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A Combinatorial Optimization Problem
is to

find a greatest (smallest) element
within a valuated finite set.
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Combinatorial Optimization Problem

To find a greatest (smallest) element within a valuated finite set.

Given :

- a finite subset of elements E = {ey,..., en}
- a solution set F of subsets of E
-aweight c = (c(e1),...,c(en))

a Combinatorial Optimization Problem is to find a solution F € 7 whose

weight ¢(F) = > _ ¢(e) is maximum (or min.),
ecF

ie. max {c(F)|F e F}.
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The knapsack problem .

Which boxes to chose

to maximize the profit .@

without exceeding 15kg ? ,) .

7/50



Définition

Let us consider n objects.
Each objecti € {1,...,n}
- with a profit g;

- with a weight p;

to be put inside a knapsack of maximum total weight P.
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Définition

Let us consider n objects.

Each objecti € {1,...,n}

- with a profit g;

- with a weight p;

to be put inside a knapsack of maximum total weight P.

Then we need to find a subset S C {1, ..., n} such that

its weight Z pi is non-greater than P (Knapsack Constraint)
ieS

its profit ) " g; is maximum. (Objective function)

i€S
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How to incode a knapsack solution ?

i 11 2] 3] 4| 5

gi 5171011 ]10
An instance is given by : pi 2]18]10/6 |5 <15
A solution S {1,...,n} S1={1,2,5}
is corresponding to
an incidence vector \° xS =[1[1]J0JO0]1]
such that

. 1 ifieS
Sii
Xl = { 0 otherwise.
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How to incode a knapsack solution ?

i 11 2] 3] 4| 5
gi 5171011 ]10
An instance is given by : pi 218|106 |5 |<15
A solution S {1,...,n} S1={1,2,5}
is corresponding to
an incidence vector S xS =[1]1]0J0]1]
such that .
XS[/]—{ 1 ifieS profit: 5 7 10 =22
0 otherwise. weight: 2 8 5 =15
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How to test whether a vector is a solution ?
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How to test whether a vector is a solution ?

i 11 2] 3| 4| 5

gi 5171101110

pi 21810 6 | 5| <15
Recognition Algorithm :

S ={1,4,5}
pds + 0
For j from 1to n XSZ:‘ 1 ‘ 0 ‘ 0 ‘ 1 ‘ 1 ‘
pds «+ pds + p; * x°[i]

EndFor

If pds < P Then True
Else False
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How to test whether a vector is a solution ?

Recognition Algorithm :

pds + 0
For ifrom 1ton
pds «+ pds + p; * x°[i]
EndFor
If pds < P Then True
Else False

i 11 2| 3| 4] 5

gi 51711011 {10

Di 218|106 |5 |<15
Sy ={1,4,5}

xF=[1]0JO0]1T][1]

weight: 2 6 5 =13

Solution of profit 26
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How to test whether a vector is a solution ?

i 112 3| 4] 5

gi 517 (10 (11|10

o |2|8]106 |5 <15
Recognition Algorithm :

S;={1,2,4}
pds + 0
For j from 1to n XS3 = ‘ 1 ‘ 1 ‘ 0 ‘ 1 ‘ 0 ‘
pds < pds + p; * x°[i]

EndFor

If pds < P Then True
Else False
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How to test whether a vector is a solution ?

i 11 2] 3] 4| 5

gi 5171011 ]10

o |2[8[10[6]5 <15
Recognition Algorithm :

S;={1,2,4}
pds + 0
For j from 1to n XS3 = ‘ 1 ‘ 1 ‘ 0 ‘ 1 ‘ 0 ‘
pds < pds + p; * x°[i]

EndFor weight: 2 8 6 =16

If pds < P Then True

Else False Not a solution.
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Huge knapsacks...
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Graph

A graph G = (V,E) is a pair
where

- V is the node set

- E C V x Visthe edge set.
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Graph

A graph G = (V,E) is a pair
where

- V is the node set

- E C V x Visthe edge set.

Two nodes are adjacent if
they are linked by an edge.
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Stable Set problem

A stable set

(or independent set)

is a pairwise non-adjacent node
subset.
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Stable Set problem

A stable set

(or independent set)

is a pairwise non-adjacent node
subset.

The stable set problem is
to find a stable set with a maxi-
mum number of nodes.
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A stable set

(or independent set)

is a pairwise non-adjacent node
subset.

The stable set problem is
to find a stable set with a maxi-
mum number of nodes.
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A set of antennas
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A set of antennas with their interference disks
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How to find a subset of antennas with no interference ?
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A model graph

Un graphe G = (S, V)

avec

- V :anode by antenna

- E : an edge between two
antennas if their interference
disks are in conflict.

Finding a subset of antennas
with no interference reduces to
the stable set problem.
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A model graph
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avec

- V :anode by antenna

- E : an edge between two
antennas if their interference
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Combinatorics within genomic
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Genome sequencing involves sorting through small
fragments of DNA (called SNPs) that have been
sequenced using bio-mechanical processes. In the
process, false SNPs are created.

We want to sort the fragments, omitting as few
SNPs as possible.
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Combinatorics within genomic
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Its a Combinatorial optimisation problem

Genome sequencing involves sorting through small
fragments of DNA (called SNPs) that have been
sequenced using bio-mechanical processes. In the
process, false SNPs are created.

We want to sort the fragments, omitting as few
SNPs as possible.
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Combinatorics within genomic

/;¢—~ G A Genome sequencing involves sorting through small
N T fragments of DNA (called SNPs) that have been
T G ~\.\“__C__' sequenced using bio-mechanical processes. In the
/.’— A process, false SNPs are created.
N ~L A c We want to sort the fragments, omitting as few
~— SNPs as possible.

Its a Combinatorial optimisation problem

which also reduces to the stable set problem!.

Lippert, R., Schwartz, R., Lancia, G., Istrail, S. : Algorithmic strategies for the single nucleotide polymorphism haplotype assembly problem. Brief. Bioinform
3, 23-31 (2002)
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How to incode a stable set solution? ?

Instance given by
a graph with
n nodes.

Asolution S {1,...,n}

is corresponding to an S ={1,7,8}
vecteur d’incidence y°
1 siieS x> =[1]0]J0J0[OJO[1[T1]

S —
X7l = 0 sinon.
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How to test whether a vector is a solution ?

Recognition Algorithm :

For ifrom1ton
For jfrom 1ton
If {i,j} is an edge
and if x°[i] = 1 and x°[j] =1
Then STOP : False
EndFor
EndFor
STOP : True

81 :{27778}
i1 2
xS =[0]1

|

3
0

|

4
0

5
0
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How to test whether a vector is a solution ?

Recognition Algorithm :

For ifrom1ton
For jfrom 1ton
If {i,j} is an edge
and if x°[i] = 1 and x°[j] =1
Then STOP : False
EndFor
EndFor
STOP : True
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Solution (with 3 nodes

21/50



0 Definition and complexity

@ Combinatorial explosion

e List of OC problems

29/50



Recognition algorithms

Knapsack

pds + 0
Forifrom1ton
pds « pds + p; * x°[i]
EndFor
If pds < P Then True
Else False

Execution time
proportionnal to n.

22/50



Recognition algorithms

Knapsack

pds + 0
Forifrom1ton
pds « pds + p; * x°[i]
EndFor
If pds < P Then True
Else False

Execution time
proportionnal to n.

Stable set

For i from 1ton
For jfrom1ton
If {i,j} is an edge
and if x5[i] = 1

and x5[j] =1
Then
STOP : False
EndFor
EndFor
STOP : True

Execution time
proportionnal to n?.
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Recognition algorithms

Knapsack

pds + 0
Forifrom1ton

pds < pds + p; * x°[i]

EndFor
If pds < P Then True
Else False

Execution time
proportionnal to n.

Stable set

For i from 1ton
For jfrom 1ton
If {i,j} is an edge
and if x5[i] = 1

and x5[j] =1
Then
STOP : False
EndFor
EndFor
STOP : True

Execution time
proportionnal to n?.

Polynomial Algorithms
which can be fast (< n* for instance).

Solving algorithms

Which is the complexity
of the best known “Generic
Algorithm” so find the optimal
solution  of  combinatorial
optimization problems ?
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Recognition algorithms

Knapsack

pds + 0
Forifrom1ton

pds « pds + p; * x°[i]

EndFor
If pds < P Then True
Else False

Execution time
proportionnal to n.

Stable set

For i from 1ton
For jfrom 1ton
If {i,j} is an edge
and if x5[i] = 1

and x5[j] =1
Then
STOP : False
EndFor
EndFor
STOP : True

Execution time
proportionnal to n?.

Polynomial Algorithms
which can be fast (< n* for instance).

Solving algorithms

Which is the complexity
of the best known “Generic
Algorithm” so find the optimal
solution  of  combinatorial
optimization problems ?

Only very very slow al-
gorithms with an execution
time proportional to

273" In

Exponential algorithms.
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Enumerate ?

Consider an optimization problem with n elements.
Assuming that we know a polynomial (and. fast) algorithm for recognizing a

solution,
can we finde the best solution through enumeration ?
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Enumerate ?

Consider an optimization problem with n elements.

Assuming that we know a polynomial (and. fast) algorithm for recognizing a
solution,

can we finde the best solution through enumeration ?

For each subset S of elements
x5 « the incidence vector of S.
Recogntion algorithm for Xs_
If xS is a solution
Stock S as the best known solution encountered yet.
EndFor
STOP : the stocked solution.
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Enumerate ?

Consider an optimization problem with n elements.
Assuming that we know a polynomial (and. fast) algorithm for recognizing a

solution,
can we finde the best solution through enumeration ?

For each subset S of elements
x5 « the incidence vector of S.
Recogntion algorithm for Xs_
If xS is a solution
Stock S as the best known solution encountered yet.
EndFor
STOP : the stocked solution.

There are 2" subsets : exponential execution time!
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Combinatorial explosion

xS =0 x5y =1

x5 = 1
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Combinatorial explosion
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Combinatorial explosion

x5 = 1

x5l =1
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Combinatorial explosion

x5 = 1

x5l =1
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Combinatorial explosion
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Combinatorial explosion

Let’s take one of the most powerful computers in 2015
Tianhe-2 (China)
33.86 petaflops where 1 petaflop represents the processing of 10'® operations
per second (one million billion).

Assume that the recognition algorithm takes 100n elementary operations. For n = 10, we can process 33 860
billion subsets in 1 second!

Tianhe-2 Futuristic Computer
n I m 100n2" 100n2"
10 0,00...001 sec 0,00...001 sec
20 0,00...001 sec 0,00...001 sec
50 0,00...001 sec 0,00...001 sec
60 0,00...001 sec 0,00000002 sec
80 0,00...001 sec 0,0000009 sec
100 0,00...001 sec 0,0000003 sec
1000 0,00000003 sec 0,03 sec
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Combinatorial explosion

Let’s take one of the most powerful computers in 2015
Tianhe-2 (China)
33.86 petaflops where 1 petaflop represents the processing of 10'® operations
per second (one million billion).

Assume that the recognition algorithm takes 100n elementary operations. For n = 10, we can process 33 860
billion subsets in 1 second!

Tianhe-2 Futuristic Computer
n n’ n° 100n2" 100n2"
10 0,00...001 sec 0,00...001 sec 0,00...001 sec 0,00...001 sec
20 0,00...001 sec 0,00...001 sec 0,00000006 sec 0,00...001 sec
50 0,00...001 sec 0,00...001 sec 168,9 sec 0,000001 sec
60 0,00...001 sec 0,00000002 sec 57,6 h 0,0001 sec
80 0,00...001 sec 0,0000009 sec 9200 years 100 years
100 0,00...001 sec 0,0000003 sec | 1,21.10™ years 1,21.10° years
1000 0,00000003 sec 0,03 sec 1.10%%2 years

Age of the universe 13, 7.10° years
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Combinatorial Explosion

Enumerating 2" solutions is not a technical problem
that very powerful computers could sweep away.

It's necessary to circumvent the combinatorial explosion with
mathematical and algorithmic tools.
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Problem complexity

Just because we know an exponential algorithm for solving a problem doesn’t
mean it’s difficult !
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Problem complexity

Just because we know an exponential algorithm for solving a problem doesn’t
mean it’s difficult !

To crack a nut, you can :

We're looking for the fastest algorithm to solve a problem!

29/50



Problem Complexity
A problem is of exponential complexity

if an exponential algorithm exists to solve it.
= the problem class EXP.
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Problem Complexity
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Problem Complexity

A problem is of exponential complexity
if an exponential algorithm exists to solve it.
= the problem class EXP.

A problem is of polynomial complexity
if a polynomial algorithm exists to solve it.
= the problem class P.

So P isincluded in EXP, we note P C EXP

Question : In what complexity classes are Combinatoriel Optimization
problems ?

20/50



NP problems

A particular classe have been created...

Combinatorial optimization problems for which we know how to recognize a
solution with a polynomial algorithm

= the problem class NP “Nondeterministic polynomial time”
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NP problems

A particular classe have been created...

Combinatorial optimization problems for which we know how to recognize a
solution with a polynomial algorithm

= the problem class NP “Nondeterministic polynomial time”
Under this assumption, we’ve seen that it’s possible to use an exponential

enumeration algorithm, then
= NP CEXP
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NP problems

A particular classe have been created...

Combinatorial optimization problems for which we know how to recognize a
solution with a polynomial algorithm

= the problem class NP “Nondeterministic polynomial time”
Under this assumption, we’ve seen that it’s possible to use an exponential
enumeration algorithm, then

= NP CEXP

In addition, a polynomial problem is in NP
=PCNPCEXP

21/50



And then?
Is P equal to NP ?

“Is there a polynomial algorithm for solving combinatorial optimization
problems ?”

Answer :

29/50)



And then?
Is P equal to NP ?

“Is there a polynomial algorithm for solving combinatorial optimization
problems ?”
Answer : We don’t know !

On a human scale, we only know this enumeration algorithm!

It's one of the 7 problems in the Clay Mathematics Institute of Cambridge’s million-dollar Millennium Prize
Problems!
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Is every Combinatorial Optimisation problem exponential ?
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Is every Combinatorial Optimisation problem exponential ?
A very simple knapsack subcase

Let's look at a very simple knapsack instance :
a knapsack with all objects of the same weight.
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A very simple knapsack subcase

Let's look at a very simple knapsack instance :
a knapsack with all objects of the same weight.

A greedy algorithm :
- sort the n objects from the most expensive to the least expensive
- take the objects one by one in that order as long as they fit in the bag!
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Is every Combinatorial Optimisation problem exponential ?
A very simple knapsack subcase

Let's look at a very simple knapsack instance :
a knapsack with all objects of the same weight.

A greedy algorithm :

- sort the n objects from the most expensive to the least expensive

- take the objects one by one in that order as long as they fit in the bag!
This algorithm is polynomial (of the order of n?).

24/50



A very simple stable set subcase

Let’s look at a very simple stable set instance :
finding a maximum cardinality stable set over a tree.

Tree property :
Given a leaf v, there exists a maximum
cardinality stable set containing v.

(Proof : Let v a leaf and u its unique neighbour. Let S be a maximum stable set. Either u ¢ S,then SU {v};oru ¢ S,then S U {u} \ {v} is another
maximum stable set).

25/50



A very simple stable set subcase
A greedy algorithm :

S+ 10
While G has at least one edge
Let v be a leaf and u its neighbour
S+ Su{v}
Delete from G nodes u and v and all their incident edges EndWhile
Add to S all the remaining nodes.
STOP: S

26/50



A very simple stable set subcase
A greedy algorithm :

S+ 10
While G has at least one edge
Let v be a leaf and u its neighbour
S+ Su{v}
Delete from G nodes u and v and all their incident edges EndWhile
Add to S all the remaining nodes.
STOP: S

This algorithm is polynomial (of the order of n).
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NP-hard

In the current state of scientific knowledge, it is not known whether or not

there is a polynomial algorithm for solving the knapsack or the stable set
problem in general |
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NP-hard

In the current state of scientific knowledge, it is not known whether or not
there is a polynomial algorithm for solving the knapsack or the stable set
problem in general |

In fact, we were able to prove that knapsack or the stable set problems are
just as difficult as all the problems in the AP class !

A problem is said to be AP-hard

if it is as difficult as any problem in the AP class.
= the problem class A'P-hard.
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NP-hardness

@

Boss, | can’t find a polynomial algorithm for the stable set problem

Figure from “The Garey et Johnson”
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NP-hardness

But if you think I'm just an ungifted searcher

Figure from “The Garey et Johnson”

29/50)



NP-hardness

...neither are all the others!

Figure from “The Garey et Johnson”
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0 Definition and complexity
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e List of OC problems
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Strongly or weakly A/P-hard
A computational problem may have numerical parameters : like the weight of
a knapsack.

A N'P-hard problem is said to be weakly NP-hard
if there is an algorithm for the problem whose running time is polynomial in the
dimension of the problem and magnitudes of its data.

And otherwise, it is called strongly N'P-hard.
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Strongly or weakly A/P-hard
A computational problem may have numerical parameters : like the weight of
a knapsack.

A N'P-hard problem is said to be weakly NP-hard

if there is an algorithm for the problem whose running time is polynomial in the
dimension of the problem and magnitudes of its data.

And otherwise, it is called strongly N'P-hard.

For weakly A"P-hard, it’s often the case, that there exists a dynaming

programming scheme whose complexity depends on the magnitudes of the
data.
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Dynamic Programming scheme
Some subcases are the same within the enumeration :
this puts the brakes on the combinatorial explosion.

xS =o0 xS =1

xSl =0 xSl =1
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Dynamic Programming scheme
Some subcases are the same within the enumeration :
this puts the brakes on the combinatorial explosion.

xSe1=0
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Dynamic Programming scheme
Some subcases are the same within the enumeration :
this puts the brakes on the combinatorial explosion.
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@ List of OC problems
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Knapsack problem

Input : n objects
profit g; Vi € {1,...,n}
weight p; Vi € {1,...,n}
maximum total weight P.

Output : Subset S C {1,...,n}
st> p <P
i€s
Objective:  Max Z w;
i€s
Complexity : Weakly NP-hard
Dynamic programming scheme (in O(nP) when p; € N)

Polynomial cases :  unit cost / unit weight

Difficulty : With MIP solver n = 10% in < 1 minutes.

43/50



Maximum weight stable set problem

Input : Undirected graph G = (V, E)
costw, Yu € V

Output : Subset S C V of non-adjacent nodes

Objective:  Max > w

ies
Complexity : Strongly NP-hard
Polynomial cases :  perfect graphs (tree, planar, interval graphs...)
Difficulty : With MIP solver n = 1000 in often more than 1 hour

Some dedicated methodes (russian doll algo)
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Shortest path problem

Input : Undirected (or directed) graph G = (V, E)
Two nodes ug, uy € V
Lenghts I Ve € E

Output : Path 1 of G from up to uy
Objective:  Min >
ecn

Complexity :  Polynomial
Difficulty : With Dijkstra algorithm up to thousand of nodes in a few sec
With A* algorithme, up to millions !
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Shortest path problem

To quickly go from a point to another

46/50



The Traveling Salesman Problem (TSP)

Input : Undirected (or directed) graph G = (V, E)
lenght I Ve € E

Output : An hamiltonian cycle C of G (i.e. C goes once through each node)

Objective:  Min > e

ecC
Complexity : Strongly NP-hard
Polynomial cases : ?

Difficulty : Before 2003 : 200 nodes within several hours
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The Traveling Salesman Problem (TSP)

Input : Undirected (or directed) graph G = (V, E)
lenght I Ve € E

Output : An hamiltonian cycle C of G (i.e. C goes once through each node)
Objective:  Min > e

ecC
Complexity : Strongly NP-hard
Polynomial cases : ?
Difficulty : Before 2003 : 200 nodes within several hours

Concorde : a Branch-and-Cut algorithm and polyhedral results
solves up to 200000 cities within one day !
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The Traveling Salesman Problem (TSP)
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Starting from a city and going back to it
going once througt all the other cities
with a sorthest cycle.
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Real-world Operations Research problem

Source : ROADEF Challenge 2016

The inventory routing problem introduced
by Air Liquide company with real daily data
and questions to answer :

Determine routes for liquid oxygen trucks to
deliver hospitals
so that

- hospital tanks are never empty (remote
monitoring)

rounds are feasible within the driver's
working day

costs are minimized !
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How to solve Combinatorial Optimization Problem ?

e If the instances are very large and the problem very hard to solve
or if you do not have much time to spend on solving method

— There exist methods to obtain “good” solutions (heuristics, meta-heuristics, machine learning...)
e If the problem is really important with a higly cost associated to solution

and if you have some time (several hours...)

The optimal solution is to be computed!

— We will see in this lecture how to circumvent the combinatorial explosion using mathematical
programming!

The Traveling salesman problem has been solved till 200 000 cicites !
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