Lecture

Solving combinatorial optimization problems using mathematical programming

Section 3 : Polyhedral approach

Pierre Fouilhoux

Université Sorbonne Paris Nord - LIPN CNRS

Hanoi, Vietnam, 2024

1. Introduction and definition

- 2. Dimension and facet
- 3. Characterization

. . .

What are the "best" valid inequalities?

Given the variable set of a formulation,

- What are the "best" valid inequalities?
- How to have "often" integer Branch&Bound nodes?

. . .

What are the "best" valid inequalities?

Given the variable set of a formulation,

- What are the "best" valid inequalities?
- How to have "often" integer Branch&Bound nodes?
- Can we know when a linear formulation produces integer solutions?

Integer polytope

• Solving a (bounded) linear formulation

$$(\tilde{F}) \begin{cases} \max c^T x \\ Ax \leq b \end{cases}$$

reduces to find an optimal extreme point of polytope $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$

Integer polytope

• Solving a (bounded) linear formulation

$$(\tilde{F}) \begin{cases} \max c^T x \\ Ax \leq b \end{cases}$$

reduces to find an optimal extreme point of polytope $P = \{x \in \mathbb{R}^n \mid Ax \le b\}$

• An **integer polytope** is a polytope with integer extreme points.

Integer polytope

• Solving a (bounded) linear formulation

$$(\tilde{F}) \begin{cases} \max c^T x \\ Ax \leq b \end{cases}$$

reduces to find an optimal extreme point of polytope $P = \{x \in \mathbb{R}^n \mid Ax \le b\}$

• An **integer polytope** is a polytope with integer extreme points.

• A rational polytope P is integer $\Leftrightarrow \forall c \in \mathbb{Z}^n$, max $\{c^T x \mid x \in P\}$ is integer.

$$(F) \begin{cases} \max z = 2x_1 + x_2 \\ x_1 - 4x_2 \le 0 \\ 3x_1 + 4x_2 \le 15 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_1, x_2 \in \mathbb{N} \end{cases}$$

 $\begin{array}{l} x_{opt} \\ z^{opt} \end{array} \text{ optimal integer solution of } (F) \\ z^{opt} \\ \text{optimal integer value : 7} \\ \tilde{x}_{opt} \\ \text{optimal fractional solution of linear relaxation } (\tilde{F}) \\ z^*_{opt} \\ \text{optimal fractional value : 8} + \frac{7}{16} \\ \text{Note that } \tilde{x}_{opt} \\ \text{ is the (only) optimal extreme point of } \tilde{F}. \end{array}$

Solving CO problems using MP - Section 3 : Polyhedral approach Introduction and definition

A 2-dimensional example

Remark : the integer solutions of (\tilde{F}) are the solutions of (F).

$$(F) \begin{cases} \max z = 2x_1 + x_2 \\ x_1 - 4x_2 \le 0 \\ 3x_1 + 4x_2 \le 15 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_1, x_2 \in \mathbb{N} \end{cases}$$

A 2-dimensional example

Remark : the integer solutions of (\tilde{F}) are the solutions of (F).

A 2-dimensional example

Remark : the integer solutions of (\tilde{F}) are the solutions of (F).

Let's take an elastic and wrap it around these integer points...

A 2-dimensional example

Remark : the integer solutions of (\tilde{F}) are the solutions of (F).

Let's take an elastic and wrap it around these integer points...

We obtain a **new polytope !** (the convex hull of the integer points)

A 2-dimensional example

Remark : the integer solutions of (\tilde{F}) are the solutions of (F).

Let's take an elastic and wrap it around these integer points...

We obtain a **new polytope !** (the convex hull of the integer points) And this polytope is **integer** by construction. Solving CO problems using MP - Section 3 : Polyhedral approach Introduction and definition

Convex hull

```
Given a set S of points of \mathbb{R}^n.
the convex hull of S, denoted by conv(S) is the smallest convex set containing S.
```

Theorem (of Minkowski)

A set $P \subseteq \mathbb{R}^n$ is a polytope if and only if there exists a set S of points such that P = conv(S).

Convex hull

```
Given a set S of points of \mathbb{R}^n.
the convex hull of S, denoted by conv(S) is the smallest convex set containing S.
```

Theorem (of Minkowski)

A set $P \subseteq \mathbb{R}^n$ is a polytope if and only if there exists a set S of points such that P = conv(S).

Consequently :

- conv(S) is a polytope
- ▶ there exists a finite subset of inequalities $Dx \leq \beta$ such that

$$conv(S) = \{x \in \mathbb{R}^n \mid Dx \leq \beta\}$$

• max{ $c\chi \mid \chi \in conv(S)$ } is a linear program

Combinatorial polytope

- Let ${\mathcal P}$ be a combinatorial optimization problem :
- over *n* decisions corresponding to *n* integer variables.
- with a function cost c.

Let S the set of the incidence vectors of the solutions of \mathcal{P} .

Problem \mathcal{P} is

 $\max \{ \boldsymbol{c} \boldsymbol{\chi} \mid \boldsymbol{\chi} \in \boldsymbol{S} \}$

Let us consider the linear program

 $\max \{ c\chi \mid \chi \in conv(S) \}$

A 3-dimensional example

Let us consider the AISP on a triangle

The solutions are

And their incidence vectors are the following points

A 3-dimensional example

Let us consider the AISP on a triangle

The solutions are

And their incidence vectors are the following points

$$\begin{array}{ccccc} \chi^{\emptyset} = & \left[\begin{array}{cccc} 0 & 0 & 0 \end{array} \right] \\ \chi^{\{1\}} = & \left[\begin{array}{cccc} 1 & 0 & 0 \end{array} \right] \\ \chi^{\{2\}} = & \left[\begin{array}{cccc} 0 & 1 & 0 \end{array} \right] \\ \chi^{\{3\}} = & \left[\begin{array}{cccc} 0 & 0 & 1 \end{array} \right] \\ \chi^{\{1,2\}} = & \left[\begin{array}{cccc} 1 & 1 & 0 \end{array} \right] \\ \chi^{\{2,3\}} = & \left[\begin{array}{cccc} 1 & 0 & 1 \end{array} \right] \\ \chi^{\{2,3\}} = & \left[\begin{array}{ccccc} 0 & 1 & 1 \end{array} \right] \end{array}$$

A 3-dimensional example

Let us consider the AISP on a triangle

The solutions are

And their incidence vectors are the following points

Combinatorial polytope

Let ${\mathcal P}$ be a combinatorial optimization problem :

- over *n* decisions corresponding to *n* integer variables.

- with a function cost c.

Let S the set of the incidence vectors of the solutions of \mathcal{P} .

Problem \mathcal{P} is

```
\max \{ c\chi \mid \chi \in S \}
```

Theorem

The linear program

```
max \{ c\chi \mid \chi \in conv(S) \}
```

is equivalent to problem \mathcal{P}

Combinatorial polytope

Let \mathcal{P} be a combinatorial optimization problem :

- over *n* decisions corresponding to *n* integer variables.

- with a function cost c.

Let S the set of the incidence vectors of the solutions of \mathcal{P} .

Problem \mathcal{P} is

```
\max \{ c\chi \mid \chi \in S \}
```

Theorem

The linear program

```
max \{ c\chi \mid \chi \in conv(S) \}
```

is equivalent to problem \mathcal{P}

Indeed

- Every extreme points of the convex hull conv(S) are integer by construction.
- The optimal points of S are among the extreme points of polytope conv(S).

Get around the combinatorial explosion

Optimizing (P) reduces to optimizing a linear program on conv(S).

The convex hull is then the "unknown value" to found.

Get around the combinatorial explosion

Optimizing (P) reduces to optimizing a linear program on conv(S).

The convex hull is then the "unknown value" to found.

Get around the combinatorial explosion

Optimizing (P) reduces to optimizing a linear program on conv(S).

The convex hull is then the "unknown value" to found.

Unfortunately we cannot use this process in polynomial time... Unless P=NP, finding the convex hull of a combinatorial polytope is NP-hard !

But even a "partial" knowledge of polytope conv(S) is very useful

1. Introduction and definition

- 2. Dimension and facet
- 3. Characterization

Example : The acyclic induced subgraph polytope Given a directed graph G = (V, A), acycl(G) : family of all node subsets inducing an acyclic subgraph of G.

Then acycl(G) is the solutions set of the AISP on G (whatever will be the costs)

Example : The acyclic induced subgraph polytope Given a directed graph G = (V, A), acycl(G) : family of all node subsets inducing an acyclic subgraph of G.

Then acycl(G) is the solutions set of the AISP on G (whatever will be the costs)

Given a solution $W \in acycl(G)$, the **incidence vector** χ^W is

$$\chi^{W}[i] = \begin{cases} 1 & \text{if } i \in W \\ 0 & \text{otherwise} \end{cases}$$

Some solutions :

• Pour $\emptyset \in acycl(G)$

 $\chi^{\emptyset} = \ [\ 0 \ 0 \ 0 \ 0 \]$

• $\{i\} \in acycl(G) \ \forall i \in V$

$$\chi^{\{i\}} = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$

Example : The acyclic induced subgraph polytope Given a directed graph G = (V, A), acycl(G) : family of all node subsets inducing an acyclic subgraph of G.

Then acycl(G) is the solutions set of the AISP on G (whatever will be the costs)

Given a solution $W \in acycl(G)$, the **incidence vector** χ^W is

$$\chi^{W}[i] = \begin{cases} 1 & \text{if } i \in W \\ 0 & \text{otherwise} \end{cases}$$

Some solutions :

• Pour $\emptyset \in acycl(G)$

 $\chi^{\emptyset} = \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix}$

• $\{i\} \in acycl(G) \ \forall i \in V$

$$\chi^{\{i\}} = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$

P(G): the acyclic induced subgraph polytope of G*i.e.* is the convex hull of the incidence vectors of the solutions *i.e.* $P(G) = conv\{\chi^W \mid W \in acycl(G)\}.$

Dimension

A combinatorial polytope P of n variables is in \mathbb{R}^n ... Can P be included into a smaller space?

Dimension

A combinatorial polytope P of n variables is in \mathbb{R}^n ... Can P be included into a smaller space?

Definition

• A set of points $x^1, ..., x^k \in \mathbb{R}^n$ are affinely independent if vectors $x^2 - x^1, ..., x^k - x^1$ are linearly independent.

• A polytope P in \mathbb{R}^n is of **dimension** d (denoted dim(P) = d) if P contains at least d + 1 affinely independent points.

A polytope P is said to be full dimensional if dim(P) = n.

Dimension

A combinatorial polytope P of n variables is in \mathbb{R}^n ... Can P be included into a smaller space?

Definition

• A set of points $x^1, ..., x^k \in \mathbb{R}^n$ are affinely independent if vectors $x^2 - x^1, ..., x^k - x^1$ are linearly independent.

• A polytope P in \mathbb{R}^n is of **dimension** d (denoted dim(P) = d) if P contains at least d + 1 affinely independent points.

A polytope P is said to be full dimensional if dim(P) = n.

Examples :

- a plane in 3D-space is not full dimensional.
- an hypercube $[0,1]^n$ is full dimensional in $I\!\!R^n$ but not in $I\!\!R^{n'}$ if n' < n

Example : The acyclic induced subgraph polytope

Lemma

The AIS polytope P(G) is full-dimensional for every graph G.

Proof.

It is sufficient to produce n + 1 affinely independent points of P(G).

For instance, the incidence vectors of

- the empty set \emptyset
- the singletons $\{i\} \ \forall i \in V$.

Moreover, the vectors $\chi^{\{u\}}-\chi^{\emptyset}$ are linearly independent since they form the identity matrix.

1	1	0	0	0	0	
1	0	1	0	0	0	
	0	0	1	0	0	
	0	0	0	1	0	
Ι	0	0	0	0	1	Ϊ

"Degree of freedom"

Let us assume that the characterization of a polytope $P \subseteq \mathbb{R}^n$ is given by

$$P = \left\{ x \in \mathbf{R}^n \mid \begin{array}{cc} A_i x \leq b_i, & i = 1, ..., m_1 \\ B_j x = d_j, & j = 1, ..., m_2 \end{array} \right\}.$$

where every inequality $A_i x \leq b_i$ is a "true" inequality, *i.e.* there exists $\tilde{x} \in P$ such that $A_i \tilde{x} < b_i$.

Theorem

If $P \neq \emptyset$, then dim(P) = n - rang(B).

"Degree of freedom"

Let us assume that the characterization of a polytope $P \subseteq \mathbb{R}^n$ is given by

$$P = \left\{ x \in \mathbf{R}^n \mid \begin{array}{cc} A_i x \leq b_i, & i = 1, ..., m_1 \\ B_j x = d_j, & j = 1, ..., m_2 \end{array} \right\}.$$

where every inequality $A_i x \leq b_i$ is a "true" inequality, *i.e.* there exists $\tilde{x} \in P$ such that $A_i \tilde{x} < b_i$.

Theorem

If $P \neq \emptyset$, then dim(P) = n - rang(B).

dim(P) gives the "degree of freedom" of a problem : n - dim(P) variables can be obtained by fixing the dim(P) others

Redundant inequality

Definition

Let P a polytope characterized by a system $Ax \leq b$.

```
An inequality ax \leq alpha of Ax \leq b is redundant
if the system "Ax \leq b minus ax \leq \alpha" still characterizes P.
```

A non-redundant inequality is then essential.

What are the essential inequalities?

Facet of a polytope

Let $ax \leq \alpha$ is a valid inequality for the problem corresponding to a polytope P.

Definition

• The face of $ax \leq \alpha$ is the set of points of P satisfying $ax \leq \alpha$ to equality,

i.e.
$$F = \{x \in P \mid ax = \alpha\}$$

• A face F is a facet of P if $\emptyset \neq F \neq P$ and dim(F) = dim(P) - 1.

Theorem

- If $P \neq \emptyset$, then a non-facet inequality of P is redundant.
- Every facet of P corresponds to one inequality of a characterization of P.

Trivial facet of the AIS polytope P(G)

Given a node $i_0 \in V$, the trivial inequality

$$x_{i_0} \ge 0$$

defines a facet of P(G).

The corresponding face is $F_{i_0} = \{\chi^W \in \mathbb{R}^n \mid W \in acycl(G) \text{ and } \chi^W[i_0] = 0\}.$

•
$$\chi^{\emptyset} \in F_{i_0}$$
 then $F_{i_0} \neq \emptyset$

• $\chi^{\{i_0\}} \notin F_{i_0}$ then $F_{i_0} \neq P(G)$

• The vectors χ^{\emptyset} and $\chi^{\{i\}}$, $i \neq i_0$, are *n* affinely independent points of F_{i_0} then $\dim(F_{i_0}) = n - 1$ Hence $x_{i_0} \geq 0$ is a facet of P(G).

Γ

Clique inequality of the AIS polytope

Given a clique K of G, the clique inequality is

$$\sum_{i \in K} x_i \leq 1$$

If there exists K' a clique of G such that $K \subset K'$ Then

Thus the clique inequality associated to K is redundant and not-facet defining.

Clique inequality of the AIS polytope

Lemma

A clique inequality on K defines a facet if and only if K is inclusion-wise maximal.

The consequence of this theorem is that maximal cliques are "better inequalities" to add to strenghen a cutting plane algorithm.

Indeed facet defining inequalities are called "the deepest cuts" !

In practice, the heuristic method we present for clique inequalities always produce maximal cliques.

- 1. Introduction and definition
- 2. Dimension and facet
- 3. Characterization

For some polynomial combinatorial problem \mathcal{P} and its associated combinatorial polytope P.

Some methods to show that a system $Ax \leq b$ characterizes P

For some polynomial combinatorial problem \mathcal{P} and its associated combinatorial polytope P.

Some methods to show that a system $Ax \leq b$ characterizes P

i.e. $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$

to show that there is no fractional extreme point

For some polynomial combinatorial problem \mathcal{P} and its associated combinatorial polytope P.

Some methods to show that a system $Ax \leq b$ characterizes P

- to show that there is no fractional extreme point
- to show that A is a totally unimodular matrix

For some polynomial combinatorial problem \mathcal{P} and its associated combinatorial polytope P.

Some methods to show that a system $Ax \leq b$ characterizes P

- to show that there is no fractional extreme point
- to show that A is a totally unimodular matrix
- to show that the primal/dual system $Ax \leq b$ is total dual integral

For some polynomial combinatorial problem \mathcal{P} and its associated combinatorial polytope P.

Some methods to show that a system $Ax \leq b$ characterizes P

- to show that there is no fractional extreme point
- to show that A is a totally unimodular matrix
- to show that the primal/dual system $Ax \leq b$ is total dual integral
- \blacktriangleright to show that every facet of P corresponds to at least one inequality among $Ax \leq b$

For some polynomial combinatorial problem \mathcal{P} and its associated combinatorial polytope P.

Some methods to show that a system $Ax \leq b$ characterizes P

- to show that there is no fractional extreme point
- to show that A is a totally unimodular matrix
- to show that the primal/dual system $Ax \leq b$ is total dual integral
- \blacktriangleright to show that every facet of P corresponds to at least one inequality among $Ax \leq b$
- ... and many others (polyhedral decomposition, extended formulation+projection, critical extreme point study,...)

Bipartite matching problem

Let $G = (V_1 \cup V_2, E)$ be a bipartite (undirected) graph Let $c \in \mathbb{R}^m$ a cost associated to the edges of E.

A matching of G is a set of pairwise disjoint edges. The matching problem on bipartite graph G is to find a matching of maximal cost.

Theorem

The following linear program is integer and is equiv. to the bipartite matching problem.

$$\begin{split} \max \sum_{e \in E} c(e) x(e) \\ \sum_{e \in \delta(u)} x(e) &\leq 1 \quad \forall u \in V_1 \\ \sum_{e \in \delta(u)} x(e) &\leq 1 \quad \forall u \in V_2 \\ x(e) &\geq 0 \quad \forall e \in E. \end{split}$$

(The matrix is totally unimodular)

The matching problem

Let G = (V, E) be an undirected graph.

The previous formulation on G is not integer!

The matching problem

Let G = (V, E) be an undirected graph.

The previous formulation on G is not integer!

The **matching polytope** is the convex hull of the incidence vectors of the matchings *i.e.*

 $P_M(G) = conv\{\chi^M \in \mathbb{R}^n \mid M \text{ matching of } G\}.$

Theorem (Jack Edmonds (1965))

The matching polytope is characterized by

$$\sum_{e \in \delta(u)} x(e) \le 1$$
 $orall v \in V$
 $\sum_{e \in E(S)} x(e) \le rac{|S| - 1}{2}$ $orall S \subseteq V$ with $|S|$ odd $x(e) \ge 0$ $orall e \in E$.