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A first example from a College book

A yoghurt manufacturer produces 2 types A
and B of strawberry yoghurt from strawber-
ries, milk and sugar.
Each yoghurt must comply with the following
proportions of raw materials.

A B
Strawberry 2 1

Milk 1 2
Sugar 0 1

Raw materials in limited quantities :
Strawberry : 800kg, Milk : 700kg
Sugar : 300kg.

The profit from the yogurt sales :
A : 4=C /kg et B : 5=C /kg

Modélisons

xA quantity in kg of type A to be produced
xB quantity in kg of type B to be produced

Max 4xA + 5xb

2
3 xA + 1

4 xB ≤ 800

1
3 xA + 1

2 xB ≤ 700

1
4 xB ≤ 300

xA ≥ 0
xB ≥ 0

Its a (continuous) Linear Program
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(Continuous) Linear Programming

Linear program :
Optimizing a linear function
with respect to
linear inequalities.

Max 4xA + 5xb

2
3 xA + 1

4 xB ≤ 800

1
3 xA + 1

2 xB ≤ 700

1
4 xB ≤ 300

xA ≥ 0
xB ≥ 0

It’s a continuous linear program...

But, we can also see it
as a Combinatorial Optimization
problem!
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Graphical representation

A linear program with 2 variables
can be embedded on a 2-dimensional space.

Max z = 2x1 + x2

x1 − 4x2 ≤ 0
3x1 + 4x2 ≤ 15
x1 ≥ 0
x2 ≥ 0
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Graphical representation

A linear program with 2 variables
can be embedded on a 2-dimensional space.

Max z = 2x1 + x2

x1 − 4x2 ≤ 0
3x1 + 4x2 ≤ 15
x1 ≥ 0
x2 ≥ 0

Optimal solution
x1 = 15

4 x2 = 15
16

4

3

2

1

0 1 2 3 4 5

x2

x1

x1 − 4x2 = 0

3x1 + 4x2 = 15

( 15
4 , 15

16 )
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A combinatorial optimization problem?

A linear program describes
a set of solutions which is a
polyhedron.

For 2 variables,
a polygon.

for 3 variables,
a “3D” mathematical figure.

For n variables...
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A combinatorial optimization problem?

The optimal solution
of a (continous) linera programm
can be chosen
among the extrem points
(i.e. the intersection
of n facets of the polyhedron.

For 2 variables,
intersection of 2 straight lines

For 3 variables,
intersection of 3 facets
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A combinatorial optimization problem?

The optimal solution
of a (continous) linera programm
can be chosen
among the extrem points
(i.e. the intersection
of n facets of the polyhedron.

For a linear program
of n variables
and m linear inéqualities
and n inequalities xi ≥ 0

How many potential optimal
solutions?

A most as many as the way
to take
n inequalities among n + m :

Cn+m
n =

(n + m)!

n!m!

It’s an exponential number of
solutions !

Its a combinatorial Optimization
problem!
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Simplex algorithm (G. Dantzig (1947)

The main ideas are

- to represent each extrem points trought
very simple algebraic notations

- to start from a known exrem points and
go to another following the edges of the
polyhedron.

- at each step the next solution is better
than or equal the previous one

- each iteration takes a few millisecond
even for huge LP

- a linear time optimality test says
whether the optimal solution is
reached.

11/56



Simplex algorithm (G. Dantzig (1947)

Ending of the simplex algorithm :
- With each iteration, the objective value increases (in the broadest sense).
- The number of iterations is bounded by the number of extruded points of the polyhedron.

How many iterations they are in the worst case?

Klee et Minty have exhibited this LP

Max
∑n

j=1 10n−j xj(
2
∑i−1

j=1 xj

)
+ xi ≤ 100i−1 ∀i ∈ {1, . . . , n}

xj ≥ 0 ∀j ∈ {1, . . . , n}

This LP corresponds to 2n − 1 extrem points that the Simplex algorithm explores one after the other :
Ainsi The simplex algorithm is exponential from the worst-case analysis.
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“In practice”

Even if the Simplex Algorithm has an exponential capacity in a worst case,
Worst case appears very very rarely “in pratice”
with a very few iterations each times !

But what is the signification of “in pratice” :

- LP coming from real optimization probems

- with rationnal coefficients

- these coefficients have values far one from the other

- ...

It is difficult to describe this “in pratice”, but it’s the reality of the daily use of Simplex algorithm. Perhaps that
worst case LP have a rare combinatorial structure far from the “practice”...
And somehow this famous behavior of Simplex Algorithm let think that perhaps the question (P? = NP) is not
so important “in practice” !
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(Continuous) linear programming complexity

The Simplex algortihm is not the only one to solve Linear Programs : the complexity of Linear programming is
the complexity of the best algorithm to solve any LP.

1970 Into the 1870’s the question of solvinf LP was officialy asked and the Simplex Algorithm in 1947 have not
answer the question with its exponential complexity shown by Klee et Minty in 1970.

1979 Leonid Khatchian inspired by the ellipsoid metho known in another context proposes a first polynomal
algorithm for LP !
(Continuous) Linear Programming is then polynomial !
But the polynom degree of the complexity of ellipsoid methdeis rather high and so useless !

1984 Narendra Karmarkar proposes the interior point method which is polynomial and (now) efficient !

2000 Francisco Barahona and Anbil propose the Volume algorithm, polynomial and with good structural
properties

2022 Sophie Huiberts and Daniel Dadush show that random modifications over the LP data will make
transform many worst cases into simple ones without changing the solving solution... then the question
is : is there is exponential cases left ?
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Interior point method

As its name indicates, the algorithm moves
inside the polyhedron in the direction orthogo-
nal to the objective vector.

The difficulty is not to go outside the po-
lyhedron !

Even if it is theoretically polynomial unlike
the simplex algorithm which is theoretically of
exponential worst-case complexity,
the interior points method is slower on small
instances
(but faster if more than 200,000 inequalities).

(Source : Wikipedia)
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(Continous) linear solver

The
- polynomial interior point method
- (officially exponential but efficient) simplex algorithm.
have been implemented in numerous softwares called linear solvers.

- the historical commercial solver is Cplex (IBM) but a similar code exists in the powerful Gurobi

- there are other solvers like Xpress (and even Matlab or Excel !)

- solver from university LP (COIN-OR), Soplex (ZIB) inside the SCIP project, HIGHS from Scotland, Hexaly
(ex-LocalSolver)...

- one totally free solver : GLPK(gnu)

The best of them can solve PLs up to 200 000 variables and 200 000 constraints in a few minutes.

Note that they have easy-to-access interface : text file, “simple or advanced modelers”, languages (C, C++,
Python, Julia...).
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Integer linear program (MIP)

Max cT
1 x1 + cT

2 x2
s.t.
A1x1 + A2x2 ≤ b
x1 ∈ IRn1

x2 ∈ ZZ n2 .

with x1 continuous
et x2 integer

Constraints x2 ∈ ZZ n2 are called integrity constraints.

18/56



The first observation that can jump out at you is to imagine that MIP solving amounts to “rounding” the solution
of its continuous relaxation. The following example demonstrates the inadequacy of this observation :

Let us consider this very simple MIP
Maximiser 10x1 + 11x2

10x1 + 12x2 ≤ 59
x1 et x2 ≥ 0
x1, x2 entiers.

and draw the corresponding polyhedron :

5

4

3

2

1

0 1 2 3 4 5 6

x2

x1

Optimum continu = (5.9, 0)

Optimum entier = (1, 4)

10x1 + 12x2 = 59
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5

4

3

2

1

0 1 2 3 4 5 6

x2

x1

Optimum continu = (5.9, 0)

Optimum entier = (1, 4)

10x1 + 12x2 = 59

We then notice that

- the optimum of the continuous relaxation has an objective value of 59 and that of the entire optimum is
only 54.. and imagine that the unit is about bilion dollars !

- the important structural difference between these two points (which are here each a unique optimal
solution of the LP and the MIP).
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Complexity of Integer Linear Programming

It is easy to formulate the knapsack problem as a MIP

Knapsack MIP

Max
n∑

i=1

wi xi

n∑
i=1

pi xi ≤ P,

0 ≤ xi ≤ 1, for each item i = 1, ..., n,

xi ∈ IN, for each item i = 1, ..., n.
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Hence solving a MIP is at least hard as solving a weakly NP-hard problem
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Complexity of Integer Linear Programming

It is also direct to formulate the stable set problem as a MIP

Stable set MIP

Max
∑
u∈V

cuxu

xu + xv ≤ 1, for each edge uv ,

0 ≤ xu ≤ 1 for each node u,

xu ∈ {0, 1}, for each node u.
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Programmation linéaire en nombres entiers

Then all the known methods to exactly solved a MIP are exponential.
They are based on the principle of Branch&Bound, using mathematical tools to better prune unsuccessful
branches (polyhedral approaches, Branch&Cut algorithms, strong branching...).

These methods are gathed into Integer Solvers that have became more and more powerful during 30 years...
but are sometimes limited to a few thousand variables for hard problems !

- The famous commercial solver Cplex have now lower performance than the Gurobi (and Xpress is really
under these two). A new one : Hexali is performing well

- The university project like SCIP or HIGHS are much less efficicent

The strength of the project between these solvers is to be closed to research and new ideas !
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A Branch&Bound algorithm is defined by :
- an integer linear program
- a branching strategy (potentially on inequalities)
→ B&B node = initial integer program + branching inequalities

23,1

19,7 20,2

18,6

18,0 18,7 18,2 18,1 18.4

18,7 19,6 19

x3 = 1x3 = 0

x6 = 1x6 = 1x7 = 1x7 = 0 x3 = 0

x6 = 1 x2 = 0 x2 = 1x6 = 0

v = linear relaxation of a B&B node
For a “max” problem, v is is an upper bound for the sub-tree

(each node only contains solutions of values at most v ).
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For a “max” problem, v is is an upper bound for the sub-tree

(each node only contains solutions of values at most v ).
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During the B&B algorithm, a best known solution can be obtained using
heuristic, metaheuristic, rounding heurisitic,...

A sub-tree can be pruned if either
• the relaxation value of its root node

is ≤ than the value of the best known solution.
• its root node is integer (its relaxation gives an integer solution)
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Efficiency of a B&B algorithm

Several aspects drive to an efficient B&B algorithm :

• Initial preprocessing step

• Breaking symmetries within the B&B tree

• Having the lowest possible upper bound

• Having the highest possible lower bound

• Having a lot of integer nodes
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1 Linear Programming

2 List of MIP formulations
Knapsack
Stable set
Traveling salesman problem (TSP)

3 Compact formulation tricks
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Combinatorial Optimization Problem

To find a greatest (smallest) element within a valuated finite set.

Given :
- a finite subset of elements E = {e1, . . . ,en}
- a solution set F of subsets of E
- a weight c = (c(e1), . . . , c(en))

a Combinatorial Optimization Problem is to find a solution F ∈ F whose
weight c(F ) =

∑
e∈F

c(e) is maximum (or min.),

i.e. max {c(F ) | F ∈ F}.

28/56



Combinatorial Optimization Problem

To find a greatest (smallest) element within a valuated finite set.

Given :
- a finite subset of elements E = {e1, . . . ,en}
- a solution set F of subsets of E
- a weight c = (c(e1), . . . , c(en))

a Combinatorial Optimization Problem is to find a solution F ∈ F whose
weight c(F ) =

∑
e∈F

c(e) is maximum (or min.),

i.e. max {c(F ) | F ∈ F}.

28/56



“Naive” algebraic formulation algébrique

Associate a binary variable to every solution :
tF = 1 if the solution F ∈ F is choosen et 0 otherwise

Max
∑
F∈F

c(F )tF∑
F∈F

tF ≤ 1

tF ∈ {0,1} ∀F ∈ F .

This formulation proves that any Combinatorial Optimization problem can be
written as a MIP !

But it’s not so obvious we can solve such a formulation with the number of
variables equal to the number of solutions ! !
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“Natural” MIP formulation

It’s quite “natural” to set a variable for each element.

Binary variable xe =

{
1 if e is chosen
0 otherwise for every e ∈ E .

max
∑
e∈E

c(e)xe

Ax ≤ b
xe ∈ {0,1} ∀e ∈ E .

BUT : To have such a formulation, Ax ≤ b must be known ! !
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Compact /non-compact MIP formulation

• An inequality set Ax ≤ b can be compact,
i.e. contain a polynomial number of inequalities and variables !

In this case, we can enumerate the inequalities and gives them to an integer
solver.

• An inequality set Ax ≤ b can be non-compact,
i.e. having either an exponential number of variables or inequalities (or both !).

In this case, we need to study how to do solve such formulations !
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0/1-Knapsack problem

Input : n objects
profit gi ∀i ∈ {1, . . . ,n}
weight pi ∀i ∈ {1, . . . ,n}
maximum total weight P.

Output : Subset S ⊆ {1, . . . ,n}
s.t.

∑
i∈S

pi ≤ P

Objective : Max
∑
i∈S

gi
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Knapsack problem

Very direct compact formulation !

xi =

{
1 if item i is chosen
0 otherwise

Max
n∑

i=1

gixi

n∑
i=1

pixi ≤ P

0 ≤ xi ≤ 1 ∀i ∈ {1, . . . ,n}
xi ∈ IN ∀i ∈ {1, . . . ,n}

The single constraint is called the knapsack constraint.
This is the single constraint of a problem which is NP-hard, though !
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Maximum weight stable set problem

Input : Undirected graph G = (V ,E)
cost wu ∀u ∈ V

Output : Subset S ⊆ V of non-adjacent nodes

Objective : Max
∑
i∈S

wi

v1

v5

v3v2

v4
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Compact formulation for the stable set problem

xu =

{
1 if node u is chosen
0 otherwise

Max
∑
u∈V

wuxu

xu + xv ≤ 1, ∀uv ∈ E ,
xu ∈ {0,1}, ∀u ∈ V .

Inequality xu+xv ≤ 1 is called edge inequality.

Compact formulation with |V | variables and |E | edges.

But this MIP formulation is hard to be solved by a (pure) Branch&Bound
as its relaxation value is very low !

Indeed the fractional solution x̄u = 1
2 ∀u ∈ V satisfies the constraints resulting

a huge upper bound of at least
1
2

∑
u∈V

xu.
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Non-Compact formulation for the stable set problem
How to “reinforce” this MIP !

A clique is a node subset inducing a complet subgraph.

Lemma
A stable set contains at most 1 node of a clique.

Then the inequality ∑
u∈K

xu ≤ 1 for each clique K

is satisfied for every stable set !

The fractional point x̄u = 1
2 ∀u ∈ V is cut by this inequality whenever G

contains a triangle !
This inequality will lower down the relaxation value, which will be better for
pruning into the B&B tree.
We say that this inequality reinforce the relaxation value of the formulation.
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Non-Compact formulation for the stable set problem

We then obtain an alternative formulation

Max
∑
u∈V

wuxu∑
u∈K xu ≤ 1 for each clique K

xu ∈ {0,1} ∀u ∈ V .

There are an exponential number of cliques in a graph !
then this clique formulation is non-compact...
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The Traveling Salesman Problem (TSP)

Input : Directed graph G = (V ,E)
lenght le ∀e ∈ E

Output : An hamiltonian circuit C of G (i.e. C goes once through each node)

Objective : Min
∑
e∈C

le

With a complete graph, it’s a set of points to join with a circuit.
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Natural variable formulation

xij =

{
1 if arc (i , j) is chosen
0 otherwise

Min
n∑

i=1

n∑
j=1,j 6=i

lijxij∑
j∈V

xij = 1 ∀i ∈ V ,

∑
i∈V

xij = 1 ∀j ∈ V ,

xij ∈ IN ∀i ∈ V , j ∈ V \ {i}).

Note we can add inequality xij + xji ≤ 1.

But this is not a
TSP formulation !

It’s a formulation of
the problem “cover
a graph with cir-
cuits”.
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Formulation en variables naturelles

The relaxation of this MIP (which is not a TSP formulation) is “integer” as its
extrem points are all integer (the matrix is totally unimodular) : this “covering a
graph with circuit” problem is polynomial.

Unfortunately, since a solution of this MIP can be made up of several oriented
cycles (called textcolorbluesubtours)

We then need to add inequalities to break sub-tours.
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Breaking subtours by MTZ formulation

Miller-Tucker-Zemlin (MTZ) formulation
Adding real variables ui , i = 1, ...,n for each cities
Adding inequalities

u1 = 1,
2 ≤ ui ≤ n ∀i ∈ V \ {1},

ui − uj + 1 ≤ n(1− xij ) ∀i ∈ V \ {1}, j ∈ V \ {1, i}.

The latter inequalities are called MTZ inequalities.
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Breaking subtours by MTZ formulation

Lemma
MTZ inequalities break subtours.

Proof. Let us consider an optimal (integer) solution of the MTZ formulation
which then satisfies

ui − uj + 1 ≤ n(1− xij ) ∀(i , j) with j 6= 1

For an (i , j) with xij = 0, the MTZ inequalities are

ui − uj ≤ n − 1

and are then always satisfied as since 1 ≤ ui ≤ n.
For an arc (i , j) with xij = 1, the MTZ inequalities enforce

uj ≥ ui + 1

Hence, let us suppose there is a subtour not containing node 1, then the
MTZ inequalities cannot be satisfied as variables ui will then increase
indefinitely !.
Then there is only one subtour, which then is an hamiltonian tour �

Note : When x is feasible, variables ui , i = 1, ...,n indicate the position number
of city i within the tour.
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Breaking subtours by MTZ formulation

The MTZ formulation is compact with additional n (continous) variables.

But, this is a Very Very bad formulation !

With a very low linear relaxation : the fractional solution xi = 1
n is feasible and

then the relaxation value is at most
∑

e∈E le
n

which is very high.
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Breaking subtours with flow formulation

Aggregating flow formulation
Add real flow variables zij , for each arc (i , j), i ∈ V , j∈ V \ {1, i}.
Add the constraints :

∑
j∈V\{1}

z1j = |V | − 1

∑
j∈V\{1,i}

zij + 1 =
∑

j∈V\{i}

zji ∀i ∈ V \ {1},

zij ≤ (|V | − 1)xij ∀i ∈ V , j ∈ V \ {1, i}
zji ≤ (|V | − 1)xji ∀i ∈ V , j ∈ V \ {1, i}

zij ≥ 0 ∀i ∈ V , j ∈ V \ {1, i}.

Note that the flow variables zi. carry a flow of value |V | − 1 when it goes from
node 1 and which is reduced by 1 unit at each node.
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Breaking subtours with flow formulation

Lemma
Aggregating flow inequalities break subtours.

Proof.Let us consider an optimal (integer) MIP solution.
Let us suppose the graph corresponding to the x variables contains a subtour
C which does not pass through node A. , which therefore contains at least 2
vertices. Note that this subtous contains at least two nodes and at most
|V | − 2 vertices. On leaving 1, the flow xi. goes out from node 1 with value
|V | − 1 and at each successive vertex of C, the flow decreases by one. Then
the flow must decrease indefinitely, which is impossible. �
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Breaking subtours with flow formulation

The aggregating flow formulation contains n2 additional real variables, but it’s
still compact and can be solved directly by integer solver.

It’s relaxation value is much better than the MTZ formulation but with the
numerous additional variables and the “big M” constraints, it’s still hard to
solve large instance by B&B with it.
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Subtour breaking through connectivity

Theorem (Menger)
A directed graph is strongly connected if and only if every graph cut contains
at least one arc.

∑
e∈δ+(W )

xe ≥ 1,∀W ( V et W 6= ∅,

W
δ+(W ) = {(i , j) | i ∈W et j /∈W}
is the cut going out from W .
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Subtour breaking through connectivity

Formulation by Menger cuts
Add the inequalities ∑

e∈δ+(W )

xe ≥ 1,∀W ( V et W 6= ∅,

As there is 2n cuts in a graph, thee formulatuion is non-compact.
It contains an exponential number of inequalities !

However, this formulation have a real good relaxation value !
And it can be obtains through a Branch-and-Cut method than can be
efficiently implemented.
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Menger cut formulation for the symmetric TSP

This is the “star” TSP formulation

Min
∑
e∈E

lexe∑
e∈δ(v)

xe = 2 pour tout u ∈ V ,

∑
e∈δ(W )

xe ≥ 2 pour tout W ( V and W 6= ∅,

xe ∈ {0,1} pour tout e ∈ E .

With other reinforcement inequalities inside the Branch&Cut Concorde
software, this formulation is the one which exactly solves TSP instances till
200 000 cities !
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Some tricks to formulate some logical links between MIP variables.

• Some basic tricks

Let a ,b et c be some events corresponding to binary variables xa, xb et xc .

If a et b cannot happen at the same time : xa + xb ≤ 1.
If at least one event among a and b have to happen : xa + xb ≥ 1.
If a happens, then b must happen : xa ≤ xb.
Note that this inequaly also formulate the contraposed of the logical
proposal, i.e. if b does not happel, then a must not happen.
If a happen, then at least b and/or c must happen : xa ≤ xb + xc .
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• Link between binary and continuous variables

Let a an event corresponding to a binary variable xa and a continuous real
quantity y .
If a does not happen , then a positive quantity y must be zero, otherwise y is
free.
To do this : we must fix a quantity M such that y can never be greater than M
when the optimum of the problem is reached. Such a constant M exists, since
otherwise the problem would be unbounded.

y ≤ Mxa

Such an inequality is called a “big M” constraint.
Such constraints are often mandatory to formulate a problem. However they
deeply impact the problem with a bad numerical behavior. Indeed, during the
B&B exploeation tree exploration when 0 < xa < 1, then y can have an
unrealistic value (generally really low one) which produces a really
unapropriate relaxation value.
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• The numerical “or”

We want to represent a variable x which must take values either 0 or greater
than L, where L and x are bounded by a value M.
We need to add a binary variable y ∈ {0,1} and use the constraints

x ≥ Ly et x ≤ My .
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• Multi-objective Min-Max regret

We want to maximize the minimal value of a set of linear values

Let a set of linear values a1x , a2x , a3x ..., amx
They can be several objective function correspondinf to different agents.

We need to add a continuous variable z and m inequalities

Max z
z ≤ a1x
z ≤ a2x
z ≤ a3x

...
z ≤ amx
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• Satisfy the most possible inequalities

Let a set of n constraints a1x ≤ b1,a2x ≤ b2, ...,anx ≤ bn be such that there
no solution satisfy all the inequalities.
We want a solution that satisfies as many constraints as possible.
For each of the constraints aix ≤ bi , i = 1, ...,n, we determine a value Mi
large enough for aix ≤ bi + Mi to be satisfied whatever x .

We add the binary variables y1, ..., yn so that yi = 0 if the inequality i is
satisfied.

a1x ≤ b1 a1x ≤ b1 + M1y1
a2x ≤ b2 a2x ≤ b2 + M2y2
... ⇒ ...
anx ≤ bn anx ≤ bn + Mnyn

Min
∑n

i=1 yi
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To conclude

A combinatorial optimization problem has many formulations :
- compact
- with an exponential number of constraints
- with an exponential number of variables
- with an exponential number of variables and constraints !

How do you choose a good formulation?
It depends on the algorithmic framework of resolution : there are no generic
”magic” tools for all these formulations and all the problems...

How to obtain a better relaxation value?
Add reinforcement inequalities !

How to solve a non-compact formulation?
Use Branch&Cut method !

What are the powerfulest inequalities
Make a polyhedral study !
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