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Here are some special cases where the linear relaxation of an ILP yields an
integer solution... more precisely where the simplex algorithm systematically
provides an integer solution.
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Polyhedron and extreme points

A polyhedron is simply a geometric figure defined as the region bounded by
”planes”. In one-dimensional space, the ”planes” are points and the polyhedra
are connected intervals. In two-dimensional space, the ”planes” are lines and
the polyhedra are squares, rectangles,... In three-dimensional space, the
”planes” are planes and the polyhedra are cubes, dodecahedra,...

In fact, in IRn, we call a hyperplane H a subspace of IRn defined as the set of
points satisfying a linear equation, i.e., there exist a1, ...,an,b ∈R such that
H = {x ∈ IRn | + a1x1 + ...+ anxn = b}.

Definition
A polyhedron P ⊆ IRn is the set of solutions of a finite system of linear
inequalities, i.e.,

P = {x ∈ IRn | Ax ≤ b},

where A is an m × n matrix (m and n positive integers) and b ∈ IRm.
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We then say that the system Ax ≤ b defines or characterizes the polyhedron
P.

In this course, we consider only rational polyhedra, i.e., those for which the
coefficients of the system Ax ≤ b are all rational.
If A is an m × n matrix, we denote by Ai (resp. Aj ) the i th row (resp. j th column)
of A for i = 1, ...,m (resp.j = 1, ...,n ).

A point of a polyhedron is therefore defined by coordinates x̃ ∈ IRn such that
Ax̃ ≤ b.

A polytope is a bounded polyhedron, i.e., a polyhedron P ⊆ IRn is a polytope
if there exist x1, x2 ∈ IRn such that x1 ≤ x ≤ x2, for all x ∈ P.

Definition
A point x of a polyhedron P is called an extreme point (or sometimes vertex)
of P if there do not exist two solutions x1 and x2 of P, x1 6= x2, such that
x = 1

2 x1 + 1
2 x2.

In other words, an extreme point of P is a point of P that is not the midpoint of
a segment contained in P.
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Theorem
Let P = {Ax ≤ b} be a polyhedron in IRn. Let x̃ ∈ IRn be a point. We denote by
Ãx ≤ b̃ the submatrix of constraints from Ax ≤ b formed by the inequalities
satisfied with equality by x̃.
Then x̃ is an extreme point of P if and only if the set Ãx ≤ b̃ has rank n.

Recall from linear algebra :
- a set of vectors is said to be linearly independent if none of them can be
obtained as a linear combination of the others.
- the rank of a matrix is the maximum number of linearly independent rows of
the matrix.

In other words, a point x̃ is extreme if we can produce n inequalities from the
matrix A that are satisfied by x̃ with equality and that are linearly independent.
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Fractional points of the knapsack problem

Consider the following knapsack problem :

Max c1x1 + c2x2 + c3x3

2x1 + 2x2 + 5x3 ≤ 8
xi ≤ 1 i = 1, ...,3,
xi ≥ 0 i = 1, ...,3,
xi ∈ IN i = 1, ...,3.

We can show that this problem admits fractional extreme points and give a
case where it is optimal.

Answer : Consider the point x̃ = (1,1, 4
5 ).

We can note that this point satisfies with equality 3 inequalities of the linear
relaxation of the ILP : x1 = 1, x2 = 1 and the main inequality.
Moreover, these 3 inequalities are clearly linearly independent.
So this point is a fractional extreme point of the problem.
For example, with the weight c̃ = (10,10,1) this point is clearly optimal.
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Integer polyhedra

A point in IRn is integer if its coordinates are integers.
A polyhedron is said to be integer if all its extreme points are integers.
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Recap : Linear Programming

Recall two results from linear programming :
All optimal solutions of an LP lie on one of the hyperplanes defining the
solution polyhedron.
The set of extreme points of the solution polyhedron contains at least one
optimal solution. Therefore, we can limit the search for optimal solutions
to the extreme points of the solution polyhedron.

So an ILP whose linear relaxation corresponds to an integer polyhedron
can be solved in polynomial time !
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Theorem (Equivalence Integer Polyhedron/ILP)

A rational polytope P is integer if and only if
for every integer vector c, the optimal value of Max{cT x | x ∈ P} is integer.

Proof : The forward direction is immediate.
Conversely, consider v = (v1, ..., vn)T an extreme point of P (there exists one because it is pointed). Assume
we can prove that there exists an integer vector w such that v is the unique optimal solution of
max{wT x | x ∈ P} (let’s assume this). Take λ ∈ ZZ such that λwT v ≥ λwT u + u1 − v1 for every u extreme
point of P. Note that v is still the unique optimal solution of max{λwT x | x ∈ P}. Thus, by setting the weight
w̄ = (λw1 + 1, λw2, ..., λwn)T , we see that v is also an optimal solution of max{w̄T x | x ∈ P} because
λw t v > x for all x ∈ P. But by construction w̄T v = λwT v + v1 and since, by hypothesis, w̄T v and λwT v are
integers, then v1 is integer. We can repeat this for all components so v is integer. �

(It is possible to extend this result to unbounded polyhedra.)

11/50



Definitions :
- A polyhedron is said to be pointed if it contains at least one extreme point.
For example, the polyhedron {(x1, x2) ∈ IR2 : x1 ≥ 0} contains no extreme
points.
- A polyhedron is said to be rational if it can be defined by a system where all
inequalities have rational coefficients.

Here we consider only rational pointed polyhedra, which is not restrictive from
a computational perspective.
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A simple example
Consider the following knapsack problem where b is integer.

Max
n∑

i=1

cixi

n∑
i=1

xi ≤ b

xi ≤ 1 i = 1, ...,n,
xi ≥ 0 i = 1, ...,n,
xi ∈ IN i = 1, ...,n.

Let’s show that this system is integer.

Answer : An extreme point of this system must satisfy with equality n linearly independent inequalities of this
system. But there are few inequalities here that can be satisfied with equality !
There are two cases :
- either the main inequality is not satisfied with equality : in this case, only the trivial inequalities are tight and
the point is integer.
- or the main inequality is satisfied with equality and then there are n − 1 trivial inequalities tight. So the point
consists of n − 1 integer components 0 or 1. Let N+ denote the components equal to 1. The last unknown
component therefore has the value b− |N+| : note that this quantity is necessarily positive, integer, and at most
1. So this last component is also integer.
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Unimodularity

It would be very interesting to be able to characterize matrices corresponding
to integer polyhedra.

A square matrix A is said to be unimodular if A is integer and if its
determinant is +1 or −1.

Lemma
Let A be an integer square matrix of size m, invertible. Then A−1b is an
integer vector for every integer vector b of size m if and only if A is unimodular.

Proof : By a classic result of linear algebra, we know that A−1 = Aadj
det(A) where Aadj is the adjugate matrix of A,

i.e., the matrix obtained by transposing the matrix of cofactors Cij = (−1)i+j Mij and where Mij is the
determinant of the submatrix obtained from A by deleting row i and column j . So if A is integer, Aadj is also
integer. So if A is unimodular, A−1 is integer and thus A−1b is an integer vector.
Conversely, if A−1b is an integer vector for every integer vector b of size m, then in particular A−1ei is integer
for ei the ith unit vector for all i = 1, ...,m. So A−1 is integer and therefore det(A) and det(A−1) are both
integers. Since det(A).det(A−1) = 1, we have det(A) = 1 or -1. �
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Unimodularity

The previous lemma leads to the following definition.

An m × n matrix A with n ≥ m of rank m is said to be unimodular if A is
integer and if the matrix associated with each of its bases has determinant +1
or −1.
(A basis of A is a set of m linearly independent column vectors and the matrix
associated with a basis is thus an invertible m ×m square submatrix).

Theorem
[Veinott and Dantzig]
Let A be an integer m × n matrix of full row rank. The polyhedron defined by
Ax = b, x ≥ 0 is integer for every integer vector b if and only if A is unimodular.
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Total unimodularity
A matrix is called totally unimodular (TU) if all its square submatrices have
determinant 0, 1, or -1.
Thus, for a unimodular matrix, the coefficients are therefore only 0, 1, and -1.

We can note that in fact an m× n matrix A is TU if and only if the matrix [AI] of
size m × (m + n) (which is obtained by appending an identity matrix to A) is
unimodular.

A consequence of the previous theorem gives then the following important
theorem.

Theorem
[Hoffman-Kruskal]
Let A be an m × n TU matrix. Then the polyhedron defined by Ax ≤ b, x ≥ 0
is integer for every integer vector b.

Note that this theorem is not a characterization of integer polyhedra.
Moreover, it is not easy to detect whether a matrix is TU. An essential (and
complex) result by Seymour (1980) proves in fact that these matrices can be
constructed according to a particular scheme.
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Special cases of TU matrices

While this result is quite complex, there is a special case of TU matrices that
is very easy to recognize.

Theorem (Poincaré (1900))

Let A be a matrix whose coefficients are 0, 1, or -1 and such that each column
contains at most one coefficient 1 and at most one coefficient -1.
Then A is TU.

And so, if the theorem applies, any solution of an LP using A as the coefficient
matrix of the inequalities corresponds to an integer polyhedron.
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Special cases of TU matrices

This more general theorem generalizes that of Poincaré

Theorem

Let A be a matrix whose coefficients are 0, 1, or -1 and such that
each column contains at most two non-zero coefficients.
the rows of A can be partitioned into two sets I1 and I2 such that

if a column has two coefficients of opposite signs
then their rows are in the same set I1 or I2
if a column has two coefficients of the same sign
then their rows are one in I1 and the other in I2.

Then A is TU.

This second theorem implies the first when I2 = ∅.
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Minimum cost flow problem (without capacity)

Consider a network G = (V ,A) which is a directed graph with a vertex s,
called source, without predecessors from which every vertex of G can be
reached and a vertex t , called sink, which is reachable from every vertex of G.
An s-t-flow is a positive vector x ∈ IRm if it satisfies the “flow conservation”
constraint ∑

a∈δ+(u)

x(a)−
∑

a∈δ−(u)

x(a) = 0 ∀u ∈ v \ {s, t}.

We associate a cost w(a) ∈ IR+ to each arc a ∈ A.

The minimum cost flow problem or min-cost flow consists in finding a flow
such that the value

∑
a∈A w(a)x(a) is minimized.
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Minimum cost flow problem (without capacity)

Consider the following LP :

Min
∑
a∈A

w(a)x(a)

∑
a∈δ+(u)

x(a)−
∑

a∈δ−(u)

x(a) = 0 ∀u ∈ V \ {s, t}

Poincaré’s result proves that the constraint matrix of this LP, called the flow
matrix, is TU.

Indeed, the variable x(a) appears twice in its column : once for each of its
endpoints, either with a coefficient -1 or with a coefficient +1.

So this LP corresponds to an integer polyhedron : it will always have an
integer solution.

But this example, where the flow is unbounded, has an optimal solution of
zero... it’s not a good example !
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Minimum cost flow problem (the real one)

Let a network G be equipped with a weight w on the arcs
... and a minimum integer flow capacity b(a) ∈ IN associated with each arc
a ∈ A.

This is formulated as

Min
∑
a∈A

w(a)x(a)

∑
a∈δ+(u)

x(a)−
∑

a∈δ−(u)

x(a) = 0 ∀u ∈ V \ {s, t}

x(a) ≥ b(a) ∀a ∈ A.

We can prove that this LP also corresponds to an integer polyhedron.

Proof. Let x̃ be an extreme point of the polyhedron. If a component x(a) satisfies the capacity inequality with
equality, this component is integer. Let Af be the set of arcs of A with flow x̃(a) > b(a). Consider the system
derived from the flow conservation inequalities : we transform the original inequalities by fixing, to their bounds
b(a), the components x̃(a) with a /∈ Af . This system consists only of the flow matrix limited to arcs Af so the
solution from this matrix will have integer components.
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Bipartite matching (assignment) problem

Let a complete bipartite graph G = (V1 ∪ V2,E) be associated with a weight
c ∈ INm associated with the edges of E .

A matching of G is a set of edges pairwise non-incident.

The bipartite matching problem consists in determining a matching that
maximizes the sum of the weights of its edges.

There exist several efficient polynomial algorithms to solve this classical
problem (including the famous Hungarian algorithm).
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Bipartite matching (assignment) problem

Consider the following LP that formulates the problem :

Max
∑
e∈E

c(e)x(e)

∑
e∈δ(u)

x(e) ≤ 1 ∀u ∈ V1

∑
e∈δ(u)

x(e) ≤ 1 ∀u ∈ V2

x(e) ≥ 0 ∀e ∈ E .

The matrix of this LP is TU by the theorem using I1 = V1 and I2 = V2.
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Matching (assignment) problem

Let’s generalize the bipartite matching problem.

In an undirected graph G = (V ,E), a matching is a set of edges pairwise
non-adjacent (i.e., with no common vertex). The graph is equipped with a
weight w(e) associated with each edge e ∈ E .

2 couplages

The maximum matching problem consists in finding a matching of
maximum cardinality (or maximum weight).
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Matching (assignment) problem

A possible formulation that generalizes the previous one is :

Max
∑
e∈E

c(e)x(e)

∑
e∈δ(u)

x(e) ≤ 1, ∀v ∈ V ,

0 ≤ x(e) ≤ 1, ∀e ∈ E ,
x(e) integer, ∀e ∈ E .

Indeed, in a matching, there is at most one edge incident to each vertex.

• If G is bipartite, it can be written according to the previous formulation : the
LP has a TU matrix and the corresponding polyhedron is therefore integer.

• If G is not bipartite, what happens?
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Matching (assignment) problem

We cannot find sets I1 and I2 satisfying the theorem.
Indeed, since the graph is not bipartite, we cannot ”bipartition” the set of rows
as required by the theorem.

In fact, the associated LP does not correspond to an integer LP (and thus is
not TU). We can produce a counterexample by producing a graph and a
fractional extreme point (i.e., non-integer) :

Take G = C limited to a cycle C (odd) of 5 vertices.
The extreme point x̃ assigning to each edge the value 1

2 satisfies each of the
5 inequalities (1) with equality.
Moreover, these 5 inequalities (1) are linearly independent :
it is indeed a fractional extreme point of the polyhedron of the formulation.

And yet the matching problem is polynomial even for non-bipartite G !

There is no contradiction !

This formulation is not ”integer” but there exists one, given by Jack Edmonds
in 1965 (see section ”Polyhedron characterization”)
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Recap : Duality
For a linear program (P̃), then called the primal, the dual is the linear program
(D̃) as follows

(P̃)

 Max z = cT x
Ax ≤ b
x ≥ 0

(D̃)

 Min w = bT y
AT y ≥ c
y ≥ 0

In ”algebraic” form :

(P̃)



Max z =
n∑

j=1

cjxj

n∑
j=1

aijxj ≤ bi ∀i = 1, . . . ,m

xi ≥ 0 ∀j = 1, . . . ,n.

(D̃)


Min w =

m∑
i=1

biyi

m∑
i=1

aijyi ≥ cj ∀j = 1, . . . ,n

yj ≥ 0 ∀i = 1, . . . ,m.

The dual variables of (D̃) correspond to the inequalities of (P̃).
The matrix of (D̃) is the transpose AT .
The costs of the objective function and the right-hand side terms of the
inequalities swap roles.
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Recap : Duality

•Weak duality theorem :
If (P̃) and (D̃) each admit a solution x̃ and ỹ ,
then cT x̃ ≤ bT ỹ .

• Duality theorem :
If (P̃) admits an optimal (finite) solution,
then (D̃) also does and moreover they ”coincide”, i.e.

(P̃) max{cT x | Ax ≤ b} = min{bT y |yT A = c, y ≥ 0} (D̃).
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Min-Max bound

Consider an ILP (P) and its linear relaxation (P̃) which is an LP.
Consider an LP (D̃) dual of (P̃) and its ILP version (D).
An integer solution x of (P) is a solution of (P̃).
An integer solution y of (D) is a solution of (D̃).
Let x∗ be an optimal solution of (P̃) then (by weak duality)

cT x ≤ cT x∗ ≤ bT y∗ ≤ bT y

In the VERY special case where we know both :
- an algorithm giving an integer solution x (approximate) for (P)
- and an algorithm giving an integer solution y (approximate) for (D)
then we have a Min-Max bound [x , y ] for the integer solution of (P) (and of
(D)).
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Totally dual integrality

A natural question is to know when such a bound is an equality !

Consider an ILP (P) with linear relaxation (P̃) = {cT x | Ax ≤ b}. And the dual
of (P̃) is (D̃) = {bT y | AT y ≥ c}.

The system Ax ≤ b is totally dual integral (TDI)
if, for every integer vector c such that there exists an optimal solution of (P̃),
then this solution can be obtained by an integer vector y in (D̃).

Theorem
Let Ax ≤ b be a TDI system with (P̃) = {cx | Ax ≤ b} rational and b integer.
Then (P̃) is an integer polytope, i.e. (P) = (P̃).

Proof : By the definition of (P̃) being TDI, for every optimal solution x of the
problem, there exists an integer vector y solution of the dual that achieves this
optimum, i.e., such that cT x = yT b. But since b is integer, if y is integer, cT x
is therefore integer. So by the theorem [Equivalence Integer Polyhedron/ILP],
x is integer. Therefore (P̃) is integer. �
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One could also be interested in characterizing TDI systems. But this does not
really make sense relative to solving a combinatorial optimization problem :
indeed, for every rational system Ax ≤ b, there exists a positive integer t such
that 1

t Ax ≤ 1
t b is TDI. The existence of such a system therefore says nothing

about the structure of the associated polyhedron P. In fact, we have the
following result.

Theorem
[Giles and Pulleyblank]
Let P be a rational polyhedron. Then there exists a TDI system Ax ≤ b with A
integer such that P = {Ax ≤ b}. Moreover, if P is integer, then b can be
chosen integer.

This result tells us that there always exists a TDI system for every integer
polyhedron P and that consequently, there exists a system that always has
integer solutions.

Determining a TDI system allows proving the integrality of a polyhedron
(and its LP).

33/50



One could also be interested in characterizing TDI systems. But this does not
really make sense relative to solving a combinatorial optimization problem :
indeed, for every rational system Ax ≤ b, there exists a positive integer t such
that 1

t Ax ≤ 1
t b is TDI. The existence of such a system therefore says nothing

about the structure of the associated polyhedron P. In fact, we have the
following result.

Theorem
[Giles and Pulleyblank]
Let P be a rational polyhedron. Then there exists a TDI system Ax ≤ b with A
integer such that P = {Ax ≤ b}. Moreover, if P is integer, then b can be
chosen integer.

This result tells us that there always exists a TDI system for every integer
polyhedron P and that consequently, there exists a system that always has
integer solutions.

Determining a TDI system allows proving the integrality of a polyhedron
(and its LP).

33/50



A small non-TDI example

Consider the following (very simple) problem.
We call a multi-set, a set of elements where each element can be represented
multiple times.
Given a complete graph on 4 vertices K4 = (V ,E) whose edges are equipped
with a weight w(e), e ∈ E , determine a multi-set of edges of maximal weight
of K4 such that, for each vertex of the graph, there are at most 2 edges
incident to this vertex (we can call this problem the maximal “2-matching”).

e3

u1

u2

u3

u4

e2

e4

e6

e5e1
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A small non-TDI example

This problem is formulated by the following ILP (P) :

Max
∑
e∈E

w(e)x(e)

∑
e∈δ(u)

x(e) ≤ 2 ∀u ∈ V ,

x(e) ≥ 0 ∀e ∈ E ,
x(e) ∈ IN ∀e ∈ E .

Note that x(e) is indeed taken in IN.

Look at the optimal solution for w(e) = 1 for e ∈ E :
the optimal solution of this problem is clearly 4.
Indeed,
- either an edge is taken 2 times : without loss of generality consider e1, then
only e4 can be added at most 2 times.
- or each edge is taken at most 1 time : an optimal solution is then clearly to
take 4 edges forming a square.

35/50



A small non-TDI example

Let’s show that the system formed by inequalities (1-1) is not TDI.

Answer : For this, consider the dual of this system based on variables y
associated with inequalities (1), i.e., with the vertices of the graph :

Min
∑
v∈V

2y(v)

y(u) + y(v) ≥ we ∀e = uv ∈ E ,
y(v) ≥ 0 ∀v ∈ V .

We can note that, for the weight w(e) = 1,e ∈ E , it is impossible that there
exists an integer dual solution of value 4. Therefore there does not exist an
integer solution of the dual corresponding to an optimal solution of the primal
of value 4 : the system is therefore not TDI.
Indeed, any integer solution of this dual must have at least 3 of the variables y equal to at least 1 (otherwise one of the inequalities would not be satisfied for
one of the edges) : so any integer solution of this dual is at least of value 6.

(A less obvious question would be to search how to change the formulation of
the problem to make it TDI.)
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Maximum flow problem
Consider a network G = (V ,A) which is a directed graph with a vertex s,
called source, without predecessors from which every vertex of G can be
reached and a vertex t , called sink, which is reachable from every vertex of G.
An s-t-flow is a positive vector x ∈ IRm if it satisfies the “flow conservation”
constraint ∑

a∈δ+(u)

x(a)−
∑

a∈δ−(u)

x(a) = 0 ∀u ∈ v \ {s, t}.

We associate a maximum capacity b(a) ∈ IN to each arc a ∈ A. A flow is said
to be feasible if x(a) ≤ b(a) for every arc a ∈ A.

Let v =
∑

a∈δ+(s) x(a) be the value of the flow entering s (which is exactly also
the value of the flow leaving p : v =

∑
a∈δ−(s) x(a)).

The maximum capacity flow problem or maximum flow problem consists
in finding a flow such that its value is maximized.

We know from the Ford-Fulkerson theorem that if c is integer, then there
exists an integer optimal flow and we know how to determine it in strongly
polynomial time. 37/50



Max-Flow/Min-Cut duality

Recalling the statement of the maximum flow problem, we can define a
second problem called the minimum cut problem or min-cut.

A s-t-cut (or rather here directed s-t-cut) is a set of arcs C leaving a set of
vertices W such that s ∈W and t /∈W , i.e. C = δ+(W ). (similarly C = δ−(W̄ )
where W̄ = V \W .)

The capacity of a cut C is the sum of the capacities of the arcs in the cut :
b(C) =

∑
a∈C

b(a).

According to the Ford-Fulkerson theorem concerning maximum flows, we
know that for any maximum flow, we can algorithmically determine an
associated minimum capacity cut such that the value of the flow equals the
value of the cut.
We speak of the Max-Flow/Min-Cut duality.
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Maximum flow problem

Consider the following LP formulation.

Max v∑
a∈δ+(u)

x(a)−
∑

a∈δ+(u)

x(a) = 0 ∀u ∈ V \ {s, t}

∑
a∈δ+(s)

x(a)− v = 0,

∑
a∈δ−(t)

x(a) + v = 0,

x(a) ≤ b(a) ∀a ∈ A,
v ≥ 0,
x(a) ≥ 0 ∀a ∈ A.
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Let’s show that the LP of max-flow is associated with a dual LP forming a TDI
system. Hint : the solutions of the min-cut problem are solutions of the dual.

Answer : Write the dual as follows : denote π(u) the dual variables
associated with the first 3 inequalities for u ∈ V and denote γ(u, v) the dual
variables associated with the arcs a = (u, v) of the capacity constraints.

Min
∑

a=(u,v)∈A

b(a)γ(u, v)

π(u)− π(v) + γ(u, v) ≥ 0 ∀a = (u, v) ∈ A,
−π(s) + π(t) ≥ 1,
π(u) ≶ 0 ∀u ∈ V ,
γ(u, v) ≥ 0 ∀a = (u, v) ∈ A.

Given a maximum flow, i.e., a solution of the primal, we know how to
determine by the Ford-Fulkerson algorithm, a minimum capacity s-t-cut.
We can show that this cut corresponds to an integer solution (γ̃, π̃) of the dual
and which has the same value as the maximum flow solution : which proves
that the system is TDI (well almost... see next page).

This solution is given by γ̃(u, v) = 1 if u ∈ W and 0 otherwise and π̃(u) = 1 if u /∈ W and 0 otherwise.
Indeed, we can prove that this solution (γ̃, π̃) is a dual solution by considering the 4 possible cases of an edge’s situation in the graph relative to the cut
(either u ∈ W, v /∈ W ; u ∈ W, v ∈ W , u /∈ W, v ∈ W and u /∈ W, v /∈ W ).
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The previous page proposes an integer solution of the dual for the max-flow
formulation...

Attention, to be able to say that it is TDI, we need to perform this proof for
every integer cost function c on the variables v and x !
The formulation is therefore that of the flow with the objective function :

Max c0v +
∑
a∈A

cax(a)

The corresponding dual then sees its right-hand side terms change :

π(u)− π(v) + γ(u, v) ≥ c(a) ∀a = (u, v) ∈ A

−π(s) + π(t) ≥ c0

The solution (γ̃, π̃) integer solution of the dual that coincides with the value of
the primal is then less obvious to determine... (but it exists).

41/50



1 Polyhedron and extreme points

2 Total unimodularity

3 Min-max bound and Total dual integrality

4 Complete characterization

42/50



Complete characterization

We call a complete characterization of a problem the description of a set of
inequalities and variables of an integer linear program whose optimal
solutions are the optimal solutions of the problem.

Unless P equals NP, it is not possible to give a complete characterization of an
NP-hard problem.

For polynomial problems, we can as we have just seen here :
- find a TU formulation
- find a TDI system
- or more ”specific” proofs for problems : for example proving the absence of
fractional extreme points, or searching for all inequalities necessary for this
description...
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Characterizing ”by absence of fractional points”
Example of the bipartite matching problem

Let a complete bipartite graph G = (V1 ∪ V2,E) be associated with a weight
c ∈ INm associated with the edges of E .
A matching of G is a set of edges pairwise non-incident. The bipartite
matching problem consists in determining a matching that maximizes the
sum of the weights of its edges.

Consider the following LP

Max
∑
e∈E

c(e)x(e)

∑
e∈δ(u)

x(e) ≤ 1 ∀u ∈ V1

∑
e∈δ(u)

x(e) ≤ 1 ∀u ∈ V2

x(e) ≥ 0 ∀e ∈ E .

We have already shown that this LP is TU.
This means that the inequalities of this LP are the (complete) characterization
of the matching problem in bipartite graphs.
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Characterizing ”by absence of fractional points”

Example of the bipartite matching problem

Let’s show this characterization again but using a proof of the type ”by
absence of fractional points”.

Let P be the polytope associated with the previous formulation, i.e., the
polytope defined by the inequalities of this formulation.
Let x∗ be an extreme point of P
Set Ef = {e ∈ E | 0 < x∗(e) < 1} and suppose Ef is non-empty (we want to
obtain a contradiction).

Case 1 : Ef contains a cycle.
We will show that x∗ cannot be an extreme point, i.e., we will construct two
points y and z in P such that x∗ = 1

2 (y + z).
Consider a cycle C in Ef .
Actually, a graph is bipartite if and only if all its cycles are of even length.

So since G is bipartite, C is of even length.
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Characterizing ”by absence of fractional points”

Example of the bipartite matching problem

Denote then e1,e2, . . . ,e2k the edges of C. Then set

y(e) =

 x∗ + ε if e ∈ {e1,e3,e5, . . . ,e2k−1}
x∗ − ε if e ∈ {e2,e4,e6, . . . ,e2k}
x∗ otherwise

z(e) =

 x∗ − ε if e ∈ {e1,e3,e5, . . . ,e2k−1}
x∗ + ε if e ∈ {e2,e4,e6, . . . ,e2k}
x∗ otherwise

By taking ε = min{x∗(e),1− x∗(e) | e ∈ Ef}, we see that y and z are positive.
So y and z satisfy the trivial inequalities. Moreover, ε > 0 and y and z are
distinct and distinct from x .
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Characterizing ”by absence of fractional points”

Furthermore, we show that y and z satisfy the other inequalities :
For u ∈ V1, prove that y satisfies

∑
e∈δ(u) x(e) ≤ 1.

This is trivially true if u is not in the cycle C.
If u is in C, there are two edges ei and ei+1 of C incident to u : we can see
that then we have

∑
e∈δ(u) y(e) =

∑
e∈δ(u) y(e) + ε− ε =

∑
e∈δ(u) x∗(e) ≤ 1.

By symmetry, we see that y and z satisfy all inequalities of the formulation.

Finally, by construction, x∗ = 1
2 (y + z) so x is not an extreme point, a

contradiction.
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Characterizing ”by absence of fractional points”

Case 2 : Ef contains no cycle.

In this case, consider the longest path (in number of edges)
µ = (e1,e2, . . . ,ek ) in Ef .
Now set ε = min{x∗(e),1− x∗(e) | e ∈ Ef}. We have ε > 0 and then set the
points y and z defined as in Case 1 which are distinct and distinct from x .
Show that y and z indeed satisfy the inequalities of the formulation. In the
same way as in Case 1, the trivial inequalities are satisfied as well as the
degree inequalities for vertices outside µ and for interior vertices of µ.
We also prove that the degree inequalities are satisfied by y and z for the
endpoints of µ. Indeed, let u be the first vertex of the path µ, incident to e1. z
clearly satisfies the degree inequality for u.

Now note that u cannot be incident to another edge in Ef because otherwise µ
would not be a longest path. Moreover, since x∗(e1) > 0, u therefore cannot
be incident to an edge f such that x∗(f ) = 1 so u is only incident to edges f
such that x∗(f ) = 0. Therefore y also satisfies the degree inequality for u
(symmetric case for the other endpoint).
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Characterizing ”by absence of fractional points”

Similarly to Case1, we can conclude that this formulation contains no
fractional points : it is indeed a characterization of the matching problem in
bipartite graphs. �
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Conclusions with a definition

Consider a Combinatorial Optimization Problem (P).
The expression Integer formulation for (P) is ”dangerous” :
- either it designates an Integer Linear Program (ILP) modeling (P) : which is
a priori NP-hard to solve.
- or it designates a Linear Program all of whose extreme points are integer,
which is potentially polynomial.

Here we will prefer the expression “formulation without fractional extreme
points” to avoid this ambiguity.

And most of the time, the linear relaxations of an ILP possess fractional
extreme points !
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