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1 Compact MIP formulations

Exercice 1 : Transportation problem
A car manufacturing company has 3 plants in three place A, B and C. It needs to transport the

necessary metals from two ports P and Q. Each plant requires 400 tons per week for A, 300 tons for

B and 200 tons for C. The ports of P and Q can supply 550 tonnes and 350 tonnes respectively.

Transport costs between these cities are given in kilo-euro per tonne in the following table.

A B C

P 5 6 3

Q 3 5 4

Propose a model of this transport problem to satisfy demand, based on available quantities and

minimizing transport costs.

Exercice 2 : Leisure centers
A region is divided into six zones (zones 1,...,6). The municipality wishes to build leisure centers

in some of these zones. It wants to establish a minimum number of centers such that, for each zone,

there is at least one center located at most 15 minutes away (by car). The travel time from one zone

to another is given in the following table:

from/to zone 1 zone 2 zone 3 zone 4 zone 5 zone 6

zone 1 0 10 20 30 30 20

zone 2 10 0 25 35 20 10

zone 3 20 25 0 15 30 20

zone 4 30 35 15 0 15 25

zone 5 30 20 30 15 0 14

zone 6 20 10 20 25 14 0

2.1) Formulate the problem of determining the minimum number of centers to build and the zones

where they must be built as an integer linear program.
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2.2) Modify the program to correspond to the following constraint: if a center is built in zone 1, then

a center must be built in zone 4.

2.3) What inequality models the following constraint: at least one zone among zones 1, 2, and 3 must

have at least one center within 15 minutes. Is it necessary to add it to the program?

2.4) Using the ideas from the previous question, can we thus reduce the formulation by removing

inequalities?

Exercice 3 : Decision in industrial production
A company producing plastic beads wants to expand into a new geographical area. These plastic

beads are the raw material for many industrial objects (seats, tool handles, cans, etc.). The company

has approached n customers and plans to sell di tons of plastic beads to each i ∈ {1, . . . , n} customer

over the next 5 years. The company has m potential sites s1, . . . , sm for its factories. The cost of

installing a plant on site sj has been estimated at cj euros, j = 1, . . . ,m. The planned plants are not

all of the same production capacity: one site sj will have a capacity of Mj tonnes of logs over the next 5

years, j = 1, . . . ,m. Production costs are assumed to be independent of production location. Finally,

we calculate the transport costs per tonne cij between a customer i and a site sj , for i = 1, . . . , n and

j = 1, . . . ,m.

The company wishes to determine the sites on which to establish its factories in order to satisfy

customer demand while minimizing the total cost (installation, production and delivery) over the next

5 years.

Give a MIP model of this problem.

2 Extrem points and cutting inequalities

Exercice 4 : Cover inequalities for the stable set problem
Let us Consider this instance of the knapsack problem.

Max c1x1 + c2x2 + ...+ cnxn
a1x1 + a2x2 + ...+ anxx ≤ b
xi ∈ {0, 1} pour i = 1, ..., n

Assume ai > 0 for i = 1, ..., n and b > 0. Consider the polyhedron resulting from the linear

relaxation of this formulation.

A subset R of {1, ..., n} is said to be a cover set for P if
∑

i∈R ai > b.

4.1) Show that if R is a cover set of P then the following constraint is valid for the knapsack problem:∑
i∈R

xi ≤ |R| − 1.
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4.2) Let the instance, called Q

Max z = 10x1 + 19x2 + 12x3 + 12x4 + x5 + 3x6 + x7
11x1 + 6x2 + 6x3 + 5x4 + 5x5 + 4x6 + x7 ≤ 19

xi ∈ {0, 1} pour i = 1, ..., 7.

Are the following sets are cover set for the knapsack problem Q:

R1 = {1, 2, 3}, R2 = {2, 3, 4} and R3 = {3, 4, 5, 6}? Give the corresponding cover onstraints for those

that are.

4.3) For each constraint given in 2), give an extreme point of the Q̃ domain (the linear relaxation of

Q) that can be cut by this constraint. Justify your answer.

4.4) Separation of overlap inequalities. Since the number of cover inequalities is potentially expo-

nential, we’d like to propose a separation algorithm. Let x̃ be a fractional point resulting from the

linear relaxation of the knapsack problem (or from a relaxation reinforced with valid inequalities): the

separation problem thus comes down to determining whether or not there exists a cover set R such

that sumi∈Rx̃i > |R| − 1 and, if there exists one, to exhibit it.

a) Let x̃′i = 1− x̃i for all i ∈ {1, . . . , n}. Show that, for a given R, the inequality can then be re-written∑
i∈R x̃

′
i ≥ 1.

b) Show that this separation problem can be reduced to a problem where x̃′ is the coefficient of the

objective function. To which ”family” of problems does this problem belong?

c) Assuming that this reduction is in fact an equivalence, what is the complexity of this separation

problem?

d) Explain how to use these inequalities in practice.

Exercice 5 : Wheel inequalities for the stable set problem
Consider the maximum-weight stable problem on the following graph H1 = (V,E, c) (where c is a

weight of 1 on each vertex):

6
5

3

41

2

Consider the edge formulation:

Max
∑
u∈V

c(u)x(u)

x(u) + x(v) ≤ 1 ∀uv ∈ E, (1)

0 ≤ x(u) ≤ 1 ∀u ∈ E, (2)

x(u) integer, ∀u ∈ V.
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5.1) Give all the inequalities of the formulation for H1.

5.2) Give a fractional solution of the linear relaxation of the formulation that satisfies at least 6

inequalities to equality. What would need to be proved for it to be an extreme point of the formulation?

We now add the following odd-cycle inequality to the formulation.

∑
u∈V (C)

x(u) ≤
⌊
|C|
2

⌋
∀ odd cycle C, (3)

(4)

Note: we’ve seen clique inequalities in class: we can see that H1 contains no cliques of sizes greater

than 3 and that all the inequalities associated with cliques of sizes 2 (edges) and 3 (odd cycles of size

3) are now in the formulation.

5.3) Give all formulation inequalities for H1.

5.4) Show that a solution that exactly satisfies the odd cycle inequalities corresponding to (1, 2, 3),

(1, 3, 4), (1, 4, 5), (1, 5, 6), (1, 6, 2) et (2, 3, 4, 5, 6) is fractionnal.

5.5) Give the arguments proving that this point is a fractional extreme point of the polyhedron defined

by the trivial (2), edge (1) and odd-cycle (1) inequalities for this graph H1.

5.6) Sum the triangle inequalities (size 3 cycle) from the formulation for H1 and a trivial inequality

to obtain a new inequality according to the Chvátal rounding principle.

5.7) Prove a second time the validity of this inequality withour Chvátal sum.

5.8) Is this inequality cut the extrem points of the first question?

Exercice 6 : Polyhedral study of the acyclic subgraph problem
Let G = (V,A) be a directed graph, where V is the set of vertices and A is the set of arcs. Let uv

be an arc of A from vertex u to vertex v. A sequence of arcs P = (u0u1, u1u2, ..., uk−1uk) is called

path in G, and P is said to be of size k. A circuit C in G is a path such that u0 = uk. We denote

V (P ) (resp. V (C)) the set of vertices involved in a path (resp. a circuit).

A graph is said to be acyclic if it contains no circuits. Let W ⊂ V be a subset of vertices, and let

A(W ) be the set of arcs having both ends in W . The graph (W,A(W )) is then said to be the graph

induced by W . Given a function c : V → IR which associates a weight c(v) with any vertex v ∈ V ,

the induced acyclic subgraph problem (IASP) consists in determining an induced acyclic subgraph

(W,A(W )) of G such that c(W ) =
∑

v∈W c(v) is maximum.

.

The induced acyclic subgraph problem is equivalent to the following integer program (P ).
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(P)



Max
∑
u∈V

c(u)x(u)∑
u∈W

x(u) ≤ |W | − 1, ∀W ⊂ V s.t. (W,A(W )) is a circuit (1)

0 ≤ x(u) ≤ 1, ∀u ∈ V (2)

x(u) entier, ∀u ∈ V. (3)

General Polyhedral approach

Let G = (V,A) be a directed graph with n = |V |. Let P (G) be the polytope of induced acyclic

subgraphs of G, i.e.

P (G) = conv{χW ∈ IRn | (W,A(W )) est acyclique.}

6.1) Show that P (G) is full dimensional.

6.2) Show that trivial inequalities x(u) ≥ 0, u ∈ V define facets of P (G).

6.3) Let G0 = (V,A) be a graph that is a single circuit C0. Show that inequlity inequality corre-

sponding to C0 defines a facet of P (G0).

6.4) Let be a graph G1 = (V,A) composed of a single circuit C1 = (v1v2, v2v3, ..., vnv1) such that

there are two non-consecutive vertices vi and vj , i 6= j are connected by an arc. Show that the circuit

constraint corresponding to C1 does not define a facet of P (G1). Deduce a reduced formulation of the

PLNE (P ).

Study on a diclique

Let Kn = (W,AW ) be a di-complete directed graph (i.e. such that there is an arc connecting every

vertex of W to every vertex of W ). When Kn is a subgraph of a graph G, we call Kn a diclique of G.

The graph K4 is given in figure ??.

3

4

2

1

Figure 1: Diclique K4

6.5) Consider the graph K4 and the solution y∗ given by y∗(ui) = 1
2 , i = 1, ..., 4. Show that y∗ satisfies

all the constraints of the program (P ) for K4 when the integrity constraint is relaxed (3). Indicate
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which conditions prove that y∗ is a vertex of the polyhedron defined by the constraints of this program

for K4.

6.6) We are now interested in any graph Kn. Prove that only one vertex of Kn can belong to a

solution of PSAI. Deduce a valid inequality for P (G) when G contains a diclique.

6.7) Let G = (V,A) be a directed graph containing a diclique K = (W,AW ). Assume that for any

vertex u of V \W , there exists a vertex v of W such that the arc uv or the arc vu does not exist in

A (this is equivalent to saying that K is maximal in the sense of inclusion). Prove that the inequality

in the previous question then describes a facet of P (G). Deduce a new formulation for P .
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