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Université Sorbonne Paris Nord - LIPN CNRS

Hanoi, Vietnam, 2024



Solving CO problems using MP - Section 1 : Compact Mixed Integer Linear programs (MILP)

1. Linear Programming

2. List of MIP formulations

3. Compact formulation tricks

2/58



Solving CO problems using MP - Section 1 : Compact Mixed Integer Linear programs (MILP)

Linear Programming

1. Linear Programming
1.1 (Continuous) Linear Programming
1.2 Integer Linear Programming
1.3 Branch&Bound
1.4 Exact or provably good solutions

2. List of MIP formulations

3. Compact formulation tricks

3/58



Solving CO problems using MP - Section 1 : Compact Mixed Integer Linear programs (MILP)

Linear Programming

(Continuous) Linear Programming

1. Linear Programming
1.1 (Continuous) Linear Programming
1.2 Integer Linear Programming
1.3 Branch&Bound
1.4 Exact or provably good solutions

2. List of MIP formulations

3. Compact formulation tricks

4/58



Solving CO problems using MP - Section 1 : Compact Mixed Integer Linear programs (MILP)

Linear Programming

(Continuous) Linear Programming

A first example from a College book

A yoghurt manufacturer produces 2
types A and B of strawberry yoghurt
from strawberries, milk and sugar.
Each yoghurt must comply with the fol-
lowing proportions of raw materials.

A B
Strawberry 2 1

Milk 1 2
Sugar 0 1

Raw materials in limited quantities :
Strawberry : 800kg, Milk : 700kg
Sugar : 300kg.

The profit from the yogurt sales :
A : 4=C /kg et B : 5=C /kg

Modélisons

xA quantity in kg of type A to be
produced
xB quantity in kg of type B to be
produced

Min 4xA + 5xb

2
3
xA + 1

4
xB ≤ 800

1
3
xA + 1

2
xB ≤ 700

1
4
xB ≤ 300

xA ≥ 0
xB ≥ 0

Its a (continuous) Linear Program
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Linear Programming

(Continuous) Linear Programming

(Continuous) Linear Programming

Linear program :
Optimizing a linear function
with respect to
linear inequalities.

Min 4xA + 5xb

2
3
xA + 1

4
xB ≤ 800

1
3
xA + 1

2
xB ≤ 700

1
4
xB ≤ 300

xA ≥ 0
xB ≥ 0

It’s a continuous linear pro-
gram...

But, we can also see it
as a Combinatorial Optimization
problem !
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Linear Programming

(Continuous) Linear Programming

Graphical representation

A linear program with 2 variables
can be embedded on a 2-dimensional space.

Max z = 2x1 + x2

x1 − 4x2 ≤ 0

3x1 + 4x2 ≤ 15

x1 ≥ 0

x2 ≥ 0
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can be embedded on a 2-dimensional space.

Max z = 2x1 + x2

x1 − 4x2 ≤ 0

3x1 + 4x2 ≤ 15

x1 ≥ 0

x2 ≥ 0

Optimal solution
x1 = 15
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Linear Programming

(Continuous) Linear Programming

A combinatorial optimization problem ?

A linear program describes
a set of solutions which is a
polyhedron.

For 2 variables,
a polygon.

for 3 variables,
a “3D” mathematical figure.

For n variables...
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Linear Programming

(Continuous) Linear Programming

A combinatorial optimization problem ?

The optimal solution
of a (continous) linera pro-
gramm
can be chosen
among the extrem points
(i.e. the intersection
of n facets of the polyhedron.

For 2 variables,
intersection of 2 straight lines

For 3 variables,
intersection of 3 facets
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Linear Programming

(Continuous) Linear Programming

A combinatorial optimization problem ?

The optimal solution
of a (continous) linera pro-
gramm
can be chosen
among the extrem points
(i.e. the intersection
of n facets of the polyhedron.

For a linear program
of n variables
and m linear inéqualities
and n inequalities xi ≥ 0

How many potential optimal
solutions ?

A most as many as the
way to take
n inequalities among n + m :

Cn+m
n =

(n + m)!

n!m!

It’s an exponential number of
solutions !

Its a combinatorial Opti-
mization problem !
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Linear Programming

(Continuous) Linear Programming

Simplex algorithm (G. Dantzig (1947)

The main ideas are

- to represent each extrem points
trought very simple algebraic
notations

- to start from a known exrem
points and go to another
following the edges of the
polyhedron.

- at each step the next solution is
better than or equal the previous
one

- each iteration takes a few
millisecond even for huge LP

- a linear time optimality test says
whether the optimal solution is
reached.
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Linear Programming

(Continuous) Linear Programming

Simplex algorithm (G. Dantzig (1947)

I Ending of the simplex algorithm :
- With each iteration, the objective value increases (in the broadest sense).
- The number of iterations is bounded by the number of extruded points of the
polyhedron.

How many iterations they are in the worst case ?

Klee et Minty have exhibited this LP

Max
∑n

j=1 10n−jxj(
2
∑i−1

j=1 xj

)
+ xi ≤ 100i−1 ∀i ∈ {1, . . . , n}

xj ≥ 0 ∀j ∈ {1, . . . , n}

This LP corresponds to 2n − 1 extrem points that the Simplex algorithm explores one
after the other :
Ainsi The simplex algorithm is exponential from the worst-case analysis.
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Linear Programming

(Continuous) Linear Programming

“In practice”

Even if the Simplex Algorithm has an exponential capacity in a worst case,
Worst case appears very very rarely “in pratice”
with a very few iterations each times !

But what is the signification of “in pratice” :

- LP coming from real optimizatipn probems

- with rationnal coefficient

- these coefficients have values far one from the other.

- ...

It is difficult to describe this “in pratice”, but it’s the reality of the daily use of
Simplex algorithm. Perhaps that worst case LP have a rare combinatotial structure
far from the “practice”...
And somehow this famous behavoir of Simplex Algorithm let think that perhaps the
question (P? = NP) is not so important “in practice” !
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Solving CO problems using MP - Section 1 : Compact Mixed Integer Linear programs (MILP)

Linear Programming

(Continuous) Linear Programming

(Continuous) linear programming complexity
The Simplex algortihm is not the only one to solve Linear Programs : the complexity
of Linear programming is the complexity of the best algorithm to solve any LP.

1970 Into the 1870’s the question of solvinf LP was officialy asked and the Simplex
Algorithm in 1947 have not answer the question with its exponential complexity
shown by Klee et Minty in 1970.

1979 Leonid Khatchian inspired by the ellipsoid metho known in another context
proposes a first polynomal algorithm for LP !
(Continuous) Linear Programming is then polynomial !
But the polynom degree of the complexity of ellipsoid methdeis rather high and
so useless !

1984 Narendra Karmarkar proposes the interior point method which is polynomial
and (now) efficient !

2000 Francisco Barahona and Anbil propose the Volume algorithm, polynomial and
with good structural properties

2022 Sophie Huiberts and Daniel Dadush show that random modifications over the LP
data will make transform many worst cases into simple ones without changing
the solving solution... then the question is : is there is exponential cases left ?
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Linear Programming

(Continuous) Linear Programming

Interior point method

As its name indicates, the algorithm
moves inside the polyhedron in the
direction orthogonal to the objective
vector.

The difficulty is not to go outside
the polyhedron !

Even if it is theoretically polyno-
mial unlike the simplex algorithm which
is theoretically of exponential worst-case
complexity,
the interior points method is slower on
small instances
(but faster if more than 200,000
inequalities).

(Source : Wikipedia)
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Linear Programming

(Continuous) Linear Programming

(Continous) linear solver

The
- polynomial interior point method
- (officially exponential but efficient) simplex algorithm.
have been implemented in numerous softwares called linear solvers.

- the historical commercial solver is Cplex (IBM) but a similar code exists in the
powerful Gurobi

- there are other solvers like Xpress (and even Matlab or Excel !)

- solver from university LP (COIN-OR), Soplex (ZIB) inside the SCIP project,
HIGHS from Scotland, Hexaly (ex-LocalSolver)...

- one totally free solver : GLPK(gnu)

The best of them can solve PLs up to 200 000 variables and 200 000 constraints in a
few minutes.

Note that they have easy-to-access interface : text file, “simple or advanced
modelers”, languages (C, C++, Python, Julia...).
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Integer linear program (MIP)

Max cT1 x1 + cT2 x2

s.t.
A1x1 + A2x2 ≤ b
x1 ∈ IRn1

x2 ∈ ZZn2 .

with x1 continuous
et x2 integer

Constraints x2 ∈ ZZn2 are called integrity constraints.

18/58



Solving CO problems using MP - Section 1 : Compact Mixed Integer Linear programs (MILP)
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Integer Linear Programming

The first observation that can jump out at you is to imagine that MIP solving
amounts to “rounding” the solution of its continuous relaxation. The following
example demonstrates the inadequacy of this observation :

Let us consider this very simple MIP

Maximiser 10x1 + 11x2

10x1 + 12x2 ≤ 59
x1 et x2 ≥ 0
x1, x2 entiers.

and draw the corresponding polyhedron :

5

4

3

2

1

0 1 2 3 4 5 6

x2

x1

Optimum continu = (5.9, 0)

Optimum entier = (1, 4)

10x1 + 12x2 = 59
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5

4

3

2

1

0 1 2 3 4 5 6

x2

x1

Optimum continu = (5.9, 0)

Optimum entier = (1, 4)

10x1 + 12x2 = 59

We then notice that

- the optimum of the continuous relaxation has an objective value of 59 and that
of the entire optimum is only 54.. and imagine that the unit is about bilion
dollars !

- the important structural difference between these two points (which are here
each a unique optimal solution of the LP and the MIP).
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Complexity of Integer Linear Programming

It is easy to formulate the knapsack problem as a MIP

Knapsack MIP

Max
n∑

i=1

wixi

n∑
i=1

pixi ≤ P,

0 ≤ xi ≤ 1, for each item i = 1, ..., n,

xi ∈ IN, for each item i = 1, ..., n.
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Hence solving a MIP is at least hard as solving a weakly NP-hard problem
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Complexity of Integer Linear Programming

It is also direct to formulate the stable set problem as a MIP

Stable set MIP

Max
∑
u∈V

c(u)x(u)

x(u) + x(v) ≤ 1, for each edge uv ,

0 ≤ x(u) ≤ 1 for each node u,

x(u) ∈ {0, 1}, for each node u.
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Linear Programming

Integer Linear Programming

Programmation linéaire en nombres entiers

Then all the known methods to exactly solved a MIP are exponential.
They are based on the principle of Branch&Bound, using mathematical tools to better
prune unsuccessful branches (polyhedral approaches, Branch&Cut algorithms, strong
branching...).

These methods are gathed into Integer Solvers that have became more and more
powerful during 30 years... but are sometimes limited to a few thousand variables for
hard problems !

- The famous commercial solver Cplex have now lower performance than the
Gurobi (and Xpress is really under these two). A new one : Hexali is performing
well

- The university project like SCIP or HIGHS are much less efficicent

The strength of the project between these solvers is to be closed to research and new
ideas !
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1. Linear Programming
1.1 (Continuous) Linear Programming
1.2 Integer Linear Programming
1.3 Branch&Bound
1.4 Exact or provably good solutions

2. List of MIP formulations

3. Compact formulation tricks
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Linear Programming

Branch&Bound

A Branch&Bound algorithm is defined by :
- an integer linear program
- a branching strategy (potentially on inequalities)
→ B&B node = initial integer program + branching inequalities

23,1

19,7 20,2

18,6

18,0 18,7 18,2 18,1 18.4

18,7 19,6 19

x3 = 1x3 = 0

x6 = 1x6 = 1x7 = 1x7 = 0 x3 = 0

x6 = 1 x2 = 0 x2 = 1x6 = 0

v = linear relaxation of a B&B node
For a “max” problem, v is is an upper bound for the sub-tree

(each node only contains solutions of values at most v).
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Linear Programming

Branch&Bound

During the B&B algorithm, a best known solution can be
obtained using heuristic, metaheuristic, rounding heurisitic,...

A sub-tree can be pruned if either

• the relaxation value of its root node

is ≤ than the value of the best known solution.

• its root node is integer (its relaxation gives an integer solution)

23,1

19,7 20,2

18,6

18,0 18,7 18,2 18,1 18.4

18,7 19,6 19

x3 = 1x3 = 0

x6 = 1x6 = 1x7 = 1x7 = 0 x3 = 0

x6 = 1 x2 = 0 x2 = 1x6 = 0

25/58



Solving CO problems using MP - Section 1 : Compact Mixed Integer Linear programs (MILP)

Linear Programming

Branch&Bound

During the B&B algorithm, a best known solution can be
obtained using heuristic, metaheuristic, rounding heurisitic,...

A sub-tree can be pruned if either

• the relaxation value of its root node

is ≤ than the value of the best known solution.

• its root node is integer (its relaxation gives an integer solution)

23,1

19,7 20,2

18,6

18,0 18,7 18,2 18,1 18.4

18,7 19,6 19

x3 = 1x3 = 0

x6 = 1x6 = 1x7 = 1x7 = 0 x3 = 0

x6 = 1 x2 = 0 x2 = 1x6 = 0

25/58



Solving CO problems using MP - Section 1 : Compact Mixed Integer Linear programs (MILP)

Linear Programming

Branch&Bound

Efficiency of a B&B algorithm

Several aspects drive to an efficient B&B algorithm :

• Initial preprocessing step

• Breaking symmetries within the B&B tree

• Having the lowest possible upper bound

• Having the highest possible lower bound

• Having a lot of integer nodes
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Several aspects drive to an efficient B&B algorithm :

• Initial preprocessing step

• Breaking symmetries within the B&B tree

• Having the lowest possible upper bound

→ Having the best possible relaxation value

• Having the highest possible lower bound

→ Having a good rounding heuristic

• Having a lot of integer nodes

→ If the relaxed linear programs have “often” integer solutions
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Linear Programming

Exact or provably good solutions

Primal heuristic

• A primal heuristic (often called rounding heuristic)
is to use a fractional relaxation value to produce a solution of the integer formulation.

For instance for the knapsack, a very simple greedy algorithm :

Given a linear relaxation value x∗ :

- sort the items with respect to decreasing values x∗i
- S ← ∅
- iteratively add a item into S while the total is not reached

• In practice :
Use a very quick primal heuristic at every iteration of every cutting plane based
algorithm of every node of the branching tree !

→ Among all the solutions produced by this algorithm,
there is often an optimal solution !
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Linear Programming

Exact or provably good solutions

Experimental guarantee

zopt Optimal solution of the integer formulation

zH0
meta-heuristic launched before B&C algorithm

zbs0
upper bound from linear relaxation at the root node

zbestsol best known solution (by primal heuristic)

zbsg best known upper bound (when the B&C is stopped)

zopt zbs0zH0 zbestsol zbsg
z

Max

gap

where gap =
zbsg − zbestsol

zbestsol
.

In the worst case, zbestsol will be at gap% from the optimum.
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1. Linear Programming

2. List of MIP formulations
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2.2 Stable set
2.3 Traveling salesman problem (TSP)

3. Compact formulation tricks

30/58



Solving CO problems using MP - Section 1 : Compact Mixed Integer Linear programs (MILP)

List of MIP formulations

Combinatorial Optimization Problem

To find a greatest (smallest) element within a valuated finite set.

Given :
- a finite subset of elements E = {e1, . . . , en}
- a solution set F of subsets of E
- a weight c = (c(e1), . . . , c(en))

a Combinatorial Optimization Problem is to find a solution

F ∈ F whose weight c(F ) =
∑
e∈F

c(e) is maximum (or min.),

i.e. max {c(F ) | F ∈ F}.

31/58



Solving CO problems using MP - Section 1 : Compact Mixed Integer Linear programs (MILP)

List of MIP formulations

Combinatorial Optimization Problem

To find a greatest (smallest) element within a valuated finite set.

Given :
- a finite subset of elements E = {e1, . . . , en}
- a solution set F of subsets of E
- a weight c = (c(e1), . . . , c(en))

a Combinatorial Optimization Problem is to find a solution

F ∈ F whose weight c(F ) =
∑
e∈F

c(e) is maximum (or min.),

i.e. max {c(F ) | F ∈ F}.

31/58



Solving CO problems using MP - Section 1 : Compact Mixed Integer Linear programs (MILP)

List of MIP formulations

“Naive” algebraic formulation algébrique

Associate a binary variable to every solution :
tF = 1 if the solution F ∈ F is choosen et 0 otherwise

Max
∑
F∈F

c(F )tF∑
F∈F

tF ≤ 1

tF ∈ {0, 1} ∀F ∈ F .

This formulation proves that any Combinatorial Optimization problem can be written
as a MIP !

But it’s not so obvious we can solve such a formulation with the number of variables
equal to the number of solutions ! !
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List of MIP formulations

“Natural” MIP formulation

It’s quite “natural” to set a variable for each element.

Binary variable xe =

{
1 if e is chosen
0 otherwise

for every e ∈ E .

max
∑
e∈E

c(e)xe

Ax ≤ b

xe ∈ {0, 1} ∀e ∈ E .

BUT : To have such a formulation, Ax ≤ b must be known ! !
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List of MIP formulations

Compact /non-compact MIP formulation

• An inequality set Ax ≤ b can be compact,
i.e. contain a polynomial number of inequalities and variables !

In this case, we can enumerate the inequalities and gives them to
an integer solver.

• An inequality set Ax ≤ b can be non-compact,
i.e. having either an exponential number of variables or inequalities
(or both !).

In this case, we need to study how to do solve such formulations !
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List of MIP formulations

Knapsack

0/1-Knapsack problem

Input : n objects
profit gi ∀i ∈ {1, . . . , n}
weight pi ∀i ∈ {1, . . . , n}
maximum total weight P.

Output : Subset S ⊆ {1, . . . , n}
s.t.

∑
i∈S

pi ≤ P

Objective : Max
∑
i∈S

wi
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List of MIP formulations

Knapsack

Knapsack problem

Very direct compact formulation !

xi =

{
1 if item i is chosen
0 otherwise

Max
n∑

i=1

wixi

n∑
i=1

pixi ≤ P

0 ≤ xi ≤ 1 ∀i ∈ {1, . . . , n}
xi ∈ IN ∀i ∈ {1, . . . , n}

The single constraint is called the knapsack constraint.
This is the single constraint of a problem which is NP-hard, though !
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List of MIP formulations

Stable set

Maximum weight stable set problem

Input : Undirected graph G = (V ,E)
cost wu ∀u ∈ V

Output : Subset S ⊆ V of non-adjacent nodes

Objective : Max
∑
i∈S

wi

v1

v5

v3v2

v4
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List of MIP formulations

Stable set

Compact formulation for the stable set problem

xu =

{
1 if node u is chosen
0 otherwise

Max
∑
u∈V

c(u)x(u)

x(u) + x(v) ≤ 1, ∀uv ∈ E ,

x(u) ∈ {0, 1}, ∀u ∈ V .

Inequality x(u) + x(v) ≤ 1 is called edge inequality.

Compact formulation with |V | variables and |E | edges.

But this MIP formulation is hard to be solved by a (pure) Branch&Bound
as its relaxation value is very low !

Indeed the fractional solution x̄u = 1
2
∀u ∈ V satisfies the constraints resulting a huge

upper bound of at least
1

2

∑
u∈V

x(u).
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List of MIP formulations

Stable set

Non-Compact formulation for the stable set problem
How to “reinforce” this MIP !

A clique is a node subset inducing a complet subgraph.

Lemma
A stable set contains at most 1 node of a clique.

Then the inequality ∑
u∈K

x(u) ≤ 1 for each clique K

is satisfied for every stable set !

The fractional point x̄u = 1
2
∀u ∈ V is cut by this inequality whenever G contains a

triangle !
This inequality will lower down the relaxation value, which will be better for pruning
into the B&B tree.
We say that this inequality reinforce the relaxation value of the formulation.
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List of MIP formulations

Stable set

Non-Compact formulation for the stable set problem

We then obtain an alternative formulation

Max
∑
u∈V

c(u)x(u)

∑
u∈K x(u) ≤ 1 for each clique K ,

x(u) ∈ {0, 1} ∀u ∈ V .

There are an exponential number of cliques in a graph !
then this clique formulation is non-compact...
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List of MIP formulations

Traveling salesman problem (TSP)

The Traveling Salesman Problem (TSP)

Input : Directed graph G = (V ,E)
lenght le ∀e ∈ E

Output : An hamiltonian circuit C of G (i.e. C goes once through each node)

Objective : Min
∑
e∈C

le

With a complete graph, it’s a set of points to join with a circuit.
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List of MIP formulations

Traveling salesman problem (TSP)

Natural variable formulation

xij =

{
1 if arc (i , j) is chosen
0 otherwise

Min
n∑

i=1

n∑
j=1,j 6=i

cijxij

∑
j∈V

xij = 1 ∀i ∈ V ,

∑
i∈V

xij = 1 ∀j ∈ V ,

xij ∈ IN ∀i ∈ V , j ∈ V \ {i}).

Note we can add inequality xij + xji ≤ 1.

But this is not a TSP
formulation !

It’s a formulation of the
problem “cover a graph
with circuits”.
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List of MIP formulations

Traveling salesman problem (TSP)

Formulation en variables naturelles

The relaxation of this MIP (which is not a TSP formulation) is “integer” as its extrem
points are all integer (the matrix is totally unimodular) : this “covering a graph with
circuit” problem is polynomial.

Unfortunately, since a solution of this MIP can be made up of several oriented cycles
(called textcolorbluesubtours)

We then need to add inequalities to break sub-tours.
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List of MIP formulations

Traveling salesman problem (TSP)

Breaking subtours by MTZ formulation

Miller-Tucker-Zemlin (MTZ) formulation
Adding real variables ui , i = 1, ..., n for each cities
Adding inequalities

u1 = 1,

2 ≤ ui ≤ n ∀i ∈ V \ {1},
ui − uj + 1 ≤ n(1− xij ) ∀i ∈ V \ {1}, j ∈ V \ {1, i}.

The latter inequalities are called MTZ inequalities.
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List of MIP formulations

Traveling salesman problem (TSP)

Breaking subtours by MTZ formulation
Lemma
MTZ inequalities break subtours.

Proof. Let us consider an optimal (integer) solution of the MTZ formulation which
then satisfies

ui − uj + 1 ≤ n(1− xij ) ∀(i , j) with j 6= 1

I For an (i , j) with xij = 0, the MTZ inequalities are

ui − uj ≤ n − 1

and are then always satisfied as since 1 ≤ ui ≤ n.
I For an arc (i , j) with xij = 1, the MTZ inequalities enforce

uj ≥ ui + 1

I Hence, let us suppose there is a subtour not containing node 1, then the MTZ
inequalities cannot be satisfied as variables ui will then increase indefinitely !.

I Then there is only one subtour, which then is an hamiltonian tour �

Note : When x is feasible, variables ui , i = 1, ..., n indicate the position number of city
i within the tour.
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List of MIP formulations

Traveling salesman problem (TSP)

Breaking subtours by MTZ formulation

The MTZ formulation is compact with additional n (continous) variables.

But, this is a Very Very bad formulation !

With a very low linear relaxation : the fractional solution xi = 1
n

is feasible and then

the relaxation value is at most

∑
e∈E le

n
which is very high.
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List of MIP formulations

Traveling salesman problem (TSP)

Breaking subtours with flow formulation

Aggregating flow formulation
Add real flow variables zij , for each arc (i , j), i ∈ V , j∈ V \ {1, i}.
Add the constraints :

∑
j∈V\{1}

z1j = |V | − 1

∑
j∈V\{1,i}

zij + 1 =
∑

j∈V\{i}
zji ∀i ∈ V \ {1},

zij ≤ (|V | − 1)xij ∀i ∈ V , j ∈ V \ {1, i}
zji ≤ (|V | − 1)xji ∀i ∈ V , j ∈ V \ {1, i}

zij ≥ 0 ∀i ∈ V , j ∈ V \ {1, i}.

Note that the flow variables zi. carry a flow of value |V | − 1 when it goes from node 1
and which is reduced by 1 unit at each node.
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List of MIP formulations

Traveling salesman problem (TSP)

Breaking subtours with flow formulation

Lemma
Aggregating flow inequalities break subtours.

Proof.Let us consider an optimal (integer) MIP solution.
Let us suppose the graph corresponding to the x variables contains a subtour C which
does not pass through node A. , which therefore contains at least 2 vertices. Note that
this subtous contains at least two nodes and at most |V | − 2 vertices. On leaving 1,
the flow xi. goes out from node 1 with value |V | − 1 and at each successive vertex of
C , the flow decreases by one. Then the flow must decrease indefinitely, which is
impossible. �
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List of MIP formulations

Traveling salesman problem (TSP)

Breaking subtours with flow formulation

The aggregating flow formulation contains n2 additional real variables, but it’s still
compact and can be solved directly by integer solver.

It’s relaxation value is much better than the MTZ formulation but with the numerous
additional variables and the “big M” constraints, it’s still hard to solve large instance
by B&B with it.
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List of MIP formulations

Traveling salesman problem (TSP)

Subtour breaking through connectivity

Theorem (Menger)

A directed graph is strongly connected if and only if every graph cut contains at least
one arc.

∑
e∈δ+(W )

x(e) ≥ 1,∀W ( V et W 6= ∅,

W
δ+(W ) = {(i , j) | i ∈W et j /∈W }
is the cut going out from W .
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List of MIP formulations

Traveling salesman problem (TSP)

Subtour breaking through connectivity

Formulation by Menger cuts
Add the inequalities ∑

e∈δ+(W )

x(e) ≥ 1,∀W ( V et W 6= ∅,

As there is 2n cuts in a graph, thee formulatuion is non-compact.
It contains an exponential number of inequalities !

However, this formulation have a real good relaxation value !
And it can be obtains through a Branch-and-Cut method than can be efficiently
implemented.
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List of MIP formulations

Traveling salesman problem (TSP)

Menger cut formulation for the symmetric TSP

This is the “star” TSP formulation

Min
∑
e∈E

c(e)x(e)

∑
e∈δ(v)

x(e) = 2 pour tout u ∈ V ,

∑
e∈δ(W )

x(e) ≥ 2 pour tout W ( V et W 6= ∅,

x(e) ∈ {0, 1} pour tout e ∈ E .

With other reinforcement inequalities inside the Branch&Cut Concorde software, this
formulation is the one which exactly solves TSP instances till 200 000 cities !
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Compact formulation tricks

1. Linear Programming

2. List of MIP formulations

3. Compact formulation tricks
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Compact formulation tricks

Some tricks to formulate some logical links between MIP variables.

• Some basic tricks

Let a ,b et c be some events corresponding to binary variables xa, xb et xc .

I If a et b cannot happen at the same time :

xa + xb ≤ 1.

I If at least one event among a and b have to happen : xa + xb ≥ 1.

I If a happens, then b must happen : xa ≤ xb.

I Note that this inequaly also formulate the contraposed of the logical proposal,
i.e. if b does not happel, then a must not happen.

I If a happen, then at least b and/or c must happen : xa ≤ xb + xc .
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Compact formulation tricks

• Link between binary and continuous variables

Let a an event corresponding to a binary variable xa and a continuous real quantity y .
If a does not happen , then a positive quantity y must be zero, otherwise y is free.
To do this : we must fix a quantity M such that y can never be greater than M when
the optimum of the problem is reached. Such a constant M exists, since otherwise the
problem would be unbounded.

y ≤ Mxa

Such an inequality is called a “big M” constraint.
Such constraints are often mandatory to formulate a problem. However they deeply
impact the problem with a bad numerical behavior. Indeed, during the B&B
exploeation tree exploration when 0 < xa < 1, then y can have an unrealistic value
(generally really low one) which produces a really unapropriate relaxation value.

• Le “ou” numérique

We want to represent a variable x which must take values either 0 or greater than L,
where L and x are bounded by a value M.
We need to add a binary variable y ∈ {0, 1} and use the constraints

x ≥ Ly et x ≤ My .
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Compact formulation tricks

• Multi-objective Min-Max regret

We want to maximize the minimal value of a set of linear values

Let a set of linear values a1x , a2x , a3x ..., amx
They can be several objective function correspondinf to different agents.

We need to add a continuous variable z and m inequalities

Max z
z ≤ a1x
z ≤ a2x
z ≤ a3x

...
z ≤ amx
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Solving CO problems using MP - Section 1 : Compact Mixed Integer Linear programs (MILP)

Compact formulation tricks

• Satisfy the most possible inequalities

Let a set of n constraints a1x ≤ b1, a2x ≤ b2, ..., anx ≤ bn be such that there no
solution satisfy all the inequalities.
We want a solution that satisfies as many constraints as possible.

For each of the constraints aix ≤ bi , i = 1, ..., n, we determine a value Mi large
enough for aix ≤ bi + Mi to be satisfied whatever x .

We add the binary variables y1, ..., yn so that yi = 0 if the inequality i is satisfied.

a1x ≤ b1 a1x ≤ b1 + M1y1

a2x ≤ b2 a2x ≤ b2 + M2y2

... ⇒ ...
anx ≤ bn anx ≤ bn + Mnyn

Min
∑n

i=1 yi
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Conclusion

To conclude

A combinatorial optimization problem has many formulations :
- compact
- with an exponential number of constraints
- with an exponential number of variables
- with an exponential number of variables and constraints !

How do you choose a good formulation ?
It depends on the algorithmic framework of resolution : there are no generic ”magic”
tools for all these formulations and all the problems...

How to obtain a better relaxation value ?
Add reinforcement inequalities !

How to solve a non-compact formulation ?
Use Branch&Cut method !

What are the powerfulest inequalities
Make a polyhedral study !
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- compact
- with an exponential number of constraints
- with an exponential number of variables
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How do you choose a good formulation ?
It depends on the algorithmic framework of resolution : there are no generic ”magic”
tools for all these formulations and all the problems...

How to obtain a better relaxation value ?
Add reinforcement inequalities !

How to solve a non-compact formulation ?
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