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Solving CO problems using MP - Section 3 : Polyhedral approach

Introduction and definition

What are the “best” valid inequalities ?

Given the variable set of a formulation,

• What are the “best” valid inequalities ?

• How to have “often” integer Branch&Bound nodes ?

...

• Can we know when a linear formulation produces integer
solutions ?
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Solving CO problems using MP - Section 3 : Polyhedral approach

Introduction and definition

Integer polytope

• Solving a (bounded) linear formulation

(F̃ )

{
max cT x

Ax ≤ b

reduces to find an optimal extreme point
of polytope P = {x ∈ IRn | Ax ≤ b}

• An integer polytope is a polytope with integer
extreme points.

• A rational polytope P is integer ⇔ ∀c ∈ ZZn, max{cT x | x ∈ P} is integer.
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Solving CO problems using MP - Section 3 : Polyhedral approach

Introduction and definition

A 2-dimensional example

(F )



max z = 2x1 + x2

x1 − 4x2 ≤ 0
3x1 + 4x2 ≤ 15
x1 ≥ 0
x2 ≥ 0
x1, x2 ∈ IN

4

3

2

1

0 1 2 3 4 5

x2

x1

x1 − 4x2 = 0

3x1 + 4x2 = 15

xopt = (3, 1)

x̃opt = ( 15
4
, 15

16
)

xopt optimal integer solution of (F )
zopt optimal integer value : 7
x̃opt optimal fractional solution of linear relaxation (F̃ )
z∗opt optimal fractional value : 8 + 7

16

Note that x̃opt is the (only) optimal extreme point of F̃ .
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Solving CO problems using MP - Section 3 : Polyhedral approach

Introduction and definition

A 2-dimensional example
Remark : the integer solutions of (F̃ ) are the solutions of (F ).

(F )


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x1 ≥ 0
x2 ≥ 0
x1, x2 ∈ IN

4

3
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1

0 1 2 3 4 5

x2

x1

xopt = (3, 1)

Let’s take an elastic and wrap it around these integer points...

We obtain a new polytope ! (the convex hull of the integer points)
And this polytope is integer by construction.
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Solving CO problems using MP - Section 3 : Polyhedral approach

Introduction and definition

Convex hull
Given a set S of points of IRn.
the convex hull of S , denoted by conv(S)
is the smallest convex set containing S .

Theorem (of Minkowski)

A set P ⊆ IRn is a polytope
if and only if there exists a set S of points such that P = conv(S).

Consequently :
I conv(S) is a polytope
I there exists a finite subset of inequalities Dx ≤ β such that

conv(S) = {x ∈ IRn | Dx ≤ β}
I max{cχ | χ ∈ conv(S)} is a linear program
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Solving CO problems using MP - Section 3 : Polyhedral approach

Introduction and definition

Combinatorial polytope

Let P be a combinatorial optimization problem :
- over n decisions corresponding to n integer variables.
- with a function cost c.

Let S the set of the incidence vectors of the solutions of P.

Problem P is
max {cχ | χ ∈ S}

Let us consider the linear program

max {cχ | χ ∈ conv(S)}
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Solving CO problems using MP - Section 3 : Polyhedral approach

Introduction and definition

A 3-dimensional example

Let us consider the AISP on a triangle

1

2

3

The solutions are

∅ {1} {2} {3} {1, 2} {1, 3} {2, 3}

And their incidence vectors are the following points

χ∅ = [ 0 0 0 ]

χ{1} = [ 1 0 0 ]

χ{2} = [ 0 1 0 ]

χ{3} = [ 0 0 1 ]

χ{1,2} = [ 1 1 0 ]

χ{1,3} = [ 1 0 1 ]

χ{2,3} = [ 0 1 1 ]

However point

χ{1,2,3} = [ 1 1 1 ]

does not correspond to a solution
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Solving CO problems using MP - Section 3 : Polyhedral approach

Introduction and definition

A 3-dimensional example

What is the convex hull of these 7 points ?

This convex hull is inclu-
ded into the hypercube
(of dimension 3)

The hypercube is charac-
terized by

x1 ≤ 1

x2 ≤ 1

x3 ≤ 1

x1 ≥ 0

x2 ≥ 0

x3 ≥ 0

10/28



Solving CO problems using MP - Section 3 : Polyhedral approach

Introduction and definition

A 3-dimensional example

What is the convex hull of these 7 points ?

This convex hull is inclu-
ded into the hypercube
(of dimension 3)

The hypercube is charac-
terized by

x1 ≤ 1

x2 ≤ 1

x3 ≤ 1

x1 ≥ 0

x2 ≥ 0

x3 ≥ 0

10/28



Solving CO problems using MP - Section 3 : Polyhedral approach

Introduction and definition

A 3-dimensional example

What is the convex hull of these 7 points ?

x1 + x2 + x3 ≤ 2
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Solving CO problems using MP - Section 3 : Polyhedral approach

Introduction and definition

A 3-dimensional example

What is the convex hull of these 7 points ?

The convex hull of these 7
points is characterized by
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Solving CO problems using MP - Section 3 : Polyhedral approach

Introduction and definition

Combinatorial polytope

Let P be a combinatorial optimization problem :
- over n decisions corresponding to n integer variables.
- with a function cost c.
Let S the set of the incidence vectors of the solutions of P.

Problem P is
max {cχ | χ ∈ S}

Theorem
The linear program

max {cχ | χ ∈ conv(S)}

is equivalent to problem P

Indeed

- Every extreme points of the convex hull conv(S) are integer by construction.

- The optimal points of S are among the extreme points of polytope conv(S).
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Solving CO problems using MP - Section 3 : Polyhedral approach

Introduction and definition

Get around the combinatorial explosion
Optimizing (P) reduces to optimizing a linear program on conv(S).

The convex hull is then the “unknown value” to found.

(F )


max cx
Ax ≤ b
αx ≤ β
x integer

x1

αx ≥ β
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Introduction and definition

Get around the combinatorial explosion
Optimizing (P) reduces to optimizing a linear program on conv(S).

The convex hull is then the “unknown value” to found.

(F̃ )

 max cx
x ∈ conv(S)
x continuous

which is a linear program !

x1

Unfortunately we cannot use this process in polynomial time...
Unless P=NP, finding the convex hull of a combinatorial polytope is NP-hard !

But even a “partial” knowledge of polytope conv(S) is very useful
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Solving CO problems using MP - Section 3 : Polyhedral approach

Dimension and facet

Example : The acyclic induced subgraph polytope
Given a directed graph G = (V ,A),
acycl(G) : family of all node subsets inducing an acyclic subgraph of G .

Then acycl(G) is the solutions set of the AISP on G (whatever will be the costs)

Given a solution W ∈ acycl(G), the incidence vector χW is

χW [i ] =

{
1 if i ∈W
0 otherwise

.
Some solutions :
• Pour ∅ ∈ acycl(G)

χ∅ = [ 0 0 0 0 0 ]

• {i} ∈ acycl(G) ∀i ∈ V

χ{i} = [ 0 0 1 0 0 ]
i

P(G) : the acyclic induced subgraph polytope of G
i.e. is the convex hull of the incidence vectors of the solutions
i.e. P(G) = conv{χW | W ∈ acycl(G)}.
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Solving CO problems using MP - Section 3 : Polyhedral approach

Dimension and facet

Dimension

A combinatorial polytope P of n variables is in IRn...
Can P be included into a smaller space ?

Definition
• A set of points x1, ..., xk ∈ IRn are affinely independent if vectors
x2 − x1, ..., xk − x1 are linearly independent.

• A polytope P in IRn is of dimension d (denoted dim(P) = d)
if P contains at least d + 1 affinely independent points.

A polytope P is said to be full dimensional if dim(P) = n.

Examples :
- a plane in 3D-space is not full dimensional.

- an hypercube [0, 1]n is full dimensional in IRn but not in IRn′ if n′ < n
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Solving CO problems using MP - Section 3 : Polyhedral approach

Dimension and facet

Example : The acyclic induced subgraph polytope

Lemma
The AIS polytope P(G) is full-dimensional for every graph G.

Proof.
It is sufficient to produce n + 1 affinely independent points of P(G).
For instance, the incidence vectors of
- the empty set ∅
- the singletons {i} ∀i ∈ V .

Moreover, the vectors χ{u} − χ∅ are linearly independent
since they form the identity matrix.


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


�
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Solving CO problems using MP - Section 3 : Polyhedral approach

Dimension and facet

“Degree of freedom”

Let us assume that the characterization of a polytope P ⊆ IRn is given by

P =

{
x ∈ IRn | Aix ≤ bi , i = 1, ...,m1

Bjx = dj , j = 1, ...,m2

}
.

where every inequality Aix ≤ bi is a “true” inequality,
i.e. there exists x̃ ∈ P such that Ai x̃ < bi .

Theorem
If P 6= ∅, then dim(P) = n − rang(B).

dim(P) gives the “degree of freedom” of a problem :
n − dim(P) variables can be obtained by fixing the dim(P) others

19/28
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Solving CO problems using MP - Section 3 : Polyhedral approach

Dimension and facet

Redundant inequality

Definition
Let P a polytope characterized by a system Ax ≤ b.

An inequality ax ≤ alpha of Ax ≤ b is redundant
if the system “Ax ≤ b minus ax ≤ α” still characterizes P.

A non-redundant inequality is then essential.

What are the essential inequalities ?
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Solving CO problems using MP - Section 3 : Polyhedral approach

Dimension and facet

Facet of a polytope

Let ax ≤ α is a valid inequality for the problem corresponding to a polytope P.

Definition
• The face of ax ≤ α is the set of points of P satisfying ax ≤ α to equality,

i.e. F = {x ∈ P | ax = α}

• A face F is a facet of P
if ∅ 6= F 6= P and dim(F ) = dim(P)− 1.

Theorem
• If P 6= ∅, then a non-facet inequality of P is redundant.

• Every facet of P corresponds to one inequality of a characterization of P.

21/28



Solving CO problems using MP - Section 3 : Polyhedral approach

Dimension and facet

Trivial facet of the AIS polytope P(G )

Given a node i0 ∈ V , the trivial inequality

xi0 ≥ 0

defines a facet of P(G).

The corresponding face is Fi0 = {χW ∈ IRn | W ∈ acycl(G) and χW [i0] = 0}.

• χ∅ ∈ Fi0 then Fi0 6= ∅

• χ{i0} /∈ Fi0 then Fi0 6= P(G)

• The vectors χ∅ and χ{i}, i 6= i0, are n affinely independent points of Fi0
then dim(Fi0 ) = n − 1
Hence xi0 ≥ 0 is a facet of P(G). �
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Solving CO problems using MP - Section 3 : Polyhedral approach

Dimension and facet

Clique inequality of the AIS polytope

Given a clique K of G , the clique inequality is∑
i∈K

xi ≤ 1

If there exists K ′ a clique of G such that K ⊂ K ′

Then ∑
i∈K ′ xi ≤ 1

−xi ≤ 0 ∀i ∈ K ′ \ K

∑
i∈K xi ≤ 1

Thus the clique inequality associated to K is redundant and not-facet defining.
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Solving CO problems using MP - Section 3 : Polyhedral approach

Dimension and facet

Clique inequality of the AIS polytope

Lemma
A clique inequality on K defines a facet
if and only if K is inclusion-wise maximal.

The consequence of this theorem is that maximal cliques are “better inequalities” to
add to strenghen a cutting plane algorithm.

Indeed facet defining inequalities are called “the deepest cuts” !

In practice, the heuristic method we present for clique inequalities always produce
maximal cliques.
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Characterization

1. Introduction and definition
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3. Characterization
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Solving CO problems using MP - Section 3 : Polyhedral approach

Characterization

Characterization

For some polynomial combinatorial problem P and its associated combinatorial
polytope P.

Some methods to show that a system Ax ≤ b characterizes P

i.e. P = {x ∈Rn | Ax ≤ b}

I to show that there is no fractional extreme point

I to show that A is a totally unimodular matrix

I to show that the primal/dual system Ax ≤ b is total dual integral

I to show that every facet of P corresponds to at least one inequality among
Ax ≤ b

I ... and many others (polyhedral decomposition, extended
formulation+projection, critical extreme point study,...)
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Characterization

Bipartite matching problem
Let G = (V1 ∪ V2,E) be a bipartite (undirected) graph
Let c ∈ IRm a cost associated to the edges ofE .

A matching of G is a set of pairwise disjoint edges.
The matching problem on bipartite graph G is to find a matching of maximal cost.

Theorem
The following linear program is integer and is equiv. to the bipartite matching problem.

max
∑
e∈E

c(e)x(e)

∑
e∈δ(u)

x(e) ≤ 1 ∀u ∈ V1

∑
e∈δ(u)

x(e) ≤ 1 ∀u ∈ V2

x(e) ≥ 0 ∀e ∈ E .

(The matrix is totally unimodular)
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Characterization

The matching problem
Let G = (V ,E) be an undirected graph.

The previous formulation on G is not integer !

The matching polytope is the convex hull of the incidence vectors of the matchings
i.e.

PM(G) = conv{χM ∈ IRn | M matching of G}.

Theorem (Jack Edmonds (1965))

The matching polytope is characterized by∑
e∈δ(u)

x(e) ≤ 1 ∀v ∈ V

∑
e∈E(S)

x(e) ≤
|S| − 1

2
∀S ⊆ V with |S| odd

x(e) ≥ 0 ∀e ∈ E .
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