
Lecture

Solving combinatorial optimization problems
using mathematical programming

Section 0 : Introduction

Pierre Fouilhoux

Université Sorbonne Paris Nord - LIPN CNRS

Hanoi, Vietnam, 2024



Solving CO problems using MP - Section 0 : Introduction

1. Definition and complexity

2. List of OC problems

2/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

1. Definition and complexity
1.1 Two first problems
1.2 Combinatorial explosion
1.3 Problem complexity
1.4 NP-hard
1.5 Strongly or weakly NP-hard

2. List of OC problems

3/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

A Combinatorial Optimization Problem

is to

find a greatest (smallest) element
within a valuated finite set.

4/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

Combinatorial Optimization Problem

To find a greatest (smallest) element within a valuated finite set.

Given :
- a finite subset of elements E = {e1, . . . , en}
- a solution set F of subsets of E
- a weight c = (c(e1), . . . , c(en))

a Combinatorial Optimization Problem is to find a solution

F ∈ F whose weight c(F ) =
∑
e∈F

c(e) is maximum (or min.),

i.e. max {c(F ) | F ∈ F}.

5/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

Combinatorial Optimization Problem

To find a greatest (smallest) element within a valuated finite set.

Given :
- a finite subset of elements E = {e1, . . . , en}
- a solution set F of subsets of E
- a weight c = (c(e1), . . . , c(en))

a Combinatorial Optimization Problem is to find a solution

F ∈ F whose weight c(F ) =
∑
e∈F

c(e) is maximum (or min.),

i.e. max {c(F ) | F ∈ F}.

5/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

Two first problems

1. Definition and complexity
1.1 Two first problems
1.2 Combinatorial explosion
1.3 Problem complexity
1.4 NP-hard
1.5 Strongly or weakly NP-hard

2. List of OC problems

6/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

Two first problems

The knapsack problem

Which boxes to chose
to maximize the profit
without exceeding 15kg ?

7/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

Two first problems

Définition

Let us consider n objects.
Each object i ∈ {1, . . . , n}
- with a profit gi
- with a weight pi
to be put inside a knapsack of maximum total weight P.

Then we need to find a subset S ⊂ {1, . . . , n} such that

its weight
∑
i∈S

pi is non-greater than P (Knapsack Constraint)

its profit
∑
i∈S

gi is maximum. (Objective function)

8/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

Two first problems

Définition

Let us consider n objects.
Each object i ∈ {1, . . . , n}
- with a profit gi
- with a weight pi
to be put inside a knapsack of maximum total weight P.

Then we need to find a subset S ⊂ {1, . . . , n} such that

its weight
∑
i∈S

pi is non-greater than P (Knapsack Constraint)

its profit
∑
i∈S

gi is maximum. (Objective function)

8/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

Two first problems

Définition

Let us consider n objects.
Each object i ∈ {1, . . . , n}
- with a profit gi
- with a weight pi
to be put inside a knapsack of maximum total weight P.

Then we need to find a subset S ⊂ {1, . . . , n} such that

its weight
∑
i∈S

pi is non-greater than P (Knapsack Constraint)

its profit
∑
i∈S

gi is maximum. (Objective function)

8/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

Two first problems

Définition

Let us consider n objects.
Each object i ∈ {1, . . . , n}
- with a profit gi
- with a weight pi
to be put inside a knapsack of maximum total weight P.

Then we need to find a subset S ⊂ {1, . . . , n} such that

its weight
∑
i∈S

pi is non-greater than P (Knapsack Constraint)

its profit
∑
i∈S

gi is maximum. (Objective function)

8/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

Two first problems

How to incode a knapsack solution ?

An instance is given by :

A solution S ⊂ {1, . . . , n}
is corresponding to
an incidence vector χS

such that

χS [i ] =

{
1 if i ∈ S
0 otherwise.

i 1 2 3 4 5
gi 5 7 10 11 10
pi 2 8 10 6 5 ≤ 15

S1 = {1, 2, 5}

χS1 = 1 1 0 0 1

profit : 5 7 10 = 22
weight : 2 8 5 = 15

9/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

Two first problems

How to incode a knapsack solution ?

An instance is given by :

A solution S ⊂ {1, . . . , n}
is corresponding to
an incidence vector χS

such that

χS [i ] =

{
1 if i ∈ S
0 otherwise.

i 1 2 3 4 5
gi 5 7 10 11 10
pi 2 8 10 6 5 ≤ 15

S1 = {1, 2, 5}

χS1 = 1 1 0 0 1

profit : 5 7 10 = 22
weight : 2 8 5 = 15

9/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

Two first problems

How to test whether a vector is a solution ?

Recognition Algorithm :

pds ← 0

For i from 1 to n

pds ← pds + pi ∗ χS [i ]

EndFor

If pds ≤ P Then True

Else False

i 1 2 3 4 5
gi 5 7 10 11 10
pi 2 8 10 6 5 ≤ 15

S2 = {1, 4, 5}

χS2 = 1 0 0 1 1

weight : 2 6 5 = 13

Solution of profit 26

10/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

Two first problems

How to test whether a vector is a solution ?

Recognition Algorithm :

pds ← 0

For i from 1 to n

pds ← pds + pi ∗ χS [i ]

EndFor

If pds ≤ P Then True

Else False

i 1 2 3 4 5
gi 5 7 10 11 10
pi 2 8 10 6 5 ≤ 15

S2 = {1, 4, 5}

χS2 = 1 0 0 1 1

weight : 2 6 5 = 13

Solution of profit 26

10/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

Two first problems

How to test whether a vector is a solution ?

Recognition Algorithm :

pds ← 0

For i from 1 to n

pds ← pds + pi ∗ χS [i ]

EndFor

If pds ≤ P Then True

Else False

i 1 2 3 4 5
gi 5 7 10 11 10
pi 2 8 10 6 5 ≤ 15

S2 = {1, 4, 5}

χS2 = 1 0 0 1 1

weight : 2 6 5 = 13

Solution of profit 26

10/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

Two first problems

How to test whether a vector is a solution ?

Recognition Algorithm :

pds ← 0

For i from 1 to n

pds ← pds + pi ∗ χS [i ]

EndFor

If pds ≤ P Then True

Else False

i 1 2 3 4 5
gi 5 7 10 11 10
pi 2 8 10 6 5 ≤ 15

S3 = {1, 2, 4}

χS3 = 1 1 0 1 0

weight : 2 8 6 = 16

Not a solution.

11/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

Two first problems

How to test whether a vector is a solution ?

Recognition Algorithm :

pds ← 0

For i from 1 to n

pds ← pds + pi ∗ χS [i ]

EndFor

If pds ≤ P Then True

Else False

i 1 2 3 4 5
gi 5 7 10 11 10
pi 2 8 10 6 5 ≤ 15

S3 = {1, 2, 4}

χS3 = 1 1 0 1 0

weight : 2 8 6 = 16

Not a solution.

11/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

Two first problems

Huge knapsacks...

12/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

Two first problems

Graph

A graph G = (V ,E ) is a pair
where
- V is the node set
- E ⊆ V × V is the edge set.

Two nodes are adjacent
if they are linked by an edge.

13/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

Two first problems

Graph

A graph G = (V ,E ) is a pair
where
- V is the node set
- E ⊆ V × V is the edge set.

Two nodes are adjacent
if they are linked by an edge.

13/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

Two first problems

Stable Set problem

A stable set
(or independent set)
is a pairwise non-adjacent node
subset.

The stable set problem
is to find a stable set with a
maximum number of nodes.

14/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

Two first problems

Stable Set problem

A stable set
(or independent set)
is a pairwise non-adjacent node
subset.

The stable set problem
is to find a stable set with a
maximum number of nodes.

14/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

Two first problems

Stable Set problem

A stable set
(or independent set)
is a pairwise non-adjacent node
subset.

The stable set problem
is to find a stable set with a
maximum number of nodes.

14/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

Two first problems

A set of antennas

15/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

Two first problems

A set of antennas with their interference disks

16/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

Two first problems

How to find a subset of antennas with no interference ?

17/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

Two first problems

A model graph

Un graphe G = (S ,V )
avec
- V : a node by antenna
- E : an edge between two
antennas if their interference
disks are in conflict.

Finding a subset of antennas
with no interference reduces to
the stable set problem.

18/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

Two first problems

A model graph

Un graphe G = (S ,V )
avec
- V : a node by antenna
- E : an edge between two
antennas if their interference
disks are in conflict.

Finding a subset of antennas
with no interference reduces to
the stable set problem.

18/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

Two first problems

Combinatorics within genomic

Genome sequencing involves sorting through

small fragments of DNA (called SNPs) that

have been sequenced using bio-mechanical

processes. In the process, false SNPs are

created.

We want to sort the fragments, omitting as

few SNPs as possible.

Its a Combinatorial optimisation problem

which also reduces to the stable set problem !.

Lippert, R., Schwartz, R., Lancia, G., Istrail, S. : Algorithmic strategies for the single nucleotide polymorphism
haplotype assembly problem. Brief. Bioinform 3, 23–31 (2002)

19/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

Two first problems

Combinatorics within genomic

Genome sequencing involves sorting through

small fragments of DNA (called SNPs) that

have been sequenced using bio-mechanical

processes. In the process, false SNPs are

created.

We want to sort the fragments, omitting as

few SNPs as possible.

Its a Combinatorial optimisation problem

which also reduces to the stable set problem !.

Lippert, R., Schwartz, R., Lancia, G., Istrail, S. : Algorithmic strategies for the single nucleotide polymorphism
haplotype assembly problem. Brief. Bioinform 3, 23–31 (2002)

19/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

Two first problems

Combinatorics within genomic

Genome sequencing involves sorting through

small fragments of DNA (called SNPs) that

have been sequenced using bio-mechanical

processes. In the process, false SNPs are

created.

We want to sort the fragments, omitting as

few SNPs as possible.

Its a Combinatorial optimisation problem

which also reduces to the stable set problem !.

Lippert, R., Schwartz, R., Lancia, G., Istrail, S. : Algorithmic strategies for the single nucleotide polymorphism
haplotype assembly problem. Brief. Bioinform 3, 23–31 (2002)

19/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

Two first problems

How to incode a stable set solution ? ?

Instance given by
a graph with
n nodes.

A solution S ⊂ {1, . . . , n}
is corresponding to an
vecteur d’incidence χS

such that

χS [i ] =

{
1 si i ∈ S
0 sinon.

S1 = {1, 7, 8}

i 1 2 3 4 5 6 7 8
χS1 = 1 0 0 0 0 0 1 1

20/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

Two first problems

How to test whether a vector is a solution ?

Recognition Algorithm :

For i from 1 to n

For j from 1 to n

If {i , j} is an edge

and if χS [i ] = 1 and χS [j] = 1

Then STOP : False

EndFor

EndFor

STOP : True

S1 = {2, 7, 8}

i 1 2 3 4 5 6 7 8
χS1 = 0 1 0 0 0 0 1 1

Solution (with 3 nodes

21/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

Two first problems

How to test whether a vector is a solution ?

Recognition Algorithm :

For i from 1 to n

For j from 1 to n

If {i , j} is an edge

and if χS [i ] = 1 and χS [j] = 1

Then STOP : False

EndFor

EndFor

STOP : True

S1 = {2, 7, 8}

i 1 2 3 4 5 6 7 8
χS1 = 0 1 0 0 0 0 1 1

Solution (with 3 nodes

21/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

Combinatorial explosion

1. Definition and complexity
1.1 Two first problems
1.2 Combinatorial explosion
1.3 Problem complexity
1.4 NP-hard
1.5 Strongly or weakly NP-hard

2. List of OC problems

22/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

Combinatorial explosion

Recognition algorithms

Knapsack

pds ← 0
For i from 1 to n

pds ← pds+pi∗χS [i ]
EndFor
If pds ≤ P Then True

Else False

Execution time
proportionnal to n.

Stable set

For i from 1 to n
For j from 1 to n

If {i , j} is an edge
and if χS [i ] = 1
and χS [j] = 1
Then
STOP : False

EndFor
EndFor
STOP : True

Execution time
proportionnal to n2.

Polynomial Algorithms
which can be fast (≤ n4 for instance).

Solving algorithms

Which is the com-

plexity of the best known

“Generic Algorithm” so

find the optimal solution

of combinatorial optimiza-

tion problems ?

Only very very slow

algorithms with an execu-

tion time proportional to

2n, 3n, !n

Exponential algorithms.

23/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

Combinatorial explosion

Recognition algorithms

Knapsack

pds ← 0
For i from 1 to n

pds ← pds+pi∗χS [i ]
EndFor
If pds ≤ P Then True

Else False

Execution time
proportionnal to n.

Stable set

For i from 1 to n
For j from 1 to n

If {i , j} is an edge
and if χS [i ] = 1
and χS [j] = 1
Then
STOP : False

EndFor
EndFor
STOP : True

Execution time
proportionnal to n2.

Polynomial Algorithms
which can be fast (≤ n4 for instance).

Solving algorithms

Which is the com-

plexity of the best known

“Generic Algorithm” so

find the optimal solution

of combinatorial optimiza-

tion problems ?

Only very very slow

algorithms with an execu-

tion time proportional to

2n, 3n, !n

Exponential algorithms.

23/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

Combinatorial explosion

Recognition algorithms

Knapsack

pds ← 0
For i from 1 to n

pds ← pds+pi∗χS [i ]
EndFor
If pds ≤ P Then True

Else False

Execution time
proportionnal to n.

Stable set

For i from 1 to n
For j from 1 to n

If {i , j} is an edge
and if χS [i ] = 1
and χS [j] = 1
Then
STOP : False

EndFor
EndFor
STOP : True

Execution time
proportionnal to n2.

Polynomial Algorithms
which can be fast (≤ n4 for instance).

Solving algorithms

Which is the com-

plexity of the best known

“Generic Algorithm” so

find the optimal solution

of combinatorial optimiza-

tion problems ?

Only very very slow

algorithms with an execu-

tion time proportional to

2n, 3n, !n

Exponential algorithms.

23/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

Combinatorial explosion

Recognition algorithms

Knapsack

pds ← 0
For i from 1 to n

pds ← pds+pi∗χS [i ]
EndFor
If pds ≤ P Then True

Else False

Execution time
proportionnal to n.

Stable set

For i from 1 to n
For j from 1 to n

If {i , j} is an edge
and if χS [i ] = 1
and χS [j] = 1
Then
STOP : False

EndFor
EndFor
STOP : True

Execution time
proportionnal to n2.

Polynomial Algorithms
which can be fast (≤ n4 for instance).

Solving algorithms

Which is the com-

plexity of the best known

“Generic Algorithm” so

find the optimal solution

of combinatorial optimiza-

tion problems ?

Only very very slow

algorithms with an execu-

tion time proportional to

2n, 3n, !n

Exponential algorithms.

23/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

Combinatorial explosion

Recognition algorithms

Knapsack

pds ← 0
For i from 1 to n

pds ← pds+pi∗χS [i ]
EndFor
If pds ≤ P Then True

Else False

Execution time
proportionnal to n.

Stable set

For i from 1 to n
For j from 1 to n

If {i , j} is an edge
and if χS [i ] = 1
and χS [j] = 1
Then
STOP : False

EndFor
EndFor
STOP : True

Execution time
proportionnal to n2.

Polynomial Algorithms
which can be fast (≤ n4 for instance).

Solving algorithms

Which is the com-

plexity of the best known

“Generic Algorithm” so

find the optimal solution

of combinatorial optimiza-

tion problems ?

Only very very slow

algorithms with an execu-

tion time proportional to

2n, 3n, !n

Exponential algorithms.

23/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

Combinatorial explosion

Recognition algorithms

Knapsack

pds ← 0
For i from 1 to n

pds ← pds+pi∗χS [i ]
EndFor
If pds ≤ P Then True

Else False

Execution time
proportionnal to n.

Stable set

For i from 1 to n
For j from 1 to n

If {i , j} is an edge
and if χS [i ] = 1
and χS [j] = 1
Then
STOP : False

EndFor
EndFor
STOP : True

Execution time
proportionnal to n2.

Polynomial Algorithms
which can be fast (≤ n4 for instance).

Solving algorithms

Which is the com-

plexity of the best known

“Generic Algorithm” so

find the optimal solution

of combinatorial optimiza-

tion problems ?

Only very very slow

algorithms with an execu-

tion time proportional to

2n, 3n, !n

Exponential algorithms.

23/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

Combinatorial explosion

Enumerate ?

Consider an optimization problem with n elements.
Assuming that we know a polynomial (and. fast) algorithm for
recognizing a solution,
can we finde the best solution through enumeration ?

For each subset S of elements

χS ← the incidence vector of S.

Recogntion algorithm for χS .

If χS is a solution

Stock S as the best known solution encountered yet.

EndFor

STOP : the stocked solution.

There are 2n subsets : exponential execution time !

24/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

Combinatorial explosion

Enumerate ?

Consider an optimization problem with n elements.
Assuming that we know a polynomial (and. fast) algorithm for
recognizing a solution,
can we finde the best solution through enumeration ?

For each subset S of elements

χS ← the incidence vector of S.

Recogntion algorithm for χS .

If χS is a solution

Stock S as the best known solution encountered yet.

EndFor

STOP : the stocked solution.

There are 2n subsets : exponential execution time !

24/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

Combinatorial explosion

Enumerate ?

Consider an optimization problem with n elements.
Assuming that we know a polynomial (and. fast) algorithm for
recognizing a solution,
can we finde the best solution through enumeration ?

For each subset S of elements

χS ← the incidence vector of S.

Recogntion algorithm for χS .

If χS is a solution

Stock S as the best known solution encountered yet.

EndFor

STOP : the stocked solution.

There are 2n subsets : exponential execution time !

24/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

Combinatorial explosion

Combinatorial explosion

χS [1] = 1χS [1] = 0

χS [2] = 0
χS [2] = 1

25/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

Combinatorial explosion

Combinatorial explosion

χS [1] = 1χS [1] = 0

χS [2] = 0
χS [2] = 1

χS [3] = 0 χS [3] = 1

25/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

Combinatorial explosion

Combinatorial explosion

χS [1] = 1χS [1] = 0

χS [2] = 0
χS [2] = 1

χS [3] = 0 χS [3] = 1

25/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

Combinatorial explosion

Combinatorial explosion

χS [1] = 1χS [1] = 0

χS [2] = 0
χS [2] = 1

χS [3] = 0 χS [3] = 1

25/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

Combinatorial explosion

Combinatorial explosion

χS [1] = 1χS [1] = 0

χS [2] = 0
χS [2] = 1

χS [3] = 0 χS [3] = 1

25/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

Combinatorial explosion

Combinatorial explosion

Let’s take one of the most powerful computers in 2015
Tianhe-2 (China)
33.86 petaflops where 1 petaflop represents the processing of 1015 operations

per second (one million billion).

Assume that the recognition algorithm takes 100n elementary operations. For n = 10,
we can process 33 860 billion subsets in 1 second !

Tianhe-2 Futuristic Computer
n n3 n5 100n2n 100n2n

10 0,00...001 sec 0,00...001 sec

0,00...001 sec 0,00...001 sec

20 0,00...001 sec 0,00...001 sec

0,00000006 sec 0,00...001 sec

50 0,00...001 sec 0,00...001 sec

168,9 sec 0,000001 sec

60 0,00...001 sec 0,00000002 sec

57,6 h 0,0001 sec

80 0,00...001 sec 0,0000009 sec

9200 years 100 years

100 0,00...001 sec 0,0000003 sec

1, 21.1010 years 1, 21.109 years

1000 0,00000003 sec 0,03 sec

1.10282 years ...

Age of the universe 13, 7.109 years

26/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

Combinatorial explosion

Combinatorial explosion

Let’s take one of the most powerful computers in 2015
Tianhe-2 (China)
33.86 petaflops where 1 petaflop represents the processing of 1015 operations

per second (one million billion).

Assume that the recognition algorithm takes 100n elementary operations. For n = 10,
we can process 33 860 billion subsets in 1 second !

Tianhe-2 Futuristic Computer
n n3 n5 100n2n 100n2n

10 0,00...001 sec 0,00...001 sec 0,00...001 sec

0,00...001 sec

20 0,00...001 sec 0,00...001 sec 0,00000006 sec

0,00...001 sec

50 0,00...001 sec 0,00...001 sec 168,9 sec

0,000001 sec

60 0,00...001 sec 0,00000002 sec 57,6 h

0,0001 sec

80 0,00...001 sec 0,0000009 sec 9200 years

100 years

100 0,00...001 sec 0,0000003 sec

1, 21.1010 years 1, 21.109 years

1000 0,00000003 sec 0,03 sec

1.10282 years ...

Age of the universe 13, 7.109 years

26/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

Combinatorial explosion

Combinatorial explosion

Let’s take one of the most powerful computers in 2015
Tianhe-2 (China)
33.86 petaflops where 1 petaflop represents the processing of 1015 operations

per second (one million billion).

Assume that the recognition algorithm takes 100n elementary operations. For n = 10,
we can process 33 860 billion subsets in 1 second !

Tianhe-2 Futuristic Computer
n n3 n5 100n2n 100n2n

10 0,00...001 sec 0,00...001 sec 0,00...001 sec

0,00...001 sec

20 0,00...001 sec 0,00...001 sec 0,00000006 sec

0,00...001 sec

50 0,00...001 sec 0,00...001 sec 168,9 sec

0,000001 sec

60 0,00...001 sec 0,00000002 sec 57,6 h

0,0001 sec

80 0,00...001 sec 0,0000009 sec 9200 years

100 years

100 0,00...001 sec 0,0000003 sec 1, 21.1010 years

1, 21.109 years

1000 0,00000003 sec 0,03 sec 1.10282 years

...

Age of the universe 13, 7.109 years
26/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

Combinatorial explosion

Combinatorial explosion

Let’s take one of the most powerful computers in 2015
Tianhe-2 (China)
33.86 petaflops where 1 petaflop represents the processing of 1015 operations

per second (one million billion).

Assume that the recognition algorithm takes 100n elementary operations. For n = 10,
we can process 33 860 billion subsets in 1 second !

Tianhe-2 Futuristic Computer
n n3 n5 100n2n 100n2n

10 0,00...001 sec 0,00...001 sec 0,00...001 sec 0,00...001 sec
20 0,00...001 sec 0,00...001 sec 0,00000006 sec 0,00...001 sec
50 0,00...001 sec 0,00...001 sec 168,9 sec 0,000001 sec
60 0,00...001 sec 0,00000002 sec 57,6 h 0,0001 sec
80 0,00...001 sec 0,0000009 sec 9200 years 100 years

100 0,00...001 sec 0,0000003 sec 1, 21.1010 years 1, 21.109 years
1000 0,00000003 sec 0,03 sec 1.10282 years ...

Age of the universe 13, 7.109 years
26/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

Combinatorial explosion

Combinatorial Explosion

Enumerating 2n solutions is not a technical problem
that very powerful computers could sweep away.

It’s necessary to circumvent the combinatorial explosion with
mathematical and algorithmic tools.

27/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

Problem complexity

1. Definition and complexity
1.1 Two first problems
1.2 Combinatorial explosion
1.3 Problem complexity
1.4 NP-hard
1.5 Strongly or weakly NP-hard

2. List of OC problems

28/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

Problem complexity

Problem complexity

Just because we know an exponential algorithm for solving a
problem doesn’t mean it’s difficult !

To crack a nut, you can :

We’re looking for the fastest algorithm to solve a problem !

29/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

Problem complexity

Problem complexity

Just because we know an exponential algorithm for solving a
problem doesn’t mean it’s difficult !

To crack a nut, you can :

We’re looking for the fastest algorithm to solve a problem !

29/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

Problem complexity

Problem complexity

Just because we know an exponential algorithm for solving a
problem doesn’t mean it’s difficult !

To crack a nut, you can :

We’re looking for the fastest algorithm to solve a problem !

29/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

Problem complexity

Problem complexity

Just because we know an exponential algorithm for solving a
problem doesn’t mean it’s difficult !

To crack a nut, you can :

We’re looking for the fastest algorithm to solve a problem !

29/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

Problem complexity

Problem complexity

Just because we know an exponential algorithm for solving a
problem doesn’t mean it’s difficult !

To crack a nut, you can :

We’re looking for the fastest algorithm to solve a problem !

29/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

Problem complexity

Problem complexity

Just because we know an exponential algorithm for solving a
problem doesn’t mean it’s difficult !

To crack a nut, you can :

We’re looking for the fastest algorithm to solve a problem !

29/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

Problem complexity

Problem Complexity

A problem is of exponential complexity
if an exponential algorithm exists to solve it.

⇒ the problem class EXP.

A problem is of polynomial complexity
if a polynomial algorithm exists to solve it.

⇒ the problem class P.

So P is included in EXP, we note P ⊂ EXP

Question : In what complexity classes are Combinatoriel
Optimization problems ?

30/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

Problem complexity

Problem Complexity

A problem is of exponential complexity
if an exponential algorithm exists to solve it.

⇒ the problem class EXP.

A problem is of polynomial complexity
if a polynomial algorithm exists to solve it.

⇒ the problem class P.

So P is included in EXP, we note P ⊂ EXP

Question : In what complexity classes are Combinatoriel
Optimization problems ?

30/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

Problem complexity

Problem Complexity

A problem is of exponential complexity
if an exponential algorithm exists to solve it.

⇒ the problem class EXP.

A problem is of polynomial complexity
if a polynomial algorithm exists to solve it.

⇒ the problem class P.

So P is included in EXP, we note P ⊂ EXP

Question : In what complexity classes are Combinatoriel
Optimization problems ?

30/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

Problem complexity

Problem Complexity

A problem is of exponential complexity
if an exponential algorithm exists to solve it.

⇒ the problem class EXP.

A problem is of polynomial complexity
if a polynomial algorithm exists to solve it.

⇒ the problem class P.

So P is included in EXP, we note P ⊂ EXP

Question : In what complexity classes are Combinatoriel
Optimization problems ?

30/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

Problem complexity

NP problems

A particular classe have been created...
Combinatorial optimization problems for which we know how to
recognize a solution with a polynomial algorithm

⇒ the problem class NP “Nondeterministic polynomial time”

Under this assumption, we’ve seen that it’s possible to use an
exponential enumeration algorithm, then

⇒ NP ⊂ EXP

In addition, a polynomial problem is in NP
⇒ P ⊂ NP ⊂ EXP

31/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

Problem complexity

NP problems

A particular classe have been created...
Combinatorial optimization problems for which we know how to
recognize a solution with a polynomial algorithm

⇒ the problem class NP “Nondeterministic polynomial time”

Under this assumption, we’ve seen that it’s possible to use an
exponential enumeration algorithm, then

⇒ NP ⊂ EXP

In addition, a polynomial problem is in NP
⇒ P ⊂ NP ⊂ EXP

31/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

Problem complexity

NP problems

A particular classe have been created...
Combinatorial optimization problems for which we know how to
recognize a solution with a polynomial algorithm

⇒ the problem class NP “Nondeterministic polynomial time”

Under this assumption, we’ve seen that it’s possible to use an
exponential enumeration algorithm, then

⇒ NP ⊂ EXP

In addition, a polynomial problem is in NP
⇒ P ⊂ NP ⊂ EXP

31/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

Problem complexity

And then ?

Is P equal to NP ?

i.e.

“Is there a polynomial algorithm for solving combinatorial
optimization problems ?”

Answer :

We don’t know !

On a human scale, we only know this enumeration algorithm !

It’s one of the 7 problems in the Clay Mathematics Institute of Cambridge’s
million-dollar Millennium Prize Problems !

32/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

Problem complexity

And then ?

Is P equal to NP ?

i.e.

“Is there a polynomial algorithm for solving combinatorial
optimization problems ?”

Answer : We don’t know !

On a human scale, we only know this enumeration algorithm !

It’s one of the 7 problems in the Clay Mathematics Institute of Cambridge’s
million-dollar Millennium Prize Problems !

32/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

NP-hard

1. Definition and complexity
1.1 Two first problems
1.2 Combinatorial explosion
1.3 Problem complexity
1.4 NP-hard
1.5 Strongly or weakly NP-hard

2. List of OC problems

33/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

NP-hard

Is every Combinatorial Optimisation problem exponential ?

A very simple knapsack subcase

Let’s look at a very simple knapsack instance :
a knapsack with all objects of the same weight.

A greedy algorithm :

- sort the n objects from the most expensive to the least
expensive

- take the objects one by one in that order as long as they fit in
the bag !

This algorithm is polynomial (of the order of n2).

34/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

NP-hard

Is every Combinatorial Optimisation problem exponential ?

A very simple knapsack subcase

Let’s look at a very simple knapsack instance :
a knapsack with all objects of the same weight.

A greedy algorithm :

- sort the n objects from the most expensive to the least
expensive

- take the objects one by one in that order as long as they fit in
the bag !

This algorithm is polynomial (of the order of n2).

34/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

NP-hard

Is every Combinatorial Optimisation problem exponential ?

A very simple knapsack subcase

Let’s look at a very simple knapsack instance :
a knapsack with all objects of the same weight.

A greedy algorithm :

- sort the n objects from the most expensive to the least
expensive

- take the objects one by one in that order as long as they fit in
the bag !

This algorithm is polynomial (of the order of n2).

34/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

NP-hard

Is every Combinatorial Optimisation problem exponential ?

A very simple knapsack subcase

Let’s look at a very simple knapsack instance :
a knapsack with all objects of the same weight.

A greedy algorithm :

- sort the n objects from the most expensive to the least
expensive

- take the objects one by one in that order as long as they fit in
the bag !

This algorithm is polynomial (of the order of n2).

34/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

NP-hard

A very simple stable set subcase

Let’s look at a very simple stable set instance :
finding a maximum cardinality stable set over a tree.

Tree property :
Given a leaf v , there exists a maxi-
mum cardinality stable set contai-
ning v .

(Proof : Let v a leaf and u its unique neighbour. Let S be a maximum stable set. Either u /∈ S , then S ∪ {v} ; or
u /∈ S , then S ∪ {u} \ {v} is another maximum stable set).

35/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

NP-hard

A very simple stable set subcase

A greedy algorithm :

S ← ∅
While G has at least one edge

Let v be a leaf and u its neighbour
S ← S ∪ {v}
Delete from G nodes u and v and all their incident edges

EndWhile
Add to S all the remaining nodes.
STOP : S

This algorithm is polynomial (of the order of n).

36/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

NP-hard

A very simple stable set subcase

A greedy algorithm :

S ← ∅
While G has at least one edge

Let v be a leaf and u its neighbour
S ← S ∪ {v}
Delete from G nodes u and v and all their incident edges

EndWhile
Add to S all the remaining nodes.
STOP : S

This algorithm is polynomial (of the order of n).

36/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

NP-hard

NP-hard

In the current state of scientific knowledge, it is not known
whether or not there is a polynomial algorithm for solving the
knapsack or the stable set problem in general !

In fact, we were able to prove that knapsack or the stable set
problems are just as difficult as all the problems in the NP class !

A problem is said to be NP-hard
if it is as difficult as any problem in the NP class.

⇒ the problem class NP-hard.

37/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

NP-hard

NP-hard

In the current state of scientific knowledge, it is not known
whether or not there is a polynomial algorithm for solving the
knapsack or the stable set problem in general !

In fact, we were able to prove that knapsack or the stable set
problems are just as difficult as all the problems in the NP class !

A problem is said to be NP-hard
if it is as difficult as any problem in the NP class.

⇒ the problem class NP-hard.

37/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

NP-hard

NP-hardness

Boss, I can’t find a polynomial algorithm for the stable set problem

Figure from “The Garey et Johnson”

38/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

NP-hard

NP-hardness

But if you think I’m just an ungifted searcher

Figure from “The Garey et Johnson”

38/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

NP-hard

NP-hardness

...neither are all the others !

Figure from “The Garey et Johnson”
38/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

Strongly or weakly NP-hard

1. Definition and complexity
1.1 Two first problems
1.2 Combinatorial explosion
1.3 Problem complexity
1.4 NP-hard
1.5 Strongly or weakly NP-hard

2. List of OC problems

39/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

Strongly or weakly NP-hard

Strongly or weakly NP-hard
A computational problem may have numerical parameters : like the
weight of a knapsack.

A NP-hard problem is said to be weakly NP-hard
if there is an algorithm for the problem whose running time is
polynomial in the dimension of the problem and magnitudes of its
data.

And otherwise, it is called strongly NP-hard.

For weakly NP-hard, it’s often the case, that there exists a
dynaming programming scheme whose complexity depends on
the magnitudes of the data.

40/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

Strongly or weakly NP-hard

Strongly or weakly NP-hard
A computational problem may have numerical parameters : like the
weight of a knapsack.

A NP-hard problem is said to be weakly NP-hard
if there is an algorithm for the problem whose running time is
polynomial in the dimension of the problem and magnitudes of its
data.

And otherwise, it is called strongly NP-hard.

For weakly NP-hard, it’s often the case, that there exists a
dynaming programming scheme whose complexity depends on
the magnitudes of the data.

40/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

Strongly or weakly NP-hard

Dynamic Programming scheme
Some subcases are the same within the enumeration :
this puts the brakes on the combinatorial explosion.

χS [1] = 1χS [1] = 0

χS [2] = 0
χS [2] = 1

41/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

Strongly or weakly NP-hard

Dynamic Programming scheme
Some subcases are the same within the enumeration :
this puts the brakes on the combinatorial explosion.

χS [1] = 1χS [1] = 0

χS [2] = 0
χS [2] = 1

41/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

Strongly or weakly NP-hard

Dynamic Programming scheme
Some subcases are the same within the enumeration :
this puts the brakes on the combinatorial explosion.

χS [1] = 1χS [1] = 0

χS [2] = 0
χS [2] = 1

41/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

Strongly or weakly NP-hard

Dynamic Programming scheme
Some subcases are the same within the enumeration :
this puts the brakes on the combinatorial explosion.

χS [1] = 1χS [1] = 0

χS [2] = 0
χS [2] = 1

41/50



Solving CO problems using MP - Section 0 : Introduction

Definition and complexity

Strongly or weakly NP-hard

Dynamic Programming scheme
Some subcases are the same within the enumeration :
this puts the brakes on the combinatorial explosion.

χS [1] = 1χS [1] = 0

χS [2] = 0
χS [2] = 1

41/50



Solving CO problems using MP - Section 0 : Introduction

List of OC problems

1. Definition and complexity

2. List of OC problems

42/50



Solving CO problems using MP - Section 0 : Introduction

List of OC problems

Knapsack problem
Input : n objects

profit gi ∀i ∈ {1, . . . , n}
weight pi ∀i ∈ {1, . . . , n}
maximum total weight P.

Output : Subset S ⊆ {1, . . . , n}
s.t.

∑
i∈S

pi ≤ P

Objective : Max
∑
i∈S

wi

Knapsack MIP

Max
n∑

i=1

wixi

n∑
i=1

pixi ≤ P,

0 ≤ xi ≤ 1, pour tout objet i = 1, ..., n,

xi ∈ IN, pour tout objet i = 1, ..., n.

Complexity : Weakly NP-hard
Dynamic programming scheme (in O(nP) when pi ∈ IN)

Polynomial cases : unit cost / unit weight
Difficulty : With MIP solver n = 106 in < 1 minutes.

43/50



Solving CO problems using MP - Section 0 : Introduction

List of OC problems

Maximum weight stable set problem

Input : Undirected graph G = (V ,E)
cost wu ∀u ∈ V

Output : Subset S ⊆ V of non-adjacent nodes

Objective : Max
∑
i∈S

wi

Complexity : Strongly NP-hard
Polynomial cases : perfect graphs (tree, planar, interval graphs...)
Difficulty : With MIP solver n = 1000 in often more than 1 hour

Some dedicated methodes (russian doll algo)

44/50



Solving CO problems using MP - Section 0 : Introduction

List of OC problems

Shortest path problem

Input : Undirected (or directed) graph G = (V ,E)
Two nodes u0, u1 ∈ V
Lenghts le ∀e ∈ E

Output : Path µ of G from uO to u1

Objective : Min
∑
e∈µ

le

Complexity : Polynomial
Difficulty : With Dijkstra algorithm up to thousand of nodes in a few sec

With A∗ algorithme, up to billions !

45/50



Solving CO problems using MP - Section 0 : Introduction

List of OC problems

Shortest path problem

To quickly go from a point to another

46/50



Solving CO problems using MP - Section 0 : Introduction

List of OC problems

The Traveling Salesman Problem (TSP)

Input : Undirected (or directed) graph G = (V ,E)
lenght le ∀e ∈ E

Output : An hamiltonian cycle C of G (i.e. C goes once through each node)

Objective : Min
∑
e∈C

le

Complexity : Strongly NP-hard
Polynomial cases : ?
Difficulty : Before 2003 : 200 nodes within several hours

47/50



Solving CO problems using MP - Section 0 : Introduction

List of OC problems

The Traveling Salesman Problem (TSP)

Input : Undirected (or directed) graph G = (V ,E)
lenght le ∀e ∈ E

Output : An hamiltonian cycle C of G (i.e. C goes once through each node)

Objective : Min
∑
e∈C

le

Complexity : Strongly NP-hard
Polynomial cases : ?
Difficulty : Before 2003 : 200 nodes within several hours

Concorde : a Branch-and-Cut algorithm and polyhedral results
solves up to 200000 cities within one day !

47/50



Solving CO problems using MP - Section 0 : Introduction

List of OC problems

The Traveling Salesman Problem (TSP)

Starting from a city and going back to it
going once througt all the other cities

with a sorthest cycle.

48/50



Solving CO problems using MP - Section 0 : Introduction

List of OC problems

The Traveling Salesman Problem (TSP)

Starting from a city and going back to it
going once througt all the other cities

with a sorthest cycle.

48/50



Solving CO problems using MP - Section 0 : Introduction

List of OC problems

Real-world Operations Research problem

The inventory routing problem introdu-
ced by Air Liquide company with real
daily data and questions to answer :

Determine routes for liquid oxygen
trucks to deliver hospitals
so that

- hospital tanks are never empty
(remote monitoring)

- rounds are feasible within the
driver’s working day

- costs are minimized !

Source : ROADEF Challenge 2016

49/50



Solving CO problems using MP - Section 0 : Introduction

List of OC problems

How to solve Combinatorial Optimization Problem ?

• If the instances are very large and the problem very hard to solve
or if you do not have much time to spend on solving method

→ There exist methods to obtain “good” solutions (heuristics, meta-heuristics,
machine learning...)

• If the problem is really important with a higly cost associated to solution
and if you have some time (several hours...)
The optimal solution is to be computed !

→ We will see in this lecture how to circumvent the combinatorial explosion using
mathematical programming !

The Traveling salesman problem has been solved till 200 000 cicites !

50/50


	Definition and complexity
	Two first problems
	Combinatorial explosion
	Problem complexity
	NP-hard
	Strongly or weakly NP-hard

	List of OC problems

