Lecture

Solving combinatorial optimization problems using mathematical programming

Section 3 : Polyhedral approach

Pierre Fouilhoux

Université Sorbonne Paris Nord - LIPN CNRS

Hanoi, Vietnam, 2024

1. [Introduction and definition](#page-1-0)

- 2. [Dimension and facet](#page-29-0)
- 3. [Characterization](#page-44-0)

...

What are the "best" valid inequalities ?

Given the variable set of a formulation,

- What are the "best" valid inequalities?
- How to have "often" integer Branch&Bound nodes?

...

What are the "best" valid inequalities ?

Given the variable set of a formulation,

- What are the "best" valid inequalities?
- How to have "often" integer Branch&Bound nodes?
- Can we know when a linear formulation produces integer solutions ?

Integer polytope

• Solving a (bounded) linear formulation

$$
(\tilde{F})\left\{\begin{array}{c}\max c^T x\\Ax\leq b\end{array}\right.
$$

reduces to find an optimal extreme point of polytope $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$

Integer polytope

• Solving a (bounded) linear formulation

$$
(\tilde{F})\left\{\begin{array}{c}\max c^T x\\Ax\leq b\end{array}\right.
$$

reduces to find an optimal extreme point of polytope $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$

• An integer polytope is a polytope with integer extreme points.

Integer polytope

• Solving a (bounded) linear formulation

$$
(\tilde{F})\left\{\begin{array}{c}\max c^T x\\Ax\leq b\end{array}\right.
$$

reduces to find an optimal extreme point of polytope $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$

• An integer polytope is a polytope with integer extreme points.

 \bullet A rational polytope P is integer $\Leftrightarrow \forall c \in \mathbb{Z}^n$, max $\{c^{\mathsf{T}} x \mid x \in P\}$ is integer.

A 2-dimensional example

(F) max z = 2x¹ + x² x¹ − 4x² ≤ 0 3x¹ + 4x² ≤ 15 x¹ ≥ 0 x² ≥ 0 ^x1, ^x² [∈] IN ⁴

z optimal integer value : 7

 \tilde{x}_{opt} optimal fractional solution of linear relaxation (F) z_{opt}^* optimal fractional value : $8 + \frac{7}{16}$ Note that \tilde{x}_{opt} is the (only) optimal extreme point of \tilde{F} .

A 2-dimensional example

Remark : the integer solutions of (\tilde{F}) are the solutions of (F) .

$$
(F)
$$
\n
$$
\begin{cases}\n\max z = 2x_1 + x_2 \\
x_1 - 4x_2 \le 0 \\
3x_1 + 4x_2 \le 15 \\
x_1 \ge 0 \\
x_2 \ge 0 \\
x_1, x_2 \in \mathbb{N}\n\end{cases}
$$

A 2-dimensional example

Remark : the integer solutions of (\tilde{F}) are the solutions of (F) .

A 2-dimensional example

Remark : the integer solutions of (\tilde{F}) are the solutions of (F) .

Let's take an elastic and wrap it around these integer points...

A 2-dimensional example

Remark: the integer solutions of (\tilde{F}) are the solutions of (F) .

Let's take an elastic and wrap it around these integer points...

We obtain a **new polytope!** (the convex hull of the integer points)

A 2-dimensional example

Remark : the integer solutions of (\tilde{F}) are the solutions of (F) .

Let's take an elastic and wrap it around these integer points...

We obtain a **new polytope!** (the convex hull of the integer points) And this polytope is **integer** by construction.

Convex hull

Given a set S of points of R^n . the **convex hull** of S, denoted by $conv(S)$ is the smallest convex set containing S.

Theorem (of Minkowski)

A set $P \subseteq R^n$ is a polytope if and only if there exists a set S of points such that $P = conv(S)$.

Convex hull

```
Given a set S of points of R^n.
the convex hull of S, denoted by conv(S)is the smallest convex set containing S.
```
Theorem (of Minkowski)

A set $P \subseteq R^n$ is a polytope if and only if there exists a set S of points such that $P = conv(S)$.

Consequently :

- conv(S) is a polytope
- In there exists a finite subset of inequalities $Dx \leq \beta$ such that

$$
conv(S) = \{x \in \mathbb{R}^n \mid Dx \leq \beta\}
$$

IF max $\{c\chi \mid \chi \in conv(S)\}\$ is a linear program

Combinatorial polytope

- Let P be a combinatorial optimization problem :
- over n decisions corresponding to n integer variables.
- with a function cost c.

Let S the set of the incidence vectors of the solutions of P .

Problem P is

max $\{c_X \mid \chi \in S\}$

Let us consider the **linear program**

max $\{c\chi \mid \chi \in conv(S)\}\$

A 3-dimensional example

Let us consider the AISP on a triangle

The solutions are

 \emptyset {1} {2} {3} {1, 2} {1, 3} {2, 3}

And their incidence vectors are the following points

A 3-dimensional example

Let us consider the AISP on a triangle

The solutions are

 \emptyset {1} {2} {3} {1, 2} {1, 3} {2, 3}

And their incidence vectors are the following points

$$
\begin{array}{rcl}\n\chi^{\emptyset} = & \left[\begin{array}{ccc} 0 & 0 & 0 \end{array} \right] \\
\chi^{\{1\}} = & \left[\begin{array}{ccc} 1 & 0 & 0 \end{array} \right] \\
\chi^{\{2\}} = & \left[\begin{array}{ccc} 0 & 1 & 0 \end{array} \right] \\
\chi^{\{3\}} = & \left[\begin{array}{ccc} 0 & 0 & 1 \end{array} \right] \\
\chi^{\{1,2\}} = & \left[\begin{array}{ccc} 1 & 1 & 0 \end{array} \right] \\
\chi^{\{1,3\}} = & \left[\begin{array}{ccc} 1 & 0 & 1 \end{array} \right] \\
\chi^{\{2,3\}} = & \left[\begin{array}{ccc} 0 & 1 & 1 \end{array} \right]\n\end{array}
$$

A 3-dimensional example

Let us consider the AISP on a triangle

The solutions are

 \emptyset {1} {2} {3} {1, 2} {1, 3} {2, 3}

And their incidence vectors are the following points

$$
\chi^{\emptyset} = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}
$$
 However point
\n
$$
\chi^{\{2\}} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}
$$

$$
\chi^{\{1,2,3\}} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}
$$
 does not correspond to a solution
\n
$$
\chi^{\{1,3\}} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}
$$
 does not correspond to a solution

A 3-dimensional example

A 3-dimensional example

A 3-dimensional example

A 3-dimensional example

Combinatorial polytope

Let P be a combinatorial optimization problem :

- over n decisions corresponding to n integer variables.
- with a function cost c.

Let S the set of the incidence vectors of the solutions of P .

Problem P is

```
max \{c\chi \mid \chi \in S\}
```
Theorem

The linear program

```
max \{c_X | X \in conv(S)\}\
```
is equivalent to problem P

Combinatorial polytope

Let P be a combinatorial optimization problem :

- over n decisions corresponding to n integer variables.
- with a function cost c.

Let S the set of the incidence vectors of the solutions of P .

Problem P is

```
max \{c_X \mid \chi \in S\}
```
Theorem

The linear program

```
max \{c_X | X \in conv(S) \}
```
is equivalent to problem P

Indeed

- Every extreme points of the convex hull $conv(S)$ are integer by construction.
- The optimal points of S are among the extreme points of polytope $conv(S)$.

Get around the combinatorial explosion

Optimizing (P) reduces to optimizing a linear program on $conv(S)$.

The convex hull is then the "unknown value" to found.

Get around the combinatorial explosion

Optimizing (P) reduces to optimizing a linear program on $conv(S)$.

The convex hull is then the "unknown value" to found.

Get around the combinatorial explosion

Optimizing (P) reduces to optimizing a linear program on $conv(S)$.

The convex hull is then the "unknown value" to found.

Unfortunately we cannot use this process in polynomial time... Unless $P=NP$, finding the convex hull of a combinatorial polytope is NP-hard !

But even a "partial" knowledge of polytope $conv(S)$ is very useful

1. [Introduction and definition](#page-1-0)

- 2. [Dimension and facet](#page-29-0)
- 3. [Characterization](#page-44-0)

Example : The acyclic induced subgraph polytope Given a directed graph $G = (V, A)$, $acycl(G)$: family of all node subsets inducing an acyclic subgraph of G.

Then $accel(G)$ is the solutions set of the AISP on G (whatever will be the costs)

Example : The acyclic induced subgraph polytope Given a directed graph $G = (V, A)$, $acycl(G)$: family of all node subsets inducing an acyclic subgraph of G.

Then $accel(G)$ is the solutions set of the AISP on G (whatever will be the costs)

Given a solution $W \in acycl(G)$, the incidence vector χ^W is

$$
\chi^W[i] = \left\{ \begin{array}{cl} 1 & \text{ if } i \in W \\ 0 & \text{ otherwise } \end{array} \right.
$$

Some solutions :

.

• Pour $\emptyset \in acycl(G)$

 $\chi^\emptyset =$ [0 0 0 0 0]

• $\{i\} \in \mathsf{acycl}(G) \ \forall i \in V$

$$
\chi^{\{i\}} = [0 \ 0 \ 1 \ 0 \ 0]
$$

Example : The acyclic induced subgraph polytope Given a directed graph $G = (V, A)$, $acycl(G)$: family of all node subsets inducing an acyclic subgraph of G.

Then $accel(G)$ is the solutions set of the AISP on G (whatever will be the costs)

Given a solution $W \in acycl(G)$, the incidence vector χ^W is

 $\chi^{W}[i] = \begin{cases} 1 & \text{if } i \in W \\ 0 & \text{otherwise} \end{cases}$ 0 otherwise

Some solutions :

.

• Pour $\emptyset \in acycl(G)$

 $\chi^\emptyset =$ [0 0 0 0 0]

• $\{i\} \in \mathsf{acycl}(G) \ \forall i \in V$

$$
\chi^{\{i\}} = [0 \ 0 \ 1 \ 0 \ 0]
$$

 $P(G)$: the acyclic induced subgraph polytope of G i.e. is the convex hull of the incidence vectors of the solutions i.e. $P(G) = conv\{\chi^W \mid W \in acycl(G)\}.$

Dimension

A combinatorial polytope P of n variables is in $R^n...$ Can P be included into a smaller space ?

Dimension

A combinatorial polytope P of n variables is in $R^n...$ Can P be included into a smaller space ?

Definition

 \bullet A set of points $x^1,...,x^k \in I\!\!R^n$ are affinely independent if vectors $x^2-x^1,...,x^k-x^1$ are linearly independent.

• A polytope P in R^n is of dimension d (denoted $dim(P) = d$) if P contains at least $d + 1$ affinely independent points.

A polytope P is said to be full dimensional if $dim(P) = n$.

Dimension

A combinatorial polytope P of n variables is in $R^n...$ Can P be included into a smaller space ?

Definition

 \bullet A set of points $x^1,...,x^k \in I\!\!R^n$ are affinely independent if vectors $x^2-x^1,...,x^k-x^1$ are linearly independent.

• A polytope P in R^n is of dimension d (denoted $dim(P) = d$) if P contains at least $d + 1$ affinely independent points.

A polytope P is said to be full dimensional if $dim(P) = n$.

Examples :

- a plane in 3D-space is not full dimensional.
- an hypercube $[0,1]^n$ is full dimensional in \boldsymbol{R}^n but not in $\boldsymbol{R}^{n'}$ if $n' < n$

Example : The acyclic induced subgraph polytope

Lemma

The AIS polytope $P(G)$ is full-dimensional for every graph G .

Proof

It is sufficient to produce $n + 1$ affinely independent points of $P(G)$.

For instance, the incidence vectors of

- the empty set ∅
- the singletons $\{i\}$ $\forall i \in V$.

Moreover, the vectors $\chi^{\{u\}}-\chi^{\emptyset}$ are linearly independent since they form the identity matrix.

 \Box

"Degree of freedom"

Let us assume that the characterization of a polytope $P \subseteq I\!\!R^n$ is given by

$$
P = \left\{ x \in \mathbb{R}^n \mid \begin{array}{ll} A_i x \leq b_i, & i = 1, ..., m_1 \\ B_j x = d_j, & j = 1, ..., m_2 \end{array} \right\}.
$$

where every inequality $A_i{\sf x}\leq b_i$ is a "true" inequality, *i.e.* there exists $\tilde{x} \in P$ such that $A_i \tilde{x} < b_i$.

Theorem

If $P \neq \emptyset$, then dim(P) = n – rang(B).

"Degree of freedom"

Let us assume that the characterization of a polytope $P \subseteq I\!\!R^n$ is given by

$$
P = \left\{ x \in \mathbb{R}^n \mid \begin{array}{ll} A_i x \leq b_i, & i = 1, ..., m_1 \\ B_j x = d_j, & j = 1, ..., m_2 \end{array} \right\}.
$$

where every inequality $A_i{\sf x}\leq b_i$ is a "true" inequality, *i.e.* there exists $\tilde{x} \in P$ such that $A_i \tilde{x} < b_i$.

Theorem

If $P \neq \emptyset$, then dim(P) = n – rang(B).

 $dim(P)$ gives the "degree of freedom" of a problem : $n - dim(P)$ variables can be obtained by fixing the $dim(P)$ others

Redundant inequality

Definition

Let P a polytope characterized by a system $Ax \leq b$.

```
An inequality ax \leq alpha of Ax \leq b is redundant
if the system "Ax < b minus ax < \alpha" still characterizes P.
```
A non-redundant inequality is then essential.

What are the essential inequalities ?

Facet of a polytope

Let $ax < \alpha$ is a valid inequality for the problem corresponding to a polytope P.

Definition

• The face of $ax \leq \alpha$ is the set of points of P satisfying $ax \leq \alpha$ to equality,

i.e.
$$
F = \{x \in P \mid ax = \alpha\}
$$

• A face F is a facet of P
if
$$
\emptyset \neq F \neq P
$$
 and $dim(F) = dim(P) - 1$.

Theorem

- If $P \neq \emptyset$, then a non-facet inequality of P is redundant.
- Every facet of P corresponds to one inequality of a characterization of P.

Trivial facet of the AIS polytope $P(G)$

Given a node $i_0 \in V$, the trivial inequality

$$
x_{i_0}\geq 0
$$

defines a facet of $P(G)$.

The corresponding face is $\mathsf{F}_{i_0} = \{ \chi^W \in \mathbf{R}^n \mid W \in \mathit{acycl}(\mathsf{G}) \text{ and } \chi^W[i_0] = 0 \}.$

•
$$
\chi^{\emptyset} \in F_{i_0} \text{ then } F_{i_0} \neq \emptyset
$$

 $\bullet \; \chi^{\{i_0\}} \notin F_{i_0}$ then $F_{i_0} \neq P(G)$

 \bullet The vectors χ^\emptyset and $\chi^{\{i\}},\ i\neq i_0,$ are n affinely independent points of F_{i_0} then $dim(F_{i_0}) = n-1$ Hence $x_{i_0} \geq 0$ is a facet of $P(G)$.

Clique inequality of the AIS polytope

Given a clique K of G , the clique inequality is

$$
\sum_{i\in\mathsf{K}}x_i\leq 1
$$

If there exists K' a clique of G such that $K \subset K'$ Then

$$
\sum_{i \in K'} x_i \leq 1
$$

-x_i $\leq 0 \quad \forall i \in K' \setminus K$

$$
\sum_{i\in K}x_i \leq 1
$$

Thus the clique inequality associated to K is redundant and not-facet defining.

Clique inequality of the AIS polytope

Lemma

A clique inequality on K defines a facet if and only if K is inclusion-wise maximal.

The consequence of this theorem is that maximal cliques are "better inequalities" to add to strenghen a cutting plane algorithm.

Indeed facet defining inequalities are called "the deepest cuts" !

In practice, the heuristic method we present for clique inequalities always produce maximal cliques.

- 1. [Introduction and definition](#page-1-0)
- 2. [Dimension and facet](#page-29-0)
- 3. [Characterization](#page-44-0)

For some polynomial combinatorial problem P and its associated combinatorial polytope P.

Some methods to show that a system $Ax \leq b$ characterizes P

i.e.
$$
P = \{x \in R^n \mid Ax \leq b\}
$$

For some polynomial combinatorial problem P and its associated combinatorial polytope P.

Some methods to show that a system $Ax \leq b$ characterizes P

i.e. $P = \{x \in R^n \mid Ax \leq b\}$

 \triangleright to show that there is no fractional extreme point

For some polynomial combinatorial problem P and its associated combinatorial polytope P.

Some methods to show that a system $Ax \leq b$ characterizes P

- \triangleright to show that there is no fractional extreme point
- \triangleright to show that A is a totally unimodular matrix

For some polynomial combinatorial problem P and its associated combinatorial polytope P.

Some methods to show that a system $Ax \leq b$ characterizes P

- \triangleright to show that there is no fractional extreme point
- \triangleright to show that A is a totally unimodular matrix
- is to show that the primal/dual system $Ax \leq b$ is total dual integral

For some polynomial combinatorial problem P and its associated combinatorial polytope P.

Some methods to show that a system $Ax \leq b$ characterizes P

- \triangleright to show that there is no fractional extreme point
- \triangleright to show that A is a totally unimodular matrix
- ighthrow that the primal/dual system $Ax \leq b$ is total dual integral
- ight to show that every facet of P corresponds to at least one inequality among $Ax < b$

For some polynomial combinatorial problem P and its associated combinatorial polytope P.

Some methods to show that a system $Ax \leq b$ characterizes P

- \triangleright to show that there is no fractional extreme point
- \triangleright to show that A is a totally unimodular matrix
- ighthrow that the primal/dual system $Ax \leq b$ is total dual integral
- ight to show that every facet of P corresponds to at least one inequality among $Ax < b$
- \blacktriangleright ... and many others (polyhedral decomposition, extended formulation+projection, critical extreme point study,...)

Bipartite matching problem

Let $G = (V_1 \cup V_2, E)$ be a bipartite (undirected) graph Let $c \in \mathbb{R}^m$ a cost associated to the edges of E.

A matching of G is a set of pairwise disjoint edges. The matching problem on bipartite graph G is to find a matching of maximal cost.

Theorem

The following linear program is integer and is equiv. to the bipartite matching problem.

$$
\begin{aligned}\n\max & \sum_{e \in E} c(e) \times (e) \\
& \sum_{e \in \delta(u)} \times (e) \le 1 \quad \forall u \in V_1 \\
& \sum_{e \in \delta(u)} \times (e) \le 1 \quad \forall u \in V_2 \\
& \times (e) \ge 0 \quad \forall e \in E.\n\end{aligned}
$$

(The matrix is totally unimodular)

The matching problem

Let $G = (V, E)$ be an undirected graph.

The previous formulation on G is not integer!

The matching problem

Let $G = (V, E)$ be an undirected graph.

The previous formulation on G is not integer!

The matching polytope is the convex hull of the incidence vectors of the matchings i.e.

 $P_M(G) = conv\{\chi^M \in \mathbb{R}^n \mid M \text{ matching of } G\}.$

Theorem (Jack Edmonds (1965))

The matching polytope is characterized by

$$
\sum_{e \in \delta(u)} x(e) \le 1 \qquad \forall v \in V
$$

$$
\sum_{e \in E(S)} x(e) \le \frac{|S| - 1}{2} \quad \forall S \subseteq V \text{ with } |S| \text{ odd}
$$

$$
x(e) \ge 0 \qquad \forall e \in E.
$$