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MOPA

Combinatorial Optimization Problem

To find a greatest (smallest) element within a valuated finite set.

Given :
- a finite subset of elements E = {e1, . . . , en}
- a solution set F of subsets of E
- a weight c = (c(e1), . . . , c(en))

a Combinatorial Optimization Problem is to find a solution

F ∈ F whose weight c(F ) =
∑
e∈F

c(e) is maximum (or min.),

i.e. max {c(F ) | F ∈ F}.
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MOPA

“Natural” MIP formulation

Binary variable xe =

{
1 if e is chosen
0 otherwise

for every e ∈ E .

max
∑
e∈E

c(e)xe

Ax ≤ b

xe ∈ {0, 1} ∀e ∈ E .

We will suppose here that :
- Ax ≤ b is known
- the linear relaxation of this MIP can be obtained

Important remark : Ax ≤ b can be non-compact,
i.e. can contain an exponential number of inequalities !
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MOPA

Compact / non-compact formulations

The Acyclic Induced subgraph problem

Let G = (V ,A) be a directed graph
with n = |V | nodes and m = |A| arcs.

A circuit of G : a sequence of arcs

C = (i1i2, i2i3, ..., ik−1i1)

Notation :
V (C ) is the set of nodes of C .

1 5

4

3

2

A graph is acyclic if it contains no circuit.
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MOPA

Compact / non-compact formulations

The Acyclic Induced subgraph problem

Given a node subset W ⊂ V ,

A(W ) : arcs with both endnodes in W

(W ,A(W )) : subgraph induced by W
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The Acyclic Induced subgraph problem

Given a node subset W ⊂ V ,

A(W ) : arcs with both endnodes in W

(W ,A(W )) : subgraph induced by W

The Acyclic Induced Subgraph Problem (AISP) is to find
a node subset W inducing an acyclic subgraph with |W | maximum
or
a node subset W ′ “breaking” every circuit of G with |W ′| min.
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MOPA

Compact / non-compact formulations

The Acyclic Induced subgraph problem

• The AISP is NP-hard.

Indeed :
given a non-directed graph G
construct a directed graph G ′ by replacing one edge by two arcs

then finding an acyclic subgraph in G ′ is as hard as finding a maximum stable set in G .

• The AISP is polynomial for graphs of maximum degree 3 [Baiou,
Barahona]
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MOPA

Compact / non-compact formulations

A compact formulation

Two types of variables :

- Binary variables xi =

{
1 if node i is chosen
0 otherwise

∀i ∈ V .

- Continuous variables ui ∀i ∈ V .

A Miller-Tucker-Zemlin (MTZ) formulation :

(FMTZ )



max
∑
i∈V

xi

ui − uj + 1 ≤ n(2− xi − xj) ∀ij ∈ A
1 ≤ ui ≤ n ∀i ∈ V
ui ∈ IR ∀i ∈ V

xi ∈ {0, 1} ∀i ∈ V
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MOPA

Compact / non-compact formulations

A compact formulation

• The MTZ formulation is equivalent to the AISP.

Indeed :
Given a solution (x , u) of (FMTZ ), let W = {i ∈ V | xi = 1}.
If W induces a circuit C : ui + 1 ≤ uj ∀ij ∈ C , a contradiction.

• (FMTZ ) is compact
- n binary variables and n continuous variables
- m inequalities

Let’s go with Cplex !
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MOPA

Compact / non-compact formulations

A non-compact formulation

Same binary variables xi =

{
1 if node i is chosen
0 otherwise

∀i ∈ V .

(FC )


max

∑
i∈V

xi∑
i∈V (C)

xi ≤ |C | − 1 ∀C circuit of G

xi ∈ {0, 1} ∀i ∈ V

These inequalities are called the circuit inequalities.

Formulation (FC ) is clearly equivalent to the AISP.

11/1



MOPA

Compact / non-compact formulations

A non-compact formulation

Circuit inequalities are in exponential number with respect to the
number of nodes.

Formulation (FC ) cannot be directly used as compact formulation
in Cplex :

• Is this formulation really better than a compact one ?

• How to use such a non-compact formulation ?
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MOPA

Cutting Plane based algorithm

13/1



MOPA

Cutting Plane based algorithm

For an integer linear formulation

(F )


max cT x

Ax ≤ b
x ∈ ZZ

with n variables
with a exponential number of inequalities with respect to n.

How can we solve the linear relaxation (F̃ ) of (F ) ?
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MOPA

Cutting Plane based algorithm

Polyhedron

A hyperplane of IRn is the set of points x̃ ∈ IRn satisfying a linear equality ax = α.

A halfspace of IRn is the set of points x̃ ∈ IRn satisfying a linear equality ax ≤ α.

A polyhedron P is the intersection of a finite
number of halfspaces
i.e.

P = {x̃ ∈ IRn | Ax̃ ≤ b}

with Ax ≤ b system of linear inequalities.

Such a system Ax ≤ b characterizes a
polyhedron.

A polytope is a bounded polyhedron.
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MOPA

Cutting Plane based algorithm

Extreme point

• An extreme point (or vertex) of a polytope P is a point x ∈ P
s.t. there is no solutions x1 6= x2 in P with x = 1

2x
1 + 1

2x
2.

• Solving a (bounded) linear formulation

(F̃ )

{
max cT x

Ax ≤ b

reduces to find an optimal extreme point of polytope

P = {x ∈ IRn | Ax ≤ b}
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MOPA

Cutting Plane based algorithm

Initialisation
Let A0x ≤ b0 be a subset of inequalities of Ax ≤ b
and (F̃ 0) the linear program restricted to A0x ≤ b0.
Let x0 the solution of (F̃ 0).

(F̃ 0)

{
max cT x
A0x ≤ b0

x0

Solution x0 is an extreme point of the polytope characterized by A0x ≤ b0.

Note that :
if x0 satisfies every inequality of Ax ≤ b
x0 is be an extreme point of the polytope characterized by Ax ≤ b
and x0 will an optimal solution !
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MOPA

Cutting Plane based algorithm

Separation problem

Definition (Separation problem)

Given a point x̃ ∈ IRn,
the separation problem associated to Ax ≤ b and x̃ is
- to determine whether x̃ satisfies every inequality of Ax ≤ b
- or to produce an inequality ax ≤ α of Ax ≤ b violated by x̃ .

An inequality ax ≤ α of Ax ≤ b is violated by x0 if ax0 > α.
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MOPA

Cutting Plane based algorithm

Iteration

If the separation problem for x0 produces an inequality a′x ≤ β
violated by x0

(F̃1)


max cT x
A0x ≤ b0

a′x ≤ β

x1

a′x ≤ β

And so on !
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MOPA

Cutting Plane based algorithm

Cutting plane based algorithm

Definition (Cutting-plane based “method”)

While there exists an inequality ax ≤ α of Ax ≤ b violated by x i

(F̃i+1)← (F̃i ) + ax ≤ α
Solve the linear program F̃i+1

xi+1 ← solution of F̃i+1

i ← i + 1

• An algorithm which solves the separation problem is called a
separation algorithm (the whole method is to reiterate the
separation algorithm).

• An inequality which is violated a solution x i is called a cut
because the inequality separates an useless part of IRn from the
polytope characterized by Ax ≤ b.
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MOPA

Cutting Plane based algorithm

Validity of the method

• Ending
In the worst case, the algorithm enumerates every inequality of
Ax ≤ b.

• Validity
At the end of the loop, the final solution x∗ is an extreme point of
the whole system Ax ≤ b and maximizes cT x :
then x∗ is an optimal solution of (F̃ ).
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MOPA

Cutting Plane based algorithm

Complexity

Theorem (Grötschel, Lovász, Schrijver, 1981)

A cutting plane based method of rational system Ax ≤ b is polynomial
if and only if
the separation algorithm associated to Ax ≤ b is polynomial.

This fundamental results is :

Optimize ⇔ Separate
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MOPA

Cutting Plane based algorithm

Separation algorithm for the circuit inequalities

Theorem

The circuit inequalities∑
i∈V (C)

xi ≤ |C | − 1 ∀ circuit C

can be separated in polynomial time.

Note that, by setting x ′ = 1− x ,
a circuit inequality can be rewritten∑

i∈V (C)

x ′i ≥ 1
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MOPA

Cutting Plane based algorithm

Separation algorithm for the circuit inequalities

Given a point x̃ ∈ [0, 1]n

The separation problem for the circuit inequalities is to determine
whether or not there exists a circuit inequality violated by x̃
(and in the last case, to produce one violated inequality).

Set x ′ = 1− x̃ .
Find a circuit C̃ of minimal weight with respect to x ′.

(This can be done in polynomial time since x ′ ≥ 0)

• If
∑

i∈V (C̃)

x ′i < 1 :
∑

i∈V (C̃)

xi ≤ |C̃ | − 1 is violated by x̃ .

• If
∑

i∈V (C̃)

x ′i ≥ 1 : there is no circuit ineq. violated by x̃ . �
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MOPA

Branch&Cut algorithm
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MOPA

Branch&Cut algorithm

Branch-and-Cut algorithm

The cutting plane based method gives in polynomial time the
relaxation value of an integer formulation.

At the end, the solution is not integer (unless if P = NP).

The only known general framewok to solve integer problem
is... Branch&Bound !

A Branch&Bound that uses a cutting plane based algorithm in
every node of the Branch&Bound tree
is a Branch&Cut algorithm.
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MOPA

Branch&Cut algorithm

Branch-and-cut algorithm

While ∃ a violated ineq.
Add ineq. to LP
Solve LP

EndWhile

While ∃ a violated ineq.
Add ineq. to LP
Solve LP

EndWhile

While ∃ a violated ineq.
Add ineq. to LP
Solve LP

EndWhile

x5 = 0

While ∃ a violated ineq.
Add ineq. to LP
Solve LP

EndWhile

x5 = 1

x3 = 0

While ∃ a violated ineq.
Add ineq. to LP
Solve LP

EndWhile

While ∃ a violated ineq.
Add ineq. to LP
Solve LP

EndWhile

While ∃ a violated ineq.
Add ineq. to LP
Solve LP

EndWhile

While ∃ a violated ineq.
Add ineq. to LP
Solve LP

EndWhile

x2 = 0

While ∃ a violated ineq.
Add ineq. to LP
Solve LP

EndWhile

While ∃ a violated ineq.
Add ineq. to LP
Solve LP

EndWhile

While ∃ a violated ineq.
Add ineq. to LP
Solve LP

EndWhile

x2 = 1

x3 = 1
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MOPA

Reinforcement of relaxation value
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MOPA

Reinforcement of relaxation value

Formulation comparison

There is no generic method to compare the relaxation values of two formulations.

Theorem
The relaxation value of the MTZ formulation (FMTZ )
≤ the relaxation value of the circuit formulation (FC ).

Sketch of the proof.
First note that by summing MTZ inequalities over a circuit C , we obtain

∑
i∈V (C)

xi ≤
(

1−
1

2n

)
|C |

Let x̃ be a solution of the relaxation (F̃C ), then x̃ satisfies

∑
i∈V (C)

x̃i ≤ |C | − 1 ≤
(

1−
1

2n

)
|C |

By setting appropriate values ui , we get a solution (x̃ , u) of (FMTZ ). �
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MOPA

Reinforcement of relaxation value

Reinforcement

Given an integer formulation (F )


max cT x

Ax ≤ b
x ∈ ZZ

Definition

An inequality ax ≤ α is valid for an integer formulation (F )
if every integer solution of (F ) satisfies ax ≤ α.

Adding a valid inequality to formulation (F )
does not change the solution space of (F ).

But valid inequalities can improve the relaxation value !
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MOPA

Reinforcement of relaxation value

Obtaining valid inequalities

• Summing inequalities : Chvátal-Gomory rounding method :

• Multiplying inequalities : lift-and-project Lovász-Shrivjer meth.

• Finding particular sub-structures (stable set, knapsack,...)

• Lifting coefficients of inequalities (to obtain stronger ones)

• Disjunctive cuts, local branching inequalities,...

• ... and many others techniques ...
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MOPA

Reinforcement of relaxation value

Clique inequalities

In a directed graph, a clique is a subset K of nodes inducing a
complete subgraph.

The clique inequalities∑
i∈K

xi ≤ 1 pour every clique K of G

are valid for the formulation.
3

4

2

1

Indeed, at most one node can be taken among a clique.
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MOPA

Reinforcement of relaxation value

Clique inequalities

Lemma

The separation problem for the clique inequalities is NP-complete.

Indeed, proving that there is no violated clique inequality is equivalent to find a

maximal weighted clique in G, which is a famous NP-hard problem �

• However, a heuristic separation algorithm can be used !

For instance, a simple but efficient greedy heuristic :

Given a linear relaxation value x∗ :

- sort the nodes with respect to decreasing values x∗i
- K ← ∅
- iteratively try to add a node in K such that K stays a clique
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MOPA

Reinforcement of relaxation value

Chvàtal sum techniques

For a “directed cycle” D like this one.

For each consecutive nodes i and i + 1
there is a circuit inequality

xi + xi+1 ≤ 1
1 5

4

3

2

By summing these inequalities :

x1 + x2 ≤ 1
x2 + x3 ≤ 1

....
x1 + x|D| ≤ 1

∑
i∈V (C)

xi ≤
|D|
2
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MOPA

Reinforcement of relaxation value

odd cycle inequalities

The left part is integer, let’s round it down

∑
i∈V (C)

xi ≤
|D|
2
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MOPA

Reinforcement of relaxation value

odd cycle inequalities

The left part is integer, let’s round it down

∑
i∈V (C)

xi ≤
⌊
|D|
2

⌋
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MOPA

Reinforcement of relaxation value

odd cycle inequalities

The left part is integer, let’s round it down

∑
i∈V (C)

xi ≤
⌊
|D|
2

⌋

I If |D| is even, nothing new is obtained.

I If |D| is odd, we obtain a new valid inequality

∑
i∈V (C)

xi ≤
|D| − 1

2

Such odd cycle inequalities can be found in the stable set polytope.

They can be separated in polynomial time.
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MOPA

Reinforcement of relaxation value

What is inside a MIP solver ?

A MIP solver like CPLEX, GUROBI, XPRESS, SCIP,... are “Automatic
Branch-and-Cut process.

• Strong preprocessing phase

• Automatic use of generic valid inequalities through efficient cutting plane based
methods

• Automatic lifting operations to reinforce known inequalities and produce nex
ones

• Automatic logical inference to break the symmetry of the branching tree

• Generic rounding heuristics

And it is more and more easy to add your own valid inequalities to these frameworks !
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MOPA

The travelling Salesman Problem (TSP)
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MOPA

The travelling Salesman Problem (TSP)

The travelling salesman problem (TSP)

n cities
cij the transportation cost between i and j
Find a Hamiltonian “tour” that visits each cities exactly once

Let xij = 1 if edge ij is chosen and 0 otherwise.

The following linear program is integer

min
∑
i,j

cijxij

∑
j∈V

xij = 2 ∀i ∈ V ,

xij ≥ 0 ∀(i , j) ∈ V × V .

Unfortunately, the integer solutions contain “subtours”.
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MOPA

The travelling Salesman Problem (TSP)

Eliminating subtours

Menger’s theorem :
a graph is connected if and only if every cut contains at least one edge.

Then “cut” inequalities ∑
e∈δ(W )

x(e) ≥ 1 ∀W ( V and W 6= ∅
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MOPA

The travelling Salesman Problem (TSP)

The TSP formulation

min
∑
e∈E

c(e)x(e)∑
e∈δ(v)

x(e) = 2 ∀u ∈ V ,∑
e∈δ(W )

x(e) ≥ 2 ∀W ( V and W 6= ∅,

x(e) ∈ {0, 1} ∀e ∈ E .

With (a lot of) additional facet defining inequalities,
this formulation succeed to solve instances with more than 200 000
cities.

40/1



MOPA

The travelling Salesman Problem (TSP)

The TSP formulation

min
∑
e∈E

c(e)x(e)∑
e∈δ(v)

x(e) = 2 ∀u ∈ V ,∑
e∈δ(W )

x(e) ≥ 2 ∀W ( V and W 6= ∅,

x(e) ∈ {0, 1} ∀e ∈ E .

With (a lot of) additional facet defining inequalities,
this formulation succeed to solve instances with more than 200 000
cities.

40/1


