

Lecture

Mathematical Optimization and Polyhedral Approaches

Section 2 : Polyhedral approaches

Pierre Fouilhoux and Lucas Létocart

Sorbonne Paris Nord University - LIPN CNRS

2026, January

1. Introduction and definition

2. Dimension and facet

3. Characterization

What are the “best” valid inequalities ?

Given the variable set of a formulation,

- What are the “best” valid inequalities ?
- How to have “often” integer Branch&Bound nodes ?

...

What are the “best” valid inequalities ?

Given the variable set of a formulation,

- What are the “best” valid inequalities ?
- How to have “often” integer Branch&Bound nodes ?
- ...
- Can we know when a linear formulation produces integer solutions ?

Integer polytope

- Solving a (bounded) linear formulation

$$(\tilde{F}) \left\{ \begin{array}{l} \max c^T x \\ Ax \leq b \end{array} \right.$$

reduces to find an optimal extreme point
of polytope $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$

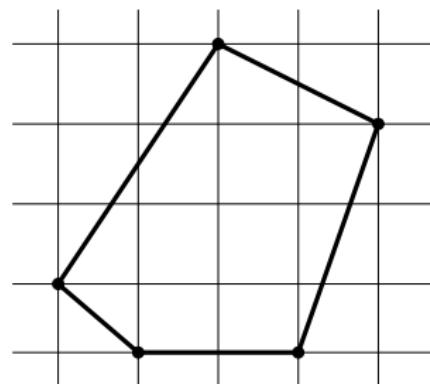
Integer polytope

- Solving a (bounded) linear formulation

$$(\tilde{F}) \left\{ \begin{array}{l} \max c^T x \\ Ax \leq b \end{array} \right.$$

reduces to find an optimal extreme point
of polytope $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$

- An **integer polytope** is a polytope with integer extreme points.



Integer polytope

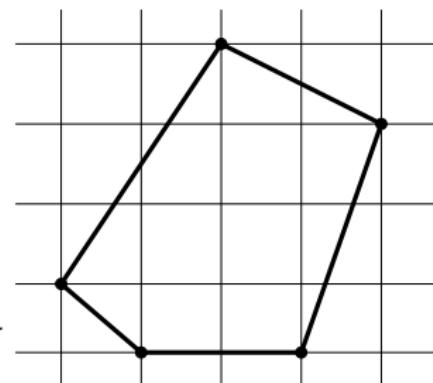
- Solving a (bounded) linear formulation

$$(\tilde{F}) \left\{ \begin{array}{l} \max c^T x \\ Ax \leq b \end{array} \right.$$

reduces to find an optimal extreme point
of polytope $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$

- An **integer polytope** is a polytope with integer extreme points.

- A rational polytope P is integer $\Leftrightarrow \forall c \in \mathbb{Z}^n, \max\{c^T x \mid x \in P\}$ is integer.

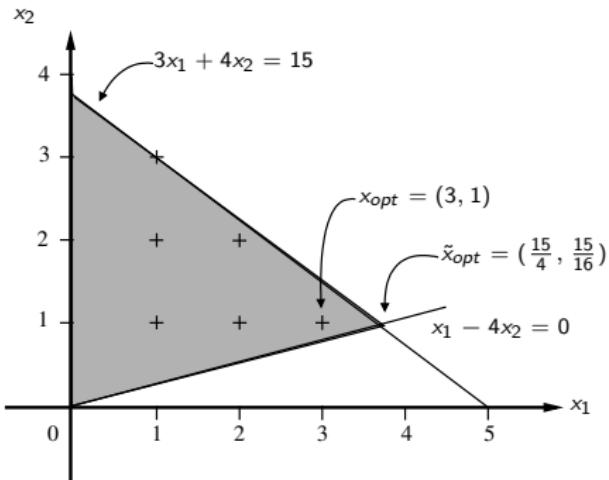


A 2-dimensional example

$$(F) \left\{ \begin{array}{l} \max z = 2x_1 + x_2 \\ x_1 - 4x_2 \leq 0 \\ 3x_1 + 4x_2 \leq 15 \\ x_1 \geq 0 \\ x_2 \geq 0 \\ x_1, x_2 \in \mathbb{N} \end{array} \right.$$

A 2-dimensional example

$$(F) \left\{ \begin{array}{l} \max z = 2x_1 + x_2 \\ x_1 - 4x_2 \leq 0 \\ 3x_1 + 4x_2 \leq 15 \\ x_1 \geq 0 \\ x_2 \geq 0 \\ x_1, x_2 \in \mathbb{N} \end{array} \right.$$



x_{opt} optimal integer solution of (F)

z_{opt} optimal integer value : 7

\tilde{x}_{opt} optimal fractional solution of linear relaxation (\tilde{F})

z_{opt}^* optimal fractional value : $8 + \frac{7}{16}$

Note that \tilde{x}_{opt} is the (only) optimal extreme point of \tilde{F} .

A 2-dimensional example

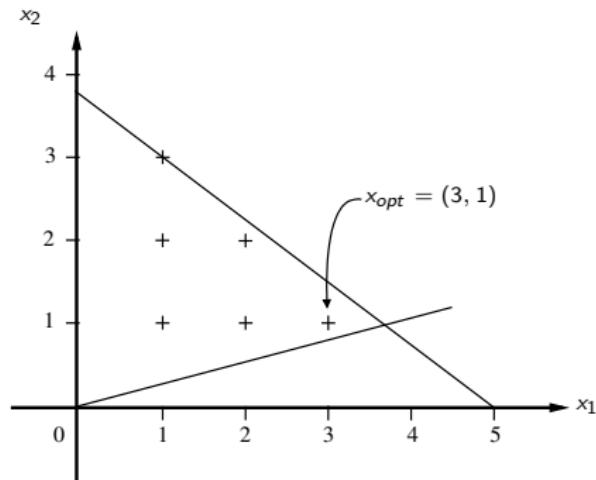
Remark : the integer solutions of (\tilde{F}) are the solutions of (F) .

$$(F) \left\{ \begin{array}{l} \max z = 2x_1 + x_2 \\ x_1 - 4x_2 \leq 0 \\ 3x_1 + 4x_2 \leq 15 \\ x_1 \geq 0 \\ x_2 \geq 0 \\ x_1, x_2 \in \mathbb{N} \end{array} \right.$$

A 2-dimensional example

Remark : the integer solutions of (\tilde{F}) are the solutions of (F) .

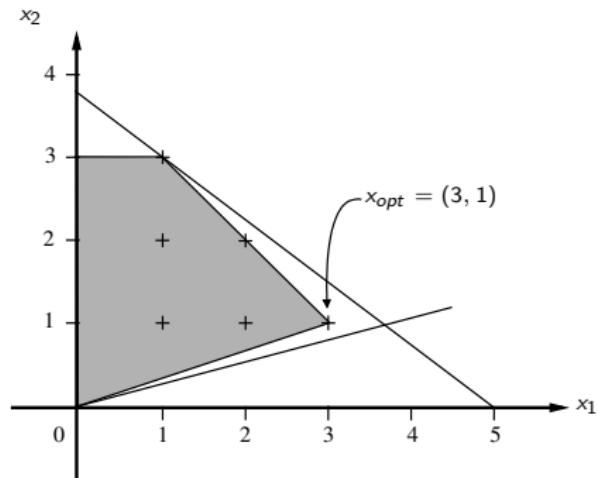
$$(F) \left\{ \begin{array}{l} \max z = 2x_1 + x_2 \\ x_1 - 4x_2 \leq 0 \\ 3x_1 + 4x_2 \leq 15 \\ x_1 \geq 0 \\ x_2 \geq 0 \\ x_1, x_2 \in \mathbb{N} \end{array} \right.$$



A 2-dimensional example

Remark : the integer solutions of (\tilde{F}) are the solutions of (F) .

$$(F) \left\{ \begin{array}{l} \max z = 2x_1 + x_2 \\ x_1 - 4x_2 \leq 0 \\ 3x_1 + 4x_2 \leq 15 \\ x_1 \geq 0 \\ x_2 \geq 0 \\ x_1, x_2 \in \mathbb{N} \end{array} \right.$$

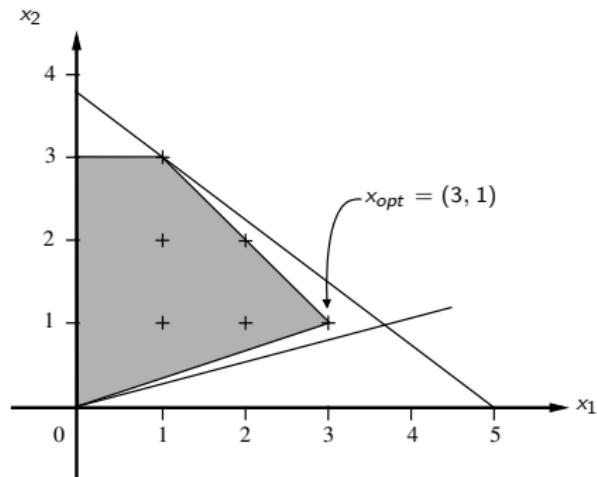


Let's take an elastic and wrap it around these integer points...

A 2-dimensional example

Remark : the integer solutions of (\tilde{F}) are the solutions of (F) .

$$(F) \left\{ \begin{array}{l} \max z = 2x_1 + x_2 \\ x_1 - 4x_2 \leq 0 \\ 3x_1 + 4x_2 \leq 15 \\ x_1 \geq 0 \\ x_2 \geq 0 \\ x_1, x_2 \in \mathbb{N} \end{array} \right.$$



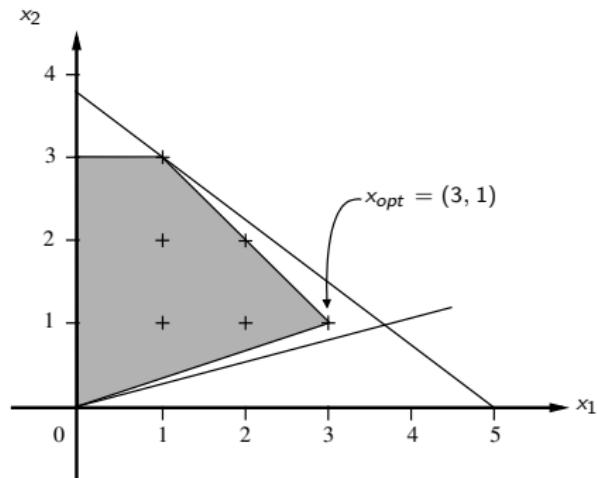
Let's take an elastic and wrap it around these integer points...

We obtain a **new polytope**! (the convex hull of the integer points)

A 2-dimensional example

Remark : the integer solutions of (\tilde{F}) are the solutions of (F) .

$$(F) \left\{ \begin{array}{l} \max z = 2x_1 + x_2 \\ x_1 - 4x_2 \leq 0 \\ 3x_1 + 4x_2 \leq 15 \\ x_1 \geq 0 \\ x_2 \geq 0 \\ x_1, x_2 \in \mathbb{N} \end{array} \right.$$



Let's take an elastic and wrap it around these integer points...

We obtain a **new polytope**! (the convex hull of the integer points)
 And this polytope is **integer** by construction.

Convex hull

Given a set S of points of \mathbb{R}^n .

the **convex hull** of S , denoted by $\text{conv}(S)$
is the smallest convex set containing S .

Theorem (of Minkowski)

A set $P \subseteq \mathbb{R}^n$ is a polytope

if and only if there exists a set S of points such that $P = \text{conv}(S)$.

Convex hull

Given a set S of points of \mathbb{R}^n .

the **convex hull** of S , denoted by $\text{conv}(S)$
is the smallest convex set containing S .

Theorem (of Minkowski)

A set $P \subseteq \mathbb{R}^n$ is a polytope

if and only if there exists a set S of points such that $P = \text{conv}(S)$.

Consequently :

- ▶ $\text{conv}(S)$ is a polytope
- ▶ there exists a finite subset of inequalities $Dx \leq \beta$ such that

$$\text{conv}(S) = \{x \in \mathbb{R}^n \mid Dx \leq \beta\}$$

- ▶ $\max\{c\chi \mid \chi \in \text{conv}(S)\}$ is a linear program

Combinatorial polytope

Let \mathcal{P} be a combinatorial optimization problem :

- over n decisions corresponding to n integer variables.
- with a function cost c .

Let S the set of the incidence vectors of the solutions of \mathcal{P} .

Problem \mathcal{P} is

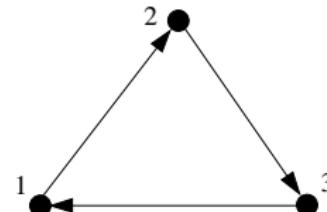
$$\max \{c\chi \mid \chi \in S\}$$

Let us consider the **linear program**

$$\max \{c\chi \mid \chi \in \text{conv}(S)\}$$

A 3-dimensional example

Let us consider the AISP on a triangle



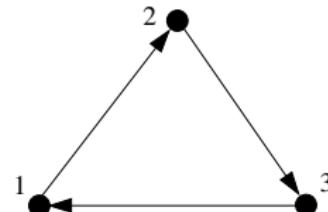
The solutions are

\emptyset $\{1\}$ $\{2\}$ $\{3\}$ $\{1, 2\}$ $\{1, 3\}$ $\{2, 3\}$

And their incidence vectors are the following points

A 3-dimensional example

Let us consider the AISP on a triangle



The solutions are

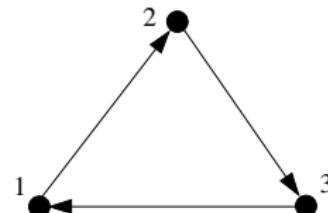
$$\emptyset \quad \{1\} \quad \{2\} \quad \{3\} \quad \{1, 2\} \quad \{1, 3\} \quad \{2, 3\}$$

And their incidence vectors are the following points

$$\begin{aligned}\chi^{\emptyset} &= [\quad 0 \quad 0 \quad 0 \quad] \\ \chi^{\{1\}} &= [\quad 1 \quad 0 \quad 0 \quad] \\ \chi^{\{2\}} &= [\quad 0 \quad 1 \quad 0 \quad] \\ \chi^{\{3\}} &= [\quad 0 \quad 0 \quad 1 \quad] \\ \chi^{\{1,2\}} &= [\quad 1 \quad 1 \quad 0 \quad] \\ \chi^{\{1,3\}} &= [\quad 1 \quad 0 \quad 1 \quad] \\ \chi^{\{2,3\}} &= [\quad 0 \quad 1 \quad 1 \quad]\end{aligned}$$

A 3-dimensional example

Let us consider the AISP on a triangle



The solutions are

$$\emptyset \quad \{1\} \quad \{2\} \quad \{3\} \quad \{1, 2\} \quad \{1, 3\} \quad \{2, 3\}$$

And their incidence vectors are the following points

$$\begin{aligned}
 \chi^{\emptyset} &= [\begin{array}{ccc} 0 & 0 & 0 \end{array}] && \text{However point} \\
 \chi^{\{1\}} &= [\begin{array}{ccc} 1 & 0 & 0 \end{array}] \\
 \chi^{\{2\}} &= [\begin{array}{ccc} 0 & 1 & 0 \end{array}] \\
 \chi^{\{3\}} &= [\begin{array}{ccc} 0 & 0 & 1 \end{array}] \\
 \chi^{\{1,2\}} &= [\begin{array}{ccc} 1 & 1 & 0 \end{array}] \\
 \chi^{\{1,3\}} &= [\begin{array}{ccc} 1 & 0 & 1 \end{array}] \\
 \chi^{\{2,3\}} &= [\begin{array}{ccc} 0 & 1 & 1 \end{array}]
 \end{aligned}$$

$\chi^{\{1,2,3\}} = [\begin{array}{ccc} 1 & 1 & 1 \end{array}]$

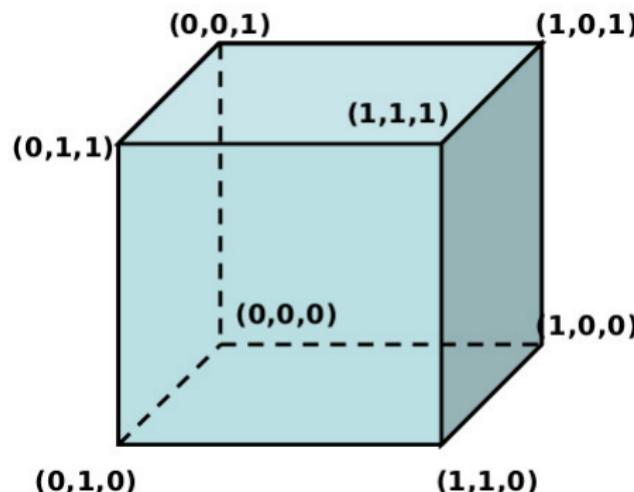
does not correspond to a solution

A 3-dimensional example

What is the convex hull of these 7 points ?

A 3-dimensional example

What is the convex hull of these 7 points ?



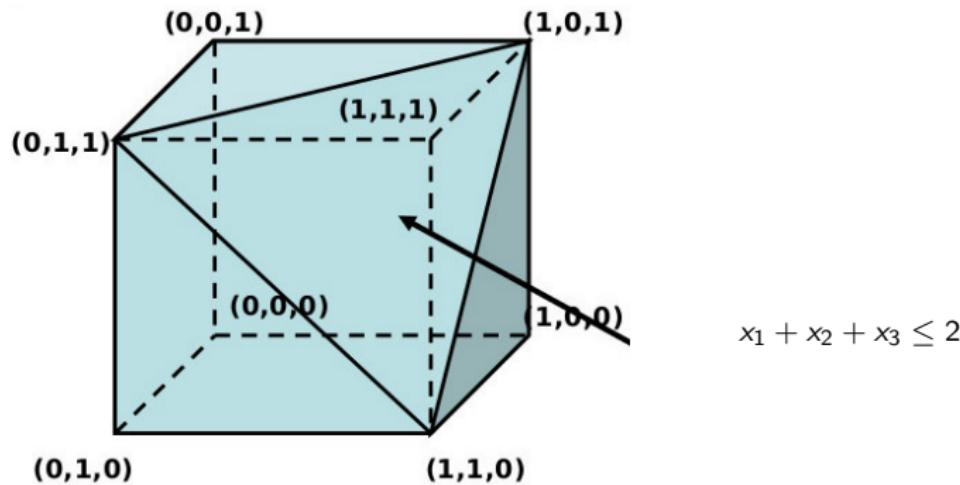
This convex hull is included into the hypercube (of dimension 3)

The hypercube is characterized by

$$\begin{array}{lcl} x_1 & \leq & 1 \\ x_2 & \leq & 1 \\ x_3 & \leq & 1 \\ x_1 & \geq & 0 \\ x_2 & \geq & 0 \\ x_3 & \geq & 0 \end{array}$$

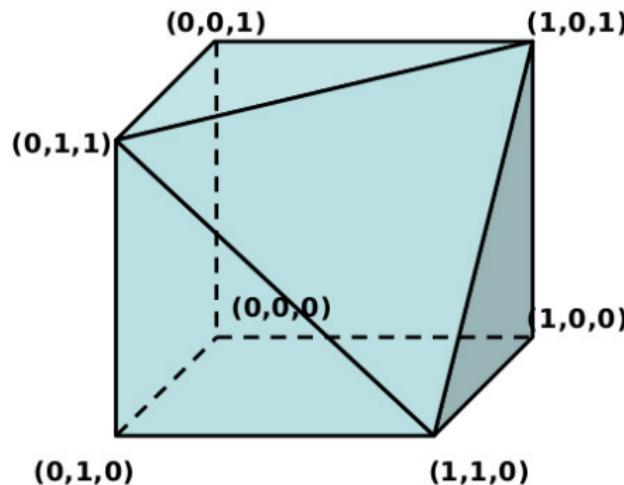
A 3-dimensional example

What is the convex hull of these 7 points ?



A 3-dimensional example

What is the convex hull of these 7 points?



The convex hull of these 7 points is characterized by

$$x_1 + x_2 + x_3 \leq 2$$

$$x_1 \leq 1$$

$$x_2 \leq 1$$

$$x_3 \leq 1$$

$$x_1 > 0$$

$$x_2 > 0$$

$$x_3 > 0$$

Combinatorial polytope

Let \mathcal{P} be a combinatorial optimization problem :

- over n decisions corresponding to n integer variables.
- with a function cost c .

Let S the set of the incidence vectors of the solutions of \mathcal{P} .

Problem \mathcal{P} is

$$\max \{c\chi \mid \chi \in S\}$$

Theorem

The linear program

$$\max \{c\chi \mid \chi \in \text{conv}(S)\}$$

is equivalent to problem \mathcal{P}

Combinatorial polytope

Let \mathcal{P} be a combinatorial optimization problem :

- over n decisions corresponding to n integer variables.
- with a function cost c .

Let S the set of the incidence vectors of the solutions of \mathcal{P} .

Problem \mathcal{P} is

$$\max \{c\chi \mid \chi \in S\}$$

Theorem

The linear program

$$\max \{c\chi \mid \chi \in \text{conv}(S)\}$$

is equivalent to problem \mathcal{P}

Indeed

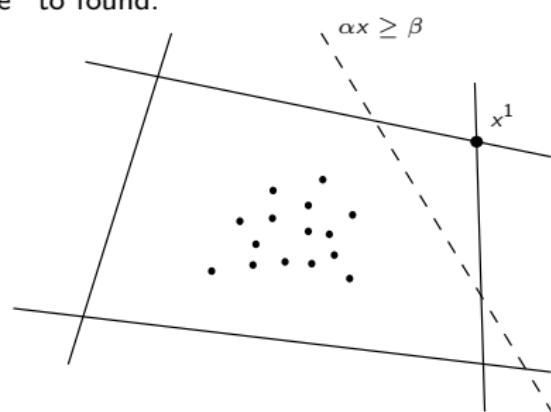
- Every extreme points of the convex hull $\text{conv}(S)$ are integer by construction.
- The optimal points of S are among the extreme points of polytope $\text{conv}(S)$.

Get around the combinatorial explosion

Optimizing (P) reduces to optimizing a linear program on $\text{conv}(S)$.

The convex hull is then the “unknown value” to found.

$$(F) \left\{ \begin{array}{l} \max cx \\ Ax \leq b \\ \alpha x \leq \beta \\ x \text{ integer} \end{array} \right.$$



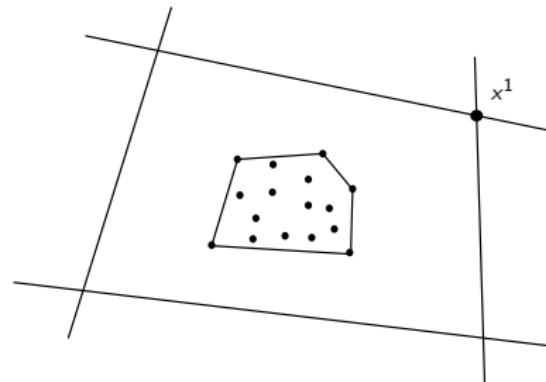
Get around the combinatorial explosion

Optimizing (P) reduces to optimizing a linear program on $\text{conv}(S)$.

The convex hull is then the “unknown value” to be found.

$$(\tilde{F}) \left\{ \begin{array}{l} \max cx \\ x \in \text{conv}(S) \\ x \text{ continuous} \end{array} \right.$$

which is a linear program!



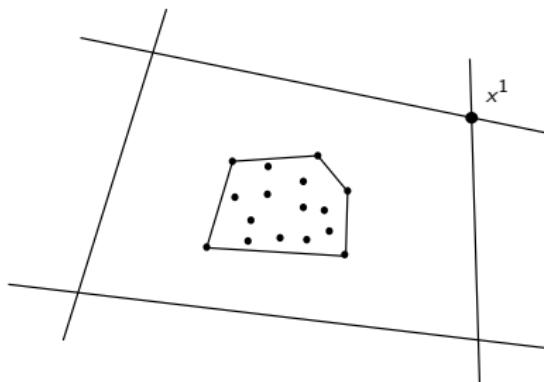
Get around the combinatorial explosion

Optimizing (P) reduces to optimizing a linear program on $\text{conv}(S)$.

The convex hull is then the “unknown value” to found.

$$(\tilde{F}) \left\{ \begin{array}{l} \max cx \\ x \in \text{conv}(S) \\ x \text{ continuous} \end{array} \right.$$

which is a linear program !



Unfortunately we cannot use this process in polynomial time...

Unless $P=NP$, finding the convex hull of a combinatorial polytope is NP-hard !

But even a “partial” knowledge of polytope $\text{conv}(S)$ is very useful

1. Introduction and definition

2. Dimension and facet

3. Characterization

Example : The acyclic induced subgraph polytope

Given a directed graph $G = (V, A)$,

$\text{acycl}(G)$: family of all node subsets inducing an acyclic subgraph of G .

Then $\text{acycl}(G)$ is the solutions set of the AISP on G (whatever will be the costs)

Example : The acyclic induced subgraph polytope

Given a directed graph $G = (V, A)$,

$\text{acycl}(G)$: family of all node subsets inducing an acyclic subgraph of G .

Then $\text{acycl}(G)$ is the solutions set of the AISP on G (whatever will be the costs)

Given a solution $W \in \text{acycl}(G)$, the **incidence vector** χ^W is

$$\chi^W[i] = \begin{cases} 1 & \text{if } i \in W \\ 0 & \text{otherwise} \end{cases}$$

Some solutions :

- Pour $\emptyset \in \text{acycl}(G)$

$$\chi^\emptyset = [\quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad]$$

- $\{i\} \in \text{acycl}(G) \forall i \in V$

$$\chi^{\{i\}} = [\quad 0 \quad 0 \quad \underset{i}{1} \quad 0 \quad 0 \quad]$$

Example : The acyclic induced subgraph polytope

Given a directed graph $G = (V, A)$,

$\text{acycl}(G)$: family of all node subsets inducing an acyclic subgraph of G .

Then $\text{acycl}(G)$ is the solutions set of the AISP on G (whatever will be the costs)

Given a solution $W \in \text{acycl}(G)$, the **incidence vector** χ^W is

$$\chi^W[i] = \begin{cases} 1 & \text{if } i \in W \\ 0 & \text{otherwise} \end{cases}$$

Some solutions :

- Pour $\emptyset \in \text{acycl}(G)$

$$\chi^\emptyset = [\quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad]$$

- $\{i\} \in \text{acycl}(G) \forall i \in V$

$$\chi^{\{i\}} = [\quad 0 \quad 0 \quad 1 \quad 0 \quad 0 \quad]_i$$

$P(G)$: the **acyclic induced subgraph polytope** of G

i.e. is the convex hull of the incidence vectors of the solutions

i.e. $P(G) = \text{conv}\{\chi^W \mid W \in \text{acycl}(G)\}$.

Dimension

A combinatorial polytope P of n variables is in \mathbb{R}^n ...

Can P be included into a smaller space ?

Dimension

A combinatorial polytope P of n variables is in \mathbb{R}^n ...

Can P be included into a smaller space?

Definition

- A set of points $x^1, \dots, x^k \in \mathbb{R}^n$ are **affinely independent** if vectors $x^2 - x^1, \dots, x^k - x^1$ are linearly independent.
- A polytope P in \mathbb{R}^n is of **dimension** d (denoted $\dim(P) = d$) if P contains at least $d + 1$ affinely independent points.

A polytope P is said to be full dimensional if $\dim(P) = n$.

Dimension

A combinatorial polytope P of n variables is in \mathbb{R}^n ...

Can P be included into a smaller space ?

Definition

- A set of points $x^1, \dots, x^k \in \mathbb{R}^n$ are **affinely independent** if vectors $x^2 - x^1, \dots, x^k - x^1$ are linearly independent.
- A polytope P in \mathbb{R}^n is of **dimension** d (denoted $\dim(P) = d$) if P contains at least $d + 1$ affinely independent points.

A polytope P is said to be full dimensional if $\dim(P) = n$.

Examples :

- a plane in 3D-space is not full dimensional.
- an hypercube $[0, 1]^n$ is full dimensional in \mathbb{R}^n but not in $\mathbb{R}^{n'}$ if $n' < n$

Example : The acyclic induced subgraph polytope

Lemma

The AIS polytope $P(G)$ is full-dimensional for every graph G .

Proof.

It is sufficient to produce $n + 1$ affinely independent points of $P(G)$.

For instance, the incidence vectors of

- the empty set \emptyset
- the singletons $\{i\} \forall i \in V$.

Moreover, the vectors $\chi^{\{u\}} - \chi^{\emptyset}$ are linearly independent since they form the identity matrix.

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

□

“Degree of freedom”

Let us assume that the characterization of a polytope $P \subseteq \mathbb{R}^n$ is given by

$$P = \left\{ x \in \mathbb{R}^n \mid \begin{array}{ll} A_i x \leq b_i, & i = 1, \dots, m_1 \\ B_j x = d_j, & j = 1, \dots, m_2 \end{array} \right\}.$$

where every inequality $A_i x \leq b_i$ is a “true” inequality,
i.e. there exists $\tilde{x} \in P$ such that $A_i \tilde{x} < b_i$.

Theorem

If $P \neq \emptyset$, then $\dim(P) = n - \text{rang}(B)$.

“Degree of freedom”

Let us assume that the characterization of a polytope $P \subseteq \mathbb{R}^n$ is given by

$$P = \left\{ x \in \mathbb{R}^n \mid \begin{array}{l} A_i x \leq b_i, \quad i = 1, \dots, m_1 \\ B_j x = d_j, \quad j = 1, \dots, m_2 \end{array} \right\}.$$

where every inequality $A_i x \leq b_i$ is a “true” inequality,
i.e. there exists $\tilde{x} \in P$ such that $A_i \tilde{x} < b_i$.

Theorem

If $P \neq \emptyset$, then $\dim(P) = n - \text{rang}(B)$.

$\dim(P)$ gives the “degree of freedom” of a problem :

$n - \dim(P)$ variables can be obtained by fixing the $\dim(P)$ others

Redundant inequality

Definition

Let P a polytope characterized by a system $Ax \leq b$.

An inequality $ax \leq \alpha$ of $Ax \leq b$ is **redundant**
if the system “ $Ax \leq b$ minus $ax \leq \alpha$ ” still characterizes P .

A non-redundant inequality is then **essential**.

What are the essential inequalities ?

Facet of a polytope

Let $ax \leq \alpha$ is a valid inequality for the problem corresponding to a polytope P .

Definition

- The **face** of $ax \leq \alpha$ is the set of points of P satisfying $ax \leq \alpha$ to equality,

$$\text{i.e. } F = \{x \in P \mid ax = \alpha\}$$

- A face F is a **facet** of P
if $\emptyset \neq F \neq P$ and $\dim(F) = \dim(P) - 1$.

Theorem

- If $P \neq \emptyset$, then a non-facet inequality of P is redundant.
- Every facet of P corresponds to one inequality of a characterization of P .

Trivial facet of the AIS polytope $P(G)$

Given a node $i_0 \in V$, the trivial inequality

$$x_{i_0} \geq 0$$

defines a facet of $P(G)$.

The corresponding face is $F_{i_0} = \{\chi^W \in \mathbb{R}^n \mid W \in \text{acycl}(G) \text{ and } \chi^W[i_0] = 0\}$.

- $\chi^\emptyset \in F_{i_0}$ then $F_{i_0} \neq \emptyset$
- $\chi^{\{i_0\}} \notin F_{i_0}$ then $F_{i_0} \neq P(G)$
- The vectors χ^\emptyset and $\chi^{\{i\}}$, $i \neq i_0$, are n affinely independent points of F_{i_0} then $\dim(F_{i_0}) = n - 1$
Hence $x_{i_0} \geq 0$ is a facet of $P(G)$.

□

Clique inequality of the AIS polytope

Given a clique K of G , the clique inequality is

$$\sum_{i \in K} x_i \leq 1$$

If there exists K' a clique of G such that $K \subset K'$

Then

$$\begin{aligned} \sum_{i \in K'} x_i &\leq 1 \\ -x_i &\leq 0 \quad \forall i \in K' \setminus K \end{aligned}$$

$$\sum_{i \in K} x_i \leq 1$$

Thus the clique inequality associated to K is redundant and not-facet defining.

Clique inequality of the AIS polytope

Lemma

A clique inequality on K defines a facet if and only if K is inclusion-wise maximal.

The consequence of this theorem is that maximal cliques are “better inequalities” to add to strengthen a cutting plane algorithm.

Indeed facet defining inequalities are called “**the deepest cuts**” !

In practice, the heuristic method we present for clique inequalities always produce maximal cliques.

1. Introduction and definition

2. Dimension and facet

3. Characterization

Characterization

For some polynomial combinatorial problem \mathcal{P} and its associated combinatorial polytope P .

Some methods to show that a system $Ax \leq b$ characterizes P

$$i.e. \quad P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$$

Characterization

For some polynomial combinatorial problem \mathcal{P} and its associated combinatorial polytope P .

Some methods to show that a system $Ax \leq b$ characterizes P

$$\text{i.e. } P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$$

- ▶ to show that there is no fractional extreme point

Characterization

For some polynomial combinatorial problem \mathcal{P} and its associated combinatorial polytope P .

Some methods to show that a system $Ax \leq b$ characterizes P

$$\text{i.e. } P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$$

- ▶ to show that there is no fractional extreme point
- ▶ to show that A is a totally unimodular matrix

Characterization

For some polynomial combinatorial problem \mathcal{P} and its associated combinatorial polytope P .

Some methods to show that a system $Ax \leq b$ characterizes P

$$\text{i.e. } P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$$

- ▶ to show that there is no fractional extreme point
- ▶ to show that A is a totally unimodular matrix
- ▶ to show that the primal/dual system $Ax \leq b$ is total dual integral

Characterization

For some polynomial combinatorial problem \mathcal{P} and its associated combinatorial polytope P .

Some methods to show that a system $Ax \leq b$ characterizes P

$$\text{i.e. } P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$$

- ▶ to show that there is no fractional extreme point
- ▶ to show that A is a totally unimodular matrix
- ▶ to show that the primal/dual system $Ax \leq b$ is total dual integral
- ▶ to show that every facet of P corresponds to at least one inequality among $Ax \leq b$

Characterization

For some polynomial combinatorial problem \mathcal{P} and its associated combinatorial polytope P .

Some methods to show that a system $Ax \leq b$ characterizes P

$$\text{i.e. } P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$$

- ▶ to show that there is no fractional extreme point
- ▶ to show that A is a totally unimodular matrix
- ▶ to show that the primal/dual system $Ax \leq b$ is total dual integral
- ▶ to show that every facet of P corresponds to at least one inequality among $Ax \leq b$
- ▶ ... and many others (polyhedral decomposition, extended formulation+projection, critical extreme point study,...)

Bipartite matching problem

Let $G = (V_1 \cup V_2, E)$ be a bipartite (undirected) graph

Let $c \in \mathbb{R}^m$ a cost associated to the edges of E .

A **matching** of G is a set of pairwise disjoint edges.

The **matching problem** on bipartite graph G is to find a matching of maximal cost.

Theorem

The following linear program is integer and is equiv. to the bipartite matching problem.

$$\begin{aligned} \max \quad & \sum_{e \in E} c(e)x(e) \\ \text{subject to} \quad & \sum_{e \in \delta(u)} x(e) \leq 1 \quad \forall u \in V_1 \\ & \sum_{e \in \delta(u)} x(e) \leq 1 \quad \forall u \in V_2 \\ & x(e) \geq 0 \quad \forall e \in E. \end{aligned}$$

(The matrix is totally unimodular)

The matching problem

Let $G = (V, E)$ be an undirected graph.

The previous formulation on G is not integer !

The matching problem

Let $G = (V, E)$ be an undirected graph.

The previous formulation on G is not integer!

The **matching polytope** is the convex hull of the incidence vectors of the matchings i.e.

$$P_M(G) = \text{conv}\{\chi^M \in \mathbb{R}^n \mid M \text{ matching of } G\}.$$

Theorem (Jack Edmonds (1965))

The matching polytope is characterized by

$$\sum_{e \in \delta(u)} x(e) \leq 1 \quad \forall v \in V$$

$$\sum_{e \in E(S)} x(e) \leq \frac{|S| - 1}{2} \quad \forall S \subseteq V \text{ with } |S| \text{ odd}$$

$$x(e) \geq 0 \quad \forall e \in E.$$