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MOPA

Combinatorial Optimization Problem

To find a greatest (smallest) element within a valuated finite set.
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MOPA

Combinatorial Optimization Problem

To find a greatest (smallest) element within a valuated finite set.

Given :

- a finite subset of elements E = {ey1,..., e}
- a solution set F of subsets of £

- a weight ¢ = (c(e1),...,c(en))

a Combinatorial Optimization Problem is to find a solution
F € F whose weight c(F) = Z c(e) is maximum (or min.),
ecF

ie. max {c(F) | F € F}.
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MOPA

“Natural” MIP formulation

1 if e is chosen

Binary variable x, = { 0 otherwise

for every e € E.
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MOPA

“Natural” MIP formulation

for every e € E.

Binary variable xe = { 1 if e is chosen

0 otherwise

max Z c(e)xe

Ax < b
xe € {0,1} Vec€E.

We will suppose here that :
- Ax < b is known
- the linear relaxation of this MIP can be obtained
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MOPA

“Natural” MIP formulation

1 if eis chosen

} for every e € E.
0 otherwise yee

Binary variable x, = {

max Z c(e)xe

Ax < b
xe €{0,1} Vee€E.

We will suppose here that :
- Ax < b is known
- the linear relaxation of this MIP can be obtained

Important remark : Ax < b can be non-compact,

i.e. can contain an exponential number of inequalities !
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MOPA
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R
MOPA

|—Compact / non-compact formulations
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MOPA

LCompact / non-compact formulations

The Acyclic Induced subgraph problem

Let G = (V, A) be a directed graph
with n = | V| nodes and m = |A| arcs.
A circuit of G : a sequence of arcs

C = (i1h2, ipi3, vy ik—111)

Notation :
V(C) is the set of nodes of C.
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MOPA

LCompact / non-compact formulations

The Acyclic Induced subgraph problem

Let G = (V, A) be a directed graph
with n = | V| nodes and m = |A| arcs.

A circuit of G : a sequence of arcs
C = (iri2, iaf3, ...y ix—111) , )

Notation :
V(C) is the set of nodes of C.

A graph is acyclic if it contains no circuit.
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MOPA

LCompact / non-compact formulations

The Acyclic Induced subgraph problem

Given a node subset W C V,
A(W) : arcs with both endnodes in W

(W, A(W)) : subgraph induced by W
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The Acyclic Induced subgraph problem

Given a node subset W C V,
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(W, A(W)) : subgraph induced by W
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MOPA

LCv:)mpact / non-compact formulations

The Acyclic Induced subgraph problem

Given a node subset W C V,
A(W) : arcs with both endnodes in W

(W, A(W)) : subgraph induced by W

The Acyclic Induced Subgraph Problem (AISP) is to find
a node subset W inducing an acyclic subgraph with |W| maximum
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MOPA

LCompact / non-compact formulations

The Acyclic Induced subgraph problem

Given a node subset W C V,
A(W) : arcs with both endnodes in W

(W, A(W)) : subgraph induced by W

The Acyclic Induced Subgraph Problem (AISP) is to find

a node subset W inducing an acyclic subgraph with |W| maximum
or

a node subset W’ “breaking” every circuit of G with |W’| min.
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MOPA

LCompact / non-compact formulations

The Acyclic Induced subgraph problem

o The AISP is NP-hard.

Indeed :
given a non-directed graph G
construct a directed graph G’ by replacing one edge by two arcs

o e

then finding an acyclic subgraph in G’ is as hard as finding a maximum stable set in G.

e The AISP is polynomial for graphs of maximum degree 3 [Baiou,
Barahona]
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MOPA

LCompact / non-compact formulations

A compact formulation

Two types of variables :

- Binary variables x; = Lif node'/ 's chosen VieV.
0 otherwise
- Continuous variables u; Vi € V.
A Miller-Tucker-Zemlin (MTZ) formulation :
( maxe,-
iev
ui—ui+1<n2-x;—x;) VijeA
(Furz) 1<u<n VieV
u €R VieV
x; € {0,1} VieV
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MOPA

LCompact / non-compact formulations

A compact formulation

e The MTZ formulation is equivalent to the AISP.

Indeed :
Given a solution (x, u) of (Fpy7z), let W ={i€ V| x; =1}.
If Winduces a circuit C: u;+1 < u; Vij € C, a contradiction.

e (Fm1z) is compact
- n binary variables and n continuous variables
- m inequalities

Let's go with Cplex!
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MOPA

LCompact / non-compact formulations

A non-compact formulation

Same binary variables x; = { (1) Ic]:tEZrdv:islels chosen Vie V.

maxe,-
iev
(Fc) Z x; <|C| =1 VC circuit of G
ieV(C)
x; € {0,1} VieV

These inequalities are called the circuit inequalities.

Formulation (F¢) is clearly equivalent to the AISP.
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MOPA

LCompact / non-compact formulations

A non-compact formulation

Circuit inequalities are in exponential number with respect to the
number of nodes.

Formulation (F¢) cannot be directly used as compact formulation
in Cplex :

e |s this formulation really better than a compact one?

e How to use such a non-compact formulation ?
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R
MOPA

|—Cutting Plane based algorithm
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R
MOPA

|—Cutting Plane based algorithm

For an integer linear formulation

max CTX

(F) Ax < b
xeZ
with n variables
with a exponential number of inequalities with respect to n.
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R
MOPA

LCutting Plane based algorithm

For an integer linear formulation

max c ! x ) max c ! x
(F) Ax < b (F) Ax < b
xeZ xeZ

with n variables
with a exponential number of inequalities with respect to n.

How can we solve the linear relaxation (F) of (F)?
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MOPA
LCutting Plane based algorithm

Polyhedron

A hyperplane of R" is the set of points X € R" satisfying a linear equality ax = a.
A halfspace of R" is the set of points X € R" satisfying a linear equality ax < a.
A polyhedron P is the intersection of a finite
number of halfspaces
ie.

P={x€ R"| Ax < b}

with Ax < b system of linear inequalities.

Such a system Ax < b characterizes a
polyhedron.

A polytope is a bounded polyhedron. ‘
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MOPA
LCutting Plane based algorithm

Extreme point

e An extreme point (or vertex) of a polytope P is a point x € P
s.t. there is no solutions x! # x? in P with x = 1x! + 1x2.

e Solving a (bounded) linear formulation
T
~ max ¢’ x
(F) { Ax < b
reduces to find an optimal extreme point of polytope

P={xe R"| Ax < b}
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MOPA
|—Cutting Plane based algorithm

Initialisation

Let Agx < bg be a subset of inequalities of Ax < b
and (F°) the linear program restricted to Agx < by.
Let x° the solution of (F9).

T
~0 max c ' x
(F){ Aox < b

e

0

Solution x° is an extreme point of the polytope characterized by Apx < bg.
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MOPA
LCutting Plane based algorithm

Initialisation

Let Agx < bg be a subset of inequalities of Ax < b
and (F°) the linear program restricted to Agx < bp.
Let x° the solution of (F9).

T
~0 max c ' x
(F){ Aox < b

e

Solution x0 is an extreme point of the polytope characterized by Agx < bg.

Note that :

if x0 satisfies every inequality of Ax < b

x9 is be an extreme point of the polytope characterized by Ax < b
and x% will an optimal solution !
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MOPA
LCutting Plane based algorithm

Separation problem

Definition (Separation problem)

Given a point X € R",

the separation problem associated to Ax < b and X is

- to determine whether X satisfies every inequality of Ax < b
- or to produce an inequality ax < « of Ax < b violated by X.

An inequality ax < o of Ax < b is violated by x? if ax® > a.
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e
MOPA

|—Cutting Plane based algorithm

Iteration

If the separation problem for x° produces an inequality a’x < 8
violated by x°

ax< B

maxc X
(F1) § Aox < bg
ax<pB
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e
MOPA

I—Cutting Plane based algorithm

Iteration

If the separation problem for x° produces an inequality a’x < 8
violated by x°

ax< B

maXx CTX

(F1){ Aox < by
ax<p

And so on!
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MOPA
LCutting Plane based algorithm

Cutting plane based algorithm
Definition (Cutting-plane based “method”)

While there exists an inequality ax < a of Ax < b violated by x’
(,:_i—i-l) — (i':,) +ax < «

Solve the linear program F‘;H

Xj+1 < solution of l—:,-+1

i—i+1

e An algorithm which solves the separation problem is called a
separation algorithm (the whole method is to reiterate the
separation algorithm).

e An inequality which is violated a solution x’ is called a cut
because the inequality separates an useless part of R" from the

polytope characterized by Ax < b. o



MOPA
LCutting Plane based algorithm

Validity of the method

e Ending
In the worst case, the algorithm enumerates every inequality of
Ax < b.

e Validity
At the end of the loop, the final solution x* is an extreme point of
the whole system Ax < b and maximizes ¢’ x :

then x* is an optimal solution of (F).
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MOPA
LCutting Plane based algorithm

Complexity

Theorem (Grotschel, Lovasz, Schrijver, 1981)

A cutting plane based method of rational system Ax < b is polynomial
if and only if
the separation algorithm associated to Ax < b is polynomial.

This fundamental results is :

Optimize < Separate
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MOPA
LCutting Plane based algorithm

Separation algorithm for the circuit inequalities

Theorem

The circuit inequalities

Z xi <|C|—1 V¥ circuit C
iev(C)

can be separated in polynomial time.

Note that, by setting x' =1 — x,
a circuit inequality can be rewritten

Zx>1

ieV(C)

23/1



MOPA
LCutting Plane based algorithm

Separation algorithm for the circuit inequalities

Given a point X € [0,1]"

The separation problem for the circuit inequalities is to determine
whether or not there exists a circuit inequality violated by X

(and in the last case, to produce one violated inequality).

Set X' =1—X.
Find a circuit C of minimal weight with respect to x’.
(This can be done in polynomial time since x' > 0)

olf Y x<1: ) x<|C|-1 isviolated by %.

iev(C) iev(C)
o If Z xj > 1 : there is no circuit ineq. violated by X. O
iev(C)
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MOPA

L Branch&Cut algorithm
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MOPA
L Branch&Cut algorithm

Branch-and-Cut algorithm

The cutting plane based method gives in polynomial time the
relaxation value of an integer formulation.

At the end, the solution is not integer (unless if P = NP).
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MOPA
- Branch&Cut algorithm

Branch-and-Cut algorithm

The cutting plane based method gives in polynomial time the
relaxation value of an integer formulation.

At the end, the solution is not integer (unless if P = NP).

The only known general framewok to solve integer problem
is... Branch&Bound !

A Branch&Bound that uses a cutting plane based algorithm in
every node of the Branch&Bound tree
is a Branch&Cut algorithm.
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MOPA
L Branch&Cut algorithm

Branch-and-cut algorithm

While 3 a violated ineq.
Add ineq. to LP
Solve LP

EndWhile

While 3 a violated ineq.
Add ineq. to LP
Solve LP

EndWhile

While 3 a violated ineq.
Add ineg. to LP
Solve LP

EndWhile

‘While 3 a violated ineq.
Add ineq. to LP

While 5 a violated ineg
Add ineq. to LP

While 3 a violated ineq
Add ineg. to LP

While 3 2 violated ineq.
Add ineq. to LP

Solve LP
EndWhile

Solve LP
EndWhile

Solve LP
EndWhile

Solve LP.
EndWhile

> 4z P
Sohe 17
Endwiie

Sohe
Endwite
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L Reinforcement of relaxation value

28/1



R
MOPA

|—Reinforcement of relaxation value

Formulation comparison

There is no generic method to compare the relaxation values of two formulations.
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MOPA
LReinforcemem: of relaxation value
Formulation comparison
There is no generic method to compare the relaxation values of two formulations.

Theorem

The relaxation value of the MTZ formulation (Fptz)
< the relaxation value of the circuit formulation (F¢).

Sketch of the proof.
First note that by summing MTZ inequalities over a circuit C, we obtain

RN

iev(C)

Let X be a solution of the relaxation (F¢), then X satisfies

> %,-slcw—ls(l——)lﬂ

iev(c)

By setting appropriate values u;, we get a solution (X, u) of (FyTz)- O
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MOPA

LReinforcement of relaxation value

Reinforcement

max CTX

Given an integer formulation (F) Ax < b
xeZ

Definition
An inequality ax < « is valid for an integer formulation (F)
if every integer solution of (F) satisfies ax < a.

Adding a valid inequality to formulation (F)
does not change the solution space of (F).

But valid inequalities can improve the relaxation value!
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MOPA

LReinfc)rcemem: of relaxation value

Obtaining valid inequalities

Summing inequalities : Chvatal-Gomory rounding method :

Multiplying inequalities : lift-and-project Lovasz-Shrivjer meth.

Finding particular sub-structures (stable set, knapsack,...)

Lifting coefficients of inequalities (to obtain stronger ones)

Disjunctive cuts, local branching inequalities,...

e ... and many others techniques ...
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MOPA

LReinforcemem: of relaxation value

Clique inequalities

In a directed graph, a clique is a subset K of nodes inducing a
complete subgraph.

The clique inequalities lga—— o4

Zx,- < 1 pour every clique K of G
ieK
are valid for the formulation.

O—_ =00

Indeed, at most one node can be taken among a clique.
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MOPA

LReinforcement of relaxation value

Clique inequalities

Lemma

The separation problem for the clique inequalities is NP-complete.

Indeed, proving that there is no violated clique inequality is equivalent to find a

maximal weighted clique in G, which is a famous NP-hard problem d
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MOPA

LReinforcemem: of relaxation value

Clique inequalities

Lemma
The separation problem for the clique inequalities is NP-complete.

Indeed, proving that there is no violated clique inequality is equivalent to find a

maximal weighted clique in G, which is a famous NP-hard problem d

e However, a heuristic separation algorithm can be used!

For instance, a simple but efficient greedy heuristic :
Given a linear relaxation value x* :
- sort the nodes with respect to decreasing values x*
-K<«0
- iteratively try to add a node in K such that K stays a clique
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MOPA

|—Reinforcement of relaxation value

Chvatal sum techniques

For a "directed cycle” D like this one.

For each consecutive nodes i and i + 1 2 4
there is a circuit inequality

xi+x41 <1
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MOPA

LReinforcement of relaxation value

Chvatal sum techniques

For a "directed cycle” D like this one.

For each consecutive nodes i and i + 1 2 4
there is a circuit inequality
xi+x41 <1
1 5
By summing these inequalities :
X1+ x < 1
x2 + X3 < 1
x1 + xp <1
> el
xp < —
ieVv(C)
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MOPA

|—Reinforcement of relaxation value

odd cycle inequalities

The left part is integer, let's round it down

Z Xiﬁ%

iev(C)
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MOPA

|—Reinforcement of relaxation value

odd cycle inequalities

The left part is integer, let's round it down

roel2)

iev(C)
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MOPA

LReinforcement of relaxation value

odd cycle inequalities

The left part is integer, let's round it down

= v [2]

iev(C)

> If |D] is even, nothing new is obtained.

> If |D] is odd, we obtain a new valid inequality

T X< |D|27 1

iev(C)

Such odd cycle inequalities can be found in the stable set polytope.

They can be separated in polynomial time.
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MOPA

LReinforcement of relaxation value

What is inside a MIP solver?

A MIP solver like CPLEX, GUROBI, XPRESS, SCIP,... are “Automatic
Branch-and-Cut process.

e Strong preprocessing phase

e Automatic use of generic valid inequalities through efficient cutting plane based
methods

e Automatic lifting operations to reinforce known inequalities and produce nex
ones

e Automatic logical inference to break the symmetry of the branching tree

e Generic rounding heuristics

And it is more and more easy to add your own valid inequalities to these frameworks !
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L The travelling Salesman Problem (TSP)
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MOPA
L The travelling Salesman Problem (TSP)

The travelling salesman problem (TSP)

n cities
cjj the transportation cost between i and j
Find a Hamiltonian “tour” that visits each cities exactly once

Let x; = 1 if edge ij is chosen and 0 otherwise.
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MOPA
L The travelling Salesman Problem (TSP)

The travelling salesman problem (TSP)

n cities
cjj the transportation cost between i and j
Find a Hamiltonian “tour” that visits each cities exactly once

Let x; = 1 if edge ij is chosen and 0 otherwise.

The following linear program is integer

min Zc,-jx,-j
isj
D> oxj=2 Viev,
jev
xj >0 V(i,j)eVxV.
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MOPA
L The travelling Salesman Problem (TSP)

The travelling salesman problem (TSP)

n cities
cjj the transportation cost between i and j
Find a Hamiltonian “tour” that visits each cities exactly once

Let x; = 1 if edge ij is chosen and 0 otherwise.

The following linear program is integer

o«
min Zc,-jx,-j
i.j .\‘ T
D> oxj=2 vieV,
JjeV

xj >0 V(i,j)eVxV.

Unfortunately, the integer solutions contain “subtours”.
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MOPA
L The travelling Salesman Problem (TSP)

Eliminating subtours

Menger’s theorem :
a graph is connected if and only if every cut contains at least one edge.

Then “cut” inequalities

> x(e)>1 YW G Vand W0
ecs(w)
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MOPA
L The travelling Salesman Problem (TSP)

Eliminating subtours

Menger’s theorem :
a graph is connected if and only if every cut contains at least one edge.

Then “cut” inequalities

Z x(e)>1 YW C Vand W #£0
ecs(w)

™S —
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MOPA
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Eliminating subtours

Menger’s theorem :
a graph is connected if and only if every cut contains at least one edge.

Then “cut” inequalities

Z x(e)>1 YW C Vand W #£0
ecs(w)
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MOPA
L The travelling Salesman Problem (TSP)

The TSP formulation

min Z c(e)x(e)
eckE
Z x(e)=2 VYueV,
ecd(v)
Z x(e)>2 YW C Vand W # 0,
ecd(W)

x(e) €{0,1} VeeE.
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MOPA
L The travelling Salesman Problem (TSP)

The TSP formulation

mmZ e)x(e)

ecE

Zx(e):2 YueV,

ecd(v)

Z x(e)>2 YW C Vand W # 0,
ecd(W)

x(e) € {0,1} Ve € E.

With (a lot of) additional facet defining inequalities,
this formulation succeed to solve instances with more than 200 000
cities.
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