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1 Definition and complexity
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Combinatorial explosion
Problem complexity
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A Combinatorial Optimization Problem

is to

find a greatest (smallest) element
within a valuated finite set.
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Combinatorial Optimization Problem

To find a greatest (smallest) element within a valuated finite set.

Given :
- a finite subset of elements E = {e1, . . . ,en}
- a solution set F of subsets of E
- a weight c = (c(e1), . . . , c(en))

a Combinatorial Optimization Problem is to find a solution F ∈ F whose
weight c(F ) =

∑
e∈F

c(e) is maximum (or min.),

i.e. max {c(F ) | F ∈ F}.
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The knapsack problem

Which boxes to chose
to maximize the profit
without exceeding 15kg?
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Définition

Let us consider n objects.
Each object i ∈ {1, . . . ,n}
- with a profit gi
- with a weight pi
to be put inside a knapsack of maximum total weight P.

Then we need to find a subset S ⊂ {1, . . . ,n} such that

its weight
∑
i∈S

pi is non-greater than P (Knapsack Constraint)

its profit
∑
i∈S

gi is maximum. (Objective function)
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Définition

Let us consider n objects.
Each object i ∈ {1, . . . ,n}
- with a profit gi
- with a weight pi
to be put inside a knapsack of maximum total weight P.

Then we need to find a subset S ⊂ {1, . . . ,n} such that

its weight
∑
i∈S

pi is non-greater than P (Knapsack Constraint)

its profit
∑
i∈S

gi is maximum. (Objective function)

8/50



How to incode a knapsack solution?

An instance is given by :

A solution S ⊂ {1, . . . ,n}
is corresponding to
an incidence vector χS

such that

χS[i] =
{

1 if i ∈ S
0 otherwise.

i 1 2 3 4 5
gi 5 7 10 11 10
pi 2 8 10 6 5 ≤ 15

S1 = {1,2,5}

χS1 = 1 1 0 0 1

profit : 5 7 10 = 22
weight : 2 8 5 = 15
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How to test whether a vector is a solution?

Recognition Algorithm :

pds ← 0

For i from 1 to n

pds ← pds + pi ∗ χS [i]

EndFor

If pds ≤ P Then True

Else False

i 1 2 3 4 5
gi 5 7 10 11 10
pi 2 8 10 6 5 ≤ 15

S2 = {1,4,5}

χS2 = 1 0 0 1 1

weight : 2 6 5 = 13

Solution of profit 26
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Huge knapsacks...
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Graph

A graph G = (V ,E) is a pair
where
- V is the node set
- E ⊆ V × V is the edge set.

Two nodes are adjacent if
they are linked by an edge.
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Stable Set problem

A stable set
(or independent set)
is a pairwise non-adjacent node
subset.

The stable set problem is
to find a stable set with a maxi-
mum number of nodes.
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A set of antennas
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A set of antennas with their interference disks
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How to find a subset of antennas with no interference?
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A model graph

Un graphe G = (S,V )
avec
- V : a node by antenna
- E : an edge between two
antennas if their interference
disks are in conflict.

Finding a subset of antennas
with no interference reduces to
the stable set problem.
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Combinatorics within genomic

Genome sequencing involves sorting through small

fragments of DNA (called SNPs) that have been

sequenced using bio-mechanical processes. In the

process, false SNPs are created.

We want to sort the fragments, omitting as few

SNPs as possible.

Its a Combinatorial optimisation problem

which also reduces to the stable set problem!.

Lippert, R., Schwartz, R., Lancia, G., Istrail, S. : Algorithmic strategies for the single nucleotide polymorphism haplotype assembly problem. Brief. Bioinform
3, 23–31 (2002)
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How to incode a stable set solution??

Instance given by
a graph with
n nodes.

A solution S ⊂ {1, . . . ,n}
is corresponding to an
vecteur d’incidence χS

such that

χS[i] =
{

1 si i ∈ S
0 sinon.

S1 = {1,7,8}

i 1 2 3 4 5 6 7 8
χS1 = 1 0 0 0 0 0 1 1
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How to test whether a vector is a solution?

Recognition Algorithm :

For i from 1 to n

For j from 1 to n

If {i, j} is an edge

and if χS [i] = 1 and χS [j] = 1

Then STOP : False

EndFor

EndFor

STOP : True

S1 = {2,7,8}

i 1 2 3 4 5 6 7 8
χS1 = 0 1 0 0 0 0 1 1

Solution (with 3 nodes
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Recognition algorithms

Knapsack

pds ← 0
For i from 1 to n

pds ← pds + pi ∗ χS [i]
EndFor
If pds ≤ P Then True

Else False

Execution time
proportionnal to n.

Stable set

For i from 1 to n
For j from 1 to n

If {i, j} is an edge
and if χS [i] = 1
and χS [j] = 1
Then
STOP : False

EndFor
EndFor
STOP : True

Execution time
proportionnal to n2.

Polynomial Algorithms
which can be fast (≤ n4 for instance).

Solving algorithms

Which is the complexity

of the best known “Generic

Algorithm” so find the optimal

solution of combinatorial

optimization problems?

Only very very slow al-

gorithms with an execution

time proportional to

2n, 3n, !n

Exponential algorithms.
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Enumerate?

Consider an optimization problem with n elements.
Assuming that we know a polynomial (and. fast) algorithm for recognizing a
solution,
can we finde the best solution through enumeration?

For each subset S of elements

χS ← the incidence vector of S.

Recogntion algorithm for χS .

If χS is a solution

Stock S as the best known solution encountered yet.

EndFor

STOP : the stocked solution.

There are 2n subsets : exponential execution time !
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Combinatorial explosion

χS [1] = 1χS [1] = 0

χS [2] = 0 χS [2] = 1
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Combinatorial explosion

Let’s take one of the most powerful computers in 2015
Tianhe-2 (China)
33.86 petaflops where 1 petaflop represents the processing of 1015 operations

per second (one million billion).

Assume that the recognition algorithm takes 100n elementary operations. For n = 10, we can process 33 860
billion subsets in 1 second !

Tianhe-2 Futuristic Computer
n n3 n5 100n2n 100n2n

10 0,00...001 sec 0,00...001 sec 0,00...001 sec 0,00...001 sec
20 0,00...001 sec 0,00...001 sec 0,00000006 sec 0,00...001 sec
50 0,00...001 sec 0,00...001 sec 168,9 sec 0,000001 sec
60 0,00...001 sec 0,00000002 sec 57,6 h 0,0001 sec
80 0,00...001 sec 0,0000009 sec 9200 years 100 years
100 0,00...001 sec 0,0000003 sec 1, 21.1010 years 1, 21.109 years

1000 0,00000003 sec 0,03 sec 1.10282 years ...

Age of the universe 13, 7.109 years
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Combinatorial Explosion

Enumerating 2n solutions is not a technical problem
that very powerful computers could sweep away.

It’s necessary to circumvent the combinatorial explosion with
mathematical and algorithmic tools.
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Problem complexity

Just because we know an exponential algorithm for solving a problem doesn’t
mean it’s difficult !

To crack a nut, you can :

We’re looking for the fastest algorithm to solve a problem!
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Problem Complexity

A problem is of exponential complexity
if an exponential algorithm exists to solve it.

⇒ the problem class EXP.

A problem is of polynomial complexity
if a polynomial algorithm exists to solve it.

⇒ the problem class P.

So P is included in EXP, we note P ⊂ EXP

Question : In what complexity classes are Combinatoriel Optimization
problems?
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NP problems

A particular classe have been created...
Combinatorial optimization problems for which we know how to recognize a
solution with a polynomial algorithm

⇒ the problem class NP “Nondeterministic polynomial time”

Under this assumption, we’ve seen that it’s possible to use an exponential
enumeration algorithm, then

⇒ NP ⊂ EXP

In addition, a polynomial problem is in NP
⇒ P ⊂ NP ⊂ EXP

31/50



NP problems

A particular classe have been created...
Combinatorial optimization problems for which we know how to recognize a
solution with a polynomial algorithm

⇒ the problem class NP “Nondeterministic polynomial time”

Under this assumption, we’ve seen that it’s possible to use an exponential
enumeration algorithm, then

⇒ NP ⊂ EXP

In addition, a polynomial problem is in NP
⇒ P ⊂ NP ⊂ EXP

31/50



NP problems

A particular classe have been created...
Combinatorial optimization problems for which we know how to recognize a
solution with a polynomial algorithm

⇒ the problem class NP “Nondeterministic polynomial time”

Under this assumption, we’ve seen that it’s possible to use an exponential
enumeration algorithm, then

⇒ NP ⊂ EXP

In addition, a polynomial problem is in NP
⇒ P ⊂ NP ⊂ EXP

31/50



And then?

Is P equal to NP ?

i.e.

“Is there a polynomial algorithm for solving combinatorial optimization
problems?”

Answer : We don’t know !

On a human scale, we only know this enumeration algorithm !

It’s one of the 7 problems in the Clay Mathematics Institute of Cambridge’s million-dollar Millennium Prize
Problems !
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Is every Combinatorial Optimisation problem exponential ?

A very simple knapsack subcase

Let’s look at a very simple knapsack instance :
a knapsack with all objects of the same weight.

A greedy algorithm :
- sort the n objects from the most expensive to the least expensive
- take the objects one by one in that order as long as they fit in the bag !

This algorithm is polynomial (of the order of n2).

34/50



Is every Combinatorial Optimisation problem exponential ?

A very simple knapsack subcase

Let’s look at a very simple knapsack instance :
a knapsack with all objects of the same weight.

A greedy algorithm :
- sort the n objects from the most expensive to the least expensive
- take the objects one by one in that order as long as they fit in the bag !

This algorithm is polynomial (of the order of n2).

34/50



Is every Combinatorial Optimisation problem exponential ?

A very simple knapsack subcase

Let’s look at a very simple knapsack instance :
a knapsack with all objects of the same weight.

A greedy algorithm :
- sort the n objects from the most expensive to the least expensive
- take the objects one by one in that order as long as they fit in the bag !

This algorithm is polynomial (of the order of n2).

34/50



Is every Combinatorial Optimisation problem exponential ?

A very simple knapsack subcase

Let’s look at a very simple knapsack instance :
a knapsack with all objects of the same weight.

A greedy algorithm :
- sort the n objects from the most expensive to the least expensive
- take the objects one by one in that order as long as they fit in the bag !

This algorithm is polynomial (of the order of n2).

34/50



A very simple stable set subcase

Let’s look at a very simple stable set instance :
finding a maximum cardinality stable set over a tree.

Tree property :
Given a leaf v , there exists a maximum
cardinality stable set containing v .

(Proof : Let v a leaf and u its unique neighbour. Let S be a maximum stable set. Either u /∈ S, then S ∪ {v} ; or u /∈ S, then S ∪ {u} \ {v} is another
maximum stable set).
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A very simple stable set subcase

A greedy algorithm :

S ← ∅
While G has at least one edge

Let v be a leaf and u its neighbour
S ← S ∪ {v}
Delete from G nodes u and v and all their incident edges EndWhile

Add to S all the remaining nodes.
STOP : S

This algorithm is polynomial (of the order of n).
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NP-hard

In the current state of scientific knowledge, it is not known whether or not
there is a polynomial algorithm for solving the knapsack or the stable set
problem in general !

In fact, we were able to prove that knapsack or the stable set problems are
just as difficult as all the problems in the NP class !

A problem is said to be NP-hard
if it is as difficult as any problem in the NP class.

⇒ the problem class NP-hard.
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NP-hardness

Boss, I can’t find a polynomial algorithm for the stable set problem

Figure from “The Garey et Johnson”
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NP-hardness

But if you think I’m just an ungifted searcher

Figure from “The Garey et Johnson”
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NP-hardness

...neither are all the others !

Figure from “The Garey et Johnson”
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Strongly or weakly NP-hard
A computational problem may have numerical parameters : like the weight of
a knapsack.

A NP-hard problem is said to be weakly NP-hard
if there is an algorithm for the problem whose running time is polynomial in the
dimension of the problem and magnitudes of its data.

And otherwise, it is called strongly NP-hard.

For weakly NP-hard, it’s often the case, that there exists a dynaming
programming scheme whose complexity depends on the magnitudes of the
data.
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Dynamic Programming scheme
Some subcases are the same within the enumeration :
this puts the brakes on the combinatorial explosion.

χS [1] = 1χS [1] = 0

χS [2] = 0 χS [2] = 1
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Knapsack problem

Input : n objects
profit gi ∀i ∈ {1, . . . , n}
weight pi ∀i ∈ {1, . . . , n}
maximum total weight P.

Output : Subset S ⊆ {1, . . . , n}
s.t.

∑
i∈S

pi ≤ P

Objective : Max
∑
i∈S

wi

Complexity : Weakly NP-hard
Dynamic programming scheme (in O(nP) when pi ∈ IN)

Polynomial cases : unit cost / unit weight
Difficulty : With MIP solver n = 106 in < 1 minutes.
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Maximum weight stable set problem

Input : Undirected graph G = (V ,E)
cost wu ∀u ∈ V

Output : Subset S ⊆ V of non-adjacent nodes

Objective : Max
∑
i∈S

wi

Complexity : Strongly NP-hard
Polynomial cases : perfect graphs (tree, planar, interval graphs...)
Difficulty : With MIP solver n = 1000 in often more than 1 hour

Some dedicated methodes (russian doll algo)
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Shortest path problem

Input : Undirected (or directed) graph G = (V ,E)
Two nodes u0, u1 ∈ V
Lenghts le ∀e ∈ E

Output : Path µ of G from u0 to u1

Objective : Min
∑
e∈µ

le

-

Complexity : Polynomial
Difficulty : With Dijkstra algorithm up to thousand of nodes in a few sec

With A∗ algorithme, up to millions !
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Shortest path problem

To quickly go from a point to another
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The Traveling Salesman Problem (TSP)

Input : Undirected (or directed) graph G = (V ,E)
lenght le ∀e ∈ E

Output : An hamiltonian cycle C of G (i.e. C goes once through each node)

Objective : Min
∑
e∈C

le

Complexity : Strongly NP-hard
Polynomial cases : ?
Difficulty : Before 2003 : 200 nodes within several hours
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Output : An hamiltonian cycle C of G (i.e. C goes once through each node)

Objective : Min
∑
e∈C

le

Complexity : Strongly NP-hard
Polynomial cases : ?
Difficulty : Before 2003 : 200 nodes within several hours

Concorde : a Branch-and-Cut algorithm and polyhedral results
solves up to 200000 cities within one day !
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The Traveling Salesman Problem (TSP)

Starting from a city and going back to it
going once througt all the other cities

with a sorthest cycle.
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Real-world Operations Research problem

The inventory routing problem introduced
by Air Liquide company with real daily data
and questions to answer :

Determine routes for liquid oxygen trucks to
deliver hospitals
so that

- hospital tanks are never empty (remote
monitoring)

- rounds are feasible within the driver’s
working day

- costs are minimized !

Source : ROADEF Challenge 2016

49/50



How to solve Combinatorial Optimization Problem?

• If the instances are very large and the problem very hard to solve
or if you do not have much time to spend on solving method

→ There exist methods to obtain “good” solutions (heuristics, meta-heuristics, machine learning...)

• If the problem is really important with a higly cost associated to solution
and if you have some time (several hours...)
The optimal solution is to be computed !

→We will see in this lecture how to circumvent the combinatorial explosion using mathematical
programming !

The Traveling salesman problem has been solved till 200 000 cicites !
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