\infty$	54	1.62
75c3d4v		$+\infty$	50	2.84
75 c 3 d 6 v		$+\infty$	178	7.78
75c5d2v	866	1.45	64	3.39
75 c 5 d 4 v		$+\infty$	40	6.01
75 c 5 d 6 v	708	13.10	58	8.13
75c7d2v		$+\infty$	57	1.73
75c7d4v		$+\infty$	36	4.88
75 c 7 d 6 v		$+\infty$	34	7.14
g1	916	4.83	136	4.76
j1		$+\infty$	57	5.40
g2		$+\infty$	30	5.26

Figure 9: Comparison of the Branch\&Cut and the Branch\&Price algorithms. Both are asked to perform a cutting plane at the root node on a sample of small instances, under a 1200 s time limit.

A Branch\&Price algorithm for the VRPIRF

A weakness of the model

The connectivity constraints have a weaker impact than the connectivity valid inequalities of the Branch\&Cut algorithm

Figure 10: Detection of a fractional solution of a small instance that would be cut in the Branch\&Cut algorithm but not in the Branch\&Price algorithm.

