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1 Compact MIP formulations

Exercice 1 : Transportation problem

A car manufacturing company has 3 plants in three place A, B and C. It needs to transport the
necessary metals from two ports P and Q. Each plant requires 400 tons per week for A, 300 tons for
B and 200 tons for C. The ports of P and Q can supply 550 tonnes and 350 tonnes respectively.
Transport costs between these cities are given in kilo-euro per tonne in the following table.
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Propose a model of this transport problem to satisfy demand, based on available quantities and

minimizing transport costs.

Ezxercice 2 : Leisure centers

A region is divided into six zones (zones 1,...,6). The municipality wishes to build leisure centers
in some of these zones. It wants to establish a minimum number of centers such that, for each zone,
there is at least one center located at most 15 minutes away (by car). The travel time from one zone
to another is given in the following table:

from/to | zone 1 | zone 2 | zone 3 | zone 4 | zone 5 | zone 6
zone 1 0 10 20 30 30 20
zone 2 10 0 25 35 20 10
zone 3 20 25 0 15 30 20
zone 4 30 35 15 0 15 25
zone 30 20 30 15 0 14
zone 6 20 10 20 25 14 0

2.1) Formulate the problem of determining the minimum number of centers to build and the zones
where they must be built as an integer linear program.



2.2) Modify the program to correspond to the following constraint: if a center is built in zone 1, then
a center must be built in zone 4.

2.3) What inequality models the following constraint: at least one zone among zones 1, 2, and 3 must
have at least one center within 15 minutes. Is it necessary to add it to the program?

2.4) Using the ideas from the previous question, can we thus reduce the formulation by removing
inequalities?

Ezxercice 3 : Decision in industrial production
A company producing plastic beads wants to expand into a new geographical area. These plastic
beads are the raw material for many industrial objects (seats, tool handles, cans, etc.). The company

has approached n customers and plans to sell d; tons of plastic beads to each i € {1,...,n} customer
over the next 5 years. The company has m potential sites si,..., sy, for its factories. The cost of
installing a plant on site s; has been estimated at ¢; euros, j = 1,...,m. The planned plants are not
all of the same production capacity: one site s; will have a capacity of M; tonnes of logs over the next 5
years, 7 = 1,...,m. Production costs are assumed to be independent of production location. Finally,
we calculate the transport costs per tonne c;; between a customer 4 and a site s;, for i =1,...,n and
7=1,....,m.

The company wishes to determine the sites on which to establish its factories in order to satisfy
customer demand while minimizing the total cost (installation, production and delivery) over the next
9 years.

Give a MIP model of this problem.

2 Extrem points and cutting inequalities

Ezxercice 4 : Cover inequalities for the stable set problem
Let us Consider this instance of the knapsack problem.

Max cix1+ coxg+ ...+ ey
a1x1 + asx2 + ... + apxy < b
x; € {0,1} pour i =1,...,n

Assume a; > 0 for ¢ = 1,...,n and b > 0. Consider the polyhedron resulting from the linear
relaxation of this formulation.
A subset R of {1,...,n} is said to be a cover set for P if ), pa; > b.

4.1) Show that if R is a cover set of P then the following constraint is valid for the knapsack problem:

> ai <|R[-1.
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4.2) Let the instance, called @

Max z=10x1 + 1929 4+ 1223 + 1224 + x5 + 326 + 27
11x1 + 629 + 623 4+ by + S5 + 46 + 27 < 19
x; € {0,1} pour i =1,...,7.

Are the following sets are cover set for the knapsack problem Q:
Ry ={1,2,3}, Re = {2,3,4} and R3 = {3,4,5,6}7 Give the corresponding cover onstraints for those
that are.

4.3) For each constraint given in 2), give an extreme point of the @ domain (the linear relaxation of
Q) that can be cut by this constraint. Justify your answer.

4.4) Separation of overlap inequalities. Since the number of cover inequalities is potentially expo-
nential, we’d like to propose a separation algorithm. Let T be a fractional point resulting from the
linear relaxation of the knapsack problem (or from a relaxation reinforced with valid inequalities): the
separation problem thus comes down to determining whether or not there exists a cover set R such
that sum;cr®; > |R| — 1 and, if there exists one, to exhibit it.

a) Let 2, = 1—7; for all i € {1,...,n}. Show that, for a given R, the inequality can then be re-written
2ier®; 2 1.

b) Show that this separation problem can be reduced to a problem where #’ is the coefficient of the
objective function. To which ”family” of problems does this problem belong?

c) Assuming that this reduction is in fact an equivalence, what is the complexity of this separation
problem?

d) Explain how to use these inequalities in practice.

Exercice 5 : Wheel inequalities for the stable set problem
Consider the maximum-weight stable problem on the following graph H; = (V, E,c) (where c is a
weight of 1 on each vertex):
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Consider the edge formulation:
Max Z c(u)x(u)
ueV
z(u) +z(v) <1 Yuv € E, (1)
0<z(u)<1l Vu€cekE, (2)

x(u) integer, Yu € V.



5.1) Give all the inequalities of the formulation for Hj.

5.2) Give a fractional solution of the linear relaxation of the formulation that satisfies at least 6
inequalities to equality. What would need to be proved for it to be an extreme point of the formulation?
We now add the following odd-cycle inequality to the formulation.

> au) < W;‘J Y odd cycle C, (3)

ueV (C)
(4)

Note: we’ve seen clique inequalities in class: we can see that H; contains no cliques of sizes greater
than 3 and that all the inequalities associated with cliques of sizes 2 (edges) and 3 (odd cycles of size
3) are now in the formulation.

5.3) Give all formulation inequalities for Hj.

5.4) Show that a solution that exactly satisfies the odd cycle inequalities corresponding to (1,2, 3),
(1,3,4), (1,4,5), (1,5,6), (1,6,2) et (2,3,4,5,6) is fractionnal.

5.5) Give the arguments proving that this point is a fractional extreme point of the polyhedron defined
by the trivial (2), edge (1) and odd-cycle (1) inequalities for this graph H;.

5.6) Sum the triangle inequalities (size 3 cycle) from the formulation for H; and a trivial inequality
to obtain a new inequality according to the Chvétal rounding principle.

5.7) Prove a second time the validity of this inequality withour Chvatal sum.

5.8) Is this inequality cut the extrem points of the first question?

Ezxercice 6 : Polyhedral study of the acyclic subgraph problem

Let G = (V, A) be a directed graph, where V is the set of vertices and A is the set of arcs. Let uv
be an arc of A from vertex u to vertex v. A sequence of arcs P = (ugui, ujug, ..., up_1ug) is called
path in G, and P is said to be of size k. A circuit C' in G is a path such that uy = ui. We denote
V(P) (resp. V(C)) the set of vertices involved in a path (resp. a circuit).

A graph is said to be acyclic if it contains no circuits. Let W C V be a subset of vertices, and let
A(W) be the set of arcs having both ends in W. The graph (W, A(W)) is then said to be the graph
induced by W. Given a function ¢ : V' — IR which associates a weight c¢(v) with any vertex v € V,
the induced acyclic subgraph problem (IASP) consists in determining an induced acyclic subgraph

(W, A(W)) of G such that ¢c(W) = 3", .y c(v) is maximum.

The induced acyclic subgraph problem is equivalent to the following integer program (P).



Maz Z c(u)z(u)
ueV
(P) Z z(u) <|W|—=1, VW CV s.t. (W,A(W)) is a circuit (1)
ueW
0<z(u) <1, YueV (2)
x(u) entier, Yu e V. (3)

General Polyhedral approach

Let G = (V, A) be a directed graph with n = |V|. Let P(G) be the polytope of induced acyclic
subgraphs of G, i.e.
P(G) = conv{x"V € R™ | (W, A(W)) est acyclique.}

6.1) Show that P(G) is full dimensional.

6.2) Show that trivial inequalities z(u) > 0, u € V define facets of P(G).

6.3) Let Gp = (V, A) be a graph that is a single circuit Cy. Show that inequlity inequality corre-
sponding to Cy defines a facet of P(G)).

6.4) Let be a graph G; = (V, A) composed of a single circuit C; = (v1va, vov3, ..., v,v1) such that
there are two non-consecutive vertices v; and vj, ¢ # j are connected by an arc. Show that the circuit
constraint corresponding to C; does not define a facet of P(G). Deduce a reduced formulation of the
PLNE (P).

Study on a diclique

Let K, = (W, Aw) be a di-complete directed graph (i.e. such that there is an arc connecting every
vertex of W to every vertex of W). When K, is a subgraph of a graph G, we call K,, a diclique of G.
The graph Ky is given in figure ?7.
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Figure 1: Diclique K4

6.5) Consider the graph K, and the solution y* given by y*(u;) = %, i=1,...,4. Show that y* satisfies
all the constraints of the program (P) for K, when the integrity constraint is relaxed (3). Indicate



which conditions prove that y* is a vertex of the polyhedron defined by the constraints of this program
for Ky.

6.6) We are now interested in any graph K,. Prove that only one vertex of K, can belong to a
solution of PSAIL Deduce a valid inequality for P(G) when G contains a diclique.

6.7) Let G = (V, A) be a directed graph containing a diclique K = (W, Ay/). Assume that for any
vertex u of V'\ W, there exists a vertex v of W such that the arc wv or the arc vu does not exist in
A (this is equivalent to saying that K is maximal in the sense of inclusion). Prove that the inequality
in the previous question then describes a facet of P(G). Deduce a new formulation for P.



