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Abstract
Self-assembling tile systems are a model for assembling DNA-based nano artefacts. In the cur-

rently known constructions, most of the effort is put on guaranteeing the size of the output object,
whereas the geometrical efficiency of the assembling of the shape itself is left aside. We propose in
this paper a framework to obtain provably time efficient self-assembling tile systems. Our approach
consists in studying how the flow of information has to circulate within the desired shape to guar-
antee an optimal time construction. We show how this study can yield an adequate ordering of the
tiling process from which one can deduced a provably time efficient tile systems for that shape. We
apply our framework to squares and cubes for which we obtain time optimal self-assembling tile
systems.

1 Introduction

Self-assembly is the process by which small entities combine themselves into a bigger shape by local
interactions in such a way that the resulting aggregates have interesting global properties. Examples of
self-assembly are found in crystal growth, coral reefs, microtubules, and so on. In [1], Winfree proposed
a framework for using DNA molecules in order to manufacture nano-artefacts by self-assembly. These
artefacts can even be made to encode the result of a computation, leading to a good model for DNA
computing [2].

This framework consists in a refinement of Wang tiles where the colors of the sides are seen as
different kinds of glues. These glues have different strengths which represent the strength of the affinity
between the DNA sequences forming the sides of the tiles. Two equal glues will stick together, with a
strength equal to the strength of the glues. The self-assembly of the tiles is controlled by the temperature,
an integer τ such that: a tile stays attached only if the sum of the strengths of the bonds with the other
tiles along its sides is at least τ , otherwise it is torn off from the rest of the crystal by thermal agitation.
This model can and has indeed been implemented practically [3] with DNA.

Theoretical research on self-assembly has so far focused on minimising the numbers of tiles neces-
sary to assemble a given shape. In this paper, we will focus as well on the time needed to assemble a
shape. In this model, one can optimally assemble a shape with O(K/ logK) tiles, where K is the Kol-
mogorov complexity of the shape [4, 5]. This direction yields tile sets in which most of the complexity
is related to the decoding of a compact representation of the shape, rather than assembling the shape
efficiently. Furthermore, as far as we know, the time needed to assemble a given shape has not been
studied in detail so far, and asymptotic results have been deemed sufficient. In this paper, we show how
a finer understanding of the inherent parallelism of the model can lead to time-optimal self-assembly.
∗Partially supported by ECOS - CONICYT and IXXI institut des systèmes complexes



Time-constraint-based tile set design. Our approach relies on the study of the time-relationship be-
tween the tiles. More precisely, it consists in studying the flow of information within the desired shape,
and deducing from it a specific order in which the tiles have to be placed, and from which we finally
infer a time-optimal set of tiles. Deducing the tile set from its specifications allows to obtain directly a
tile set whose behavior has already been proved formally, which is often easier than obtaining the tile set
first and then proving that it behaves correctly. Interestingly enough, this method yields to a new kind
of self-assembly process in which the construction is not driven by some master signals 1 but rather by
a set of interdependent signals where no one takes over the other nor may progress without the others.
This implies that other kinds of relationship between construction signals may have to be considered in
future constructions.

On time optimality and tile set design. In order to set up a proper definition of time-optimal tile set
for a shape, computer science taught us that the considered tile sets need to allow the construction of an
infinite range of sizes for the object. Indeed, the optimal construction time of a fixed size object cannot
be defined since its construction time can always be made arbitrarily small for any given tile set simply
by increasing the concentrations of the tiles. Obtaining a tile set that can produce the desired shape at
arbitrary size, is also a desirable design strategy: it’s exactly like writing a program P that asks for n
and computes n! instead of rewriting a new program Pn each time a new n is requested. Decoupling the
problem of decoding of the size and the problem of geometric assembling of the shape allows to focus
on each problem separately and to treat each of them with more efficiency. Moreover, as we will see, our
tile set can easily be extended by adding computations within the tiles that decodes the size and stops
the construction at the right moment, as in [8], without changing the assembly time.

Our contribution. In this paper, we focus on squares and cubes and answer to the question: what is
the optimal time to self-assembly these shapes? We start with the squares and design from the constraints
imposed by time-optimality an order in which the tiles have to be placed, from which we deduce the tile
set. Our tile set allows to construct any square n× n in optimal parallel time 2n− 2 instead of 3n− 5
for the previously known constructions [8, 6]. Then we extend the result to 3 dimensional self-assembly.
In three dimensions, the description of the tile set could become cumbersome, and its verification even
more so. We show how, by designing first the order in which the tiles should be added, and then by
checking a few conditions of regularity and local determinacy on the order, we get at once the tile set
and a proof of its correctness and its time optimality. One can also readily check properties such as the
absence of bubbles in the 3D self-assembly process, which can be crucial in practice.

2 Self Assembling Tile Systems

Definition 1 (Tiles). A tile is a unit square with one glue on each side. Formally, it is a quadruple of
glues 〈αN , αS , αE , αW 〉 chosen from a finite set of glues Σ.2 Each glue α ∈ Σ has a strength g(α),
a non-negative integer. Two tiles may be placed next to eachother only if their common sides hold the
same glue α; in that case, we say that there is bond of strength g(α) between these tiles.

Definition 2 (Tile system). Formally, a seeded tile system is a quintuple T = 〈T, t0, τ,Σ, g〉, where:

• Σ is a finite set of glues whose strengths are given by g.

• T ⊆ Σ4 is a finite set of tiles.
1For instance, in [6] the construction is driven by the master diagonal signal.
2One can force the orientation of the tiles simply by coding the correct orientation in the glues, so we assume here w.l.o.g.

that the tiles are oriented (no rotation of the tiles are allowed). This simplifies considerably the design of a tile system, without
affecting its generality.



• t0 ∈ T is a particular tile known as the seed.

• τ is a positive integer called the temperature.

The “shapes” produced from a tile system are the one obtained by aggregation from the seed tile,
according to the rule stating that a tile may stick to the current aggregate only if the sum of its bonds to
the rest of the aggregate is at least the temperature. Formally,

Definition 3 (Productions). A configuration is a partial mapping A : Z2 → T , such that all neighboring
tiles hold the same glue on their common sides. The domain of A is called the shape realized by A. We
say that a configuration B extends a configuration A at site (i, j) if: the domain of B is the domain of A
plus the site (i, j); B is identical to A on A’s domain; and the tile placed in B at site (i, j) sticks to A’s
tiles, i.e., the sum of the strengths of the bonds around the sides of the tile (i, j) in B with the rest of the
configuration is at least τ . We write A→T B and denote by→∗T the transitive closure.

The productions P of a tile system T are the configurations derived from the seed configuration, Γ0,
which consists in the single tile t0 placed at (0, 0): P = {A : Γ0 →∗T A}. We say that a production is fi-
nal if no other production may be derived from it. The order induced by→∗T from the seed configuration
is called the dynamics of T .

A desirable property of a tile system is that the tiles of a production have to be assembled in a fixed
known (partial) order. This property turns out to be very useful in the proof of correctness of tile systems
[3]. To the classic RC condition [3] which states that all the tiles on a given column (resp. row) have to
be placed after a fixed first tile has been placed in this column (resp. row) (we say that this tile opens the
column, resp. row), we prefer the following weaker condition which allows more geometrical freedom
(for instance, assembling concave shapes) while preserving the necessary guarantee of determinism for
the design and analysis purposes.

Definition 4 (The order condition). Given a sequence γ = 〈Γ0→T A1→T A2→T · · ·→T At = P 〉
corresponding to the assembly of a production P and two neighboring sites (i, j) and (i′, j′) in P , we
say that (i, j) ≺P,γ (i′, j′) if the tile over (i, j) is placed before the tile over (i′, j′) in the construction
sequence. We say that the tile system T satisfies the order condition (is ordered, for short) if for all
production P , the relationship ≺P,γ between the sites of P is independent of the assembling sequence
γ; in that case, the relationship, written ≺P , defines a partial order (see for instance [7]) called the local
order of the sites of P .

Clearly, for any ordered tile system, the assembling sequence of a given production P is “locally
deterministic”: the tiles over two neighboring sites are always placed in the same order. The only
uncertainty in an ordered tile system relies in the choice of the tile to place at each site; this choice
will condition which production will be obtained at the end; but, every given production P is always
assembled in the same order locally. Some easy facts on ordered tile systems are:

• if a production Q extends a production P , the local order ≺Q coincides with ≺P on P ’s sites, and
moreover, since no site can be tiled before its predecessors, P is an ideal3 ≺Q in the order theory
terminology.
• since more than τ predecessors would induce uncertainty on the precedence relationship of a site

with its neighbors, every site in a production P has at most τ predecessors according to ≺P and
the seed t0 is the only tile without predecessors;
• every RC tile system [3] is ordered.

3An ideal I of a partial order ≺ is a set such that for all u ∈ I , v ≺ u⇒ v ∈ I (see [7]).



3 Time Optimality and Skeleton

3.1 Time optimal tile systems

Timed dynamics. The assembling of a shape is classically modeled by a Markov chain in which each
tile appears at each unoccupied site at a rate proportional to its concentration [4]. We do not study here
the probability that a given shape is produced, which depends on the concentrations of the tiles: we
rather focus on minimizing the expected construction time of each production, conditioned to the event
that this production is obtained. It is known from [4] that the expected construction time of a given
production P is then proportional to the length `(P ) of the longest chain of predecessors in ≺P , where
the multiplicative constant depends only on the concentrations of the tiles. Since once we condition
the expectation to construct one specific production, the concentrations play the same role as GHz in
computers (doubling them will reduce the construction time by 2), the meaningful parameter to measure
time here is `(P ). We thus aim at minimizing the length of the longest chain of dependencies in ≺P to
obtain an efficient construction time. Therefore, we say that the construction of a final production P is
time optimal when the length `(P ) of the longest chain in ≺P is as small as possible.

Note that, for ordered tile systems, `(P ) is also exactly the time to construct P in the parallel
dynamics, where at every time step, we place all the tiles that can be attached to the current aggregate.

Since any production is obtained by assembling tiles one after the other starting at the seed tile, we
obtain the following bound on the length of the longest chain of dependencies.

Fact 1 (Trivial lower bound). Given a 4-connected shape S ⊂ Z2, for all tile system T and all produc-
tion P realizing S, we have: `(P ) > ||S||1, where ||S||1 denotes the maximum `1-distance of a site of
S to the seed tile placed at the origin.

Definition 5 (Real time assembling). Given a family of shapes S, we say that a tile system realizes
the family S in real time, if the shapes realized by its final productions are exactly S, and for all final
production P realizing a shape S ∈ S, we have: `(P ) = ||S||1.

By Fact 1, any real time tile system is by definition time optimal. The following definition extends
the notion of time to every site of a production in an ordered tile system.

Definition 6 (Rank). We define the rank ρP (u) of a site u in a production P , as the length of the longest
chain leading to u in ≺P . We say that a site u of P is on time if ρP (u) = ||u||1. Clearly, a tile system
realizes a production P in real time, if the site of highest rank in P is on time. Note that in the parallel
dynamics assembling a production P , each site u is tiled at time ρP (u) exactly.

3.2 Skeleton of a production: lower bounding the rank

Existing self-assembling constructions are driven by main signals, the rest of the production been com-
pleted by “passive” tiles filling the gaps between these signals. In fact, this has to be the case for all
ordered self-assembling constructions and we formalize this fact with the following notion:

Definition 7 (Skeleton). Let T be an ordered tile system. The x-skeleton of a production P (resp.,
y-skeleton) is the union of the seed site and of the sites of P which have a unique predecessor in ≺P ,
placed on their right or left (resp., above or below). The skeleton of P is the union of its x- and y-
skeletons.

The x-skeleton (resp. y-) of a production P is the set of sites that open the x-dimension (resp. y-)
during the assembling of P , i.e., which are the first in each column (resp., row) to be tiled. Indeed,
in an ordered tile system, each column of a production is progressively tiled by agregation from the
corresponding x-skeleton site on this column. Note that even if the tiles aggregated on a column may



carry as well meaningful signals, they have all to be placed by agregation from the x-skeleton tile on
this column. Naturally, the same holds respectively for rows and the y-skeleton. It follows that given
an ordered tile system, one can lower bound the rank ρP (u) of each site u in a production P by the
maximum of the following two quantities:

σX(u) = ρP (a) + ||u− a||1 and σY (u) = ρP (b) + ||u− b||1, (1)

where a and b are the closest x- and y-skeleton sites on the column and on the row of u in P , respectively
(i.e., where a and b are the sites which open the row and the column of u, respectively, in the assembling
of P ).

These two lower bounds show how the “flow of information” circulates within the shape from the
skeleton during the assembling. We will see next how one can use these lower bounds to understand
where the skeleton of a shape has to be to match the real time constraints. We illustrate this approach
by obtaining two real time tile systems realizing, respectively, the n× n squares Sn and the n× n× n
cubes Cn, rooted at the origin, in optimal time.

4 Assembling Squares in Real Time

We first show how to assemble in real time the family of squares with lower left corner at the origin,
Sn = {0, . . . , n−1}2 for n > 2. Our approach consists in designing first a local order for the sites from
the “flow of information” induced by the real time constraints within the shape; and then deduce from it
an ordered tile systems matching this order.

4.1 A real time local order for squares

Since ||Sn+1||1 = 2n, our goal is to obtain a local order for the square Sn+1 such that the highest rank
of the sites is (at most) 2n. Consider an arbitrary ordered tile system T that realizes the square Sn+1.
Since Sn+1 is convex and T is ordered, each column (resp., row) of Sn+1 contains exactly one site in
the x-skeleton (resp., y-); otherwise, if there were two x-skeleton sites on the same column, the sites
between them could be assembled from both below and above, the local order would depend on the
assembling sequence and T would not be ordered. Let us thus denote ai = (i, yi) and bj = (j, xj)
the sequences of sites in the x- and y-skeletons respectively. If yn > n/2 (for instance in [6, 8],
yn = n − 1), then by the lower bound (1), the rank of lower right corner (n, 0) would be at least
ρ(an) + ||(n, 0) − (n, an)||1 > ||an||1 + yn = n + 2yn > 2n. It follows that the x-skeleton (resp. y-)
of a real time ordered tile system for Sn+1 cannot get above the site (n, bn/2c) (resp. to the left of the
site (bn/2c, n)).

We thus consider the following x- and y-skeletons: ai = (i, bi/2c) and bj = (bj/2c, j) as displayed
in Figure 1(a). The lower bound (1) tells us that the rank of each site u = (i, j) in any local order based
on this skeleton is at least: σ(u) = max(||ai||1 + ||u− ai||1, ||bj ||1 + ||u− bj ||1). More precisely,

• σ(u) = i+ j = ||u||1 if u lies between the x- and y-skeletons, i.e., if j > bi/2c and i > bj/2c;
• σ(u) = i+ 2bi/2c − j > ||u||1 if u lies below the x-skeleton, i.e., if j < bi/2c;
• symmetrically, σ(u) = j + 2bj/2c − i > ||u||1 if u lies above the y-skeleton, i.e., if i < bj/2c.

Clearly, σ(u) 6 2n, for all u. Moreover, one can easily verify that σ is the rank of the following local
order where the predecessors of each site u = (i, j) are defined as (see Figure 1(a)):

• its east neighbor (i− 1, j), if u = ai belongs to the x-skeleton;
• its south neighbor (i, j − 1), if u = bj belongs to the y-skeleton;
• its east and north neighbors (i− 1, j) and (i, j + 1), if u lies below the x-skeleton;



(a) The local order induced by the x-
and y-skeletons within the square.
In each of the three regions delim-
ited by the x- and y-skeletons, the
local order ≺ follows the directions
of the arrows. For example, in the
central region, the predecessors of
(i, j) are (i − 1, j) and (i, j − 1)
and its successors are (i + 1, j) and
(i, j + 1). Each site (i, b i

2c) (resp.
(b j

2c, j)) of x-skeleton (resp. y-) has
a unique predecessor, (i − 1, b i

2c)
(resp., (b j

2c, j − 1)).

(b) The tile system for even squares.
The numbers on the sides of each
tile are the IDs of the glues, and the
number of ticks accross the bound-
ary of the tiles stands for the strength
of the glue. The temperature is 2.
Strength 2 glues lie on the lines j =
2i and j = i/2. The green tiles and
the red tile on the diagonal represent
the GO and STOP tiles which prop-
agate (on time) up to the blue and
orange signals carrying the x- and
y-skeletons respectively either to al-
low them to continue their progres-
sion for the next two steps (GO) or to
stop them (STOP) and complete the
square.

Figure 1: The skeleton and the tile systems assembling squares in real time.

• its east and south neighbors (i− 1, j) and (i, j − 1), if u lies between the x- and y-skeletons;
• its west and south neighbors (i+ 1, j) and (i, j − 1), if u lies above the y-skeleton.

We are now left with implementing this real time order with an ordered tile system.

4.2 A real time tile system for squares

The main issue in implementing the real time local order above into a tile system is the synchronization
between the two distant signals carrying the x- and y-skeletons. It turns out that the sites lying between
the x- and y-skeletons are all on time (their ranks equal their `1-norms). We may then use this zone to
transport just-in-time the synchronization signals. We proceed as shown in Figure 1(b). The progress
of the signals carrying the x- and y-skeletons is controlled by the tile placed on the diagonal: if the
GO tile is placed on the diagonal, then the GO signal propagates along the row and column and allows
just-in-time the x- and y-skeletons to jump by one upward and to the right respectively and to progress
for two new steps; if the STOP tile is placed on the diagonal, then the STOP signal propagates along the
row and column and the progression of the x- and y-skeleton stops just-in-time forcing the production
to be completed into a square. In order to obtain even square as well, we have two kinds of STOP tiles:
EVEN and ODD; while EVEN stops where the x- and y-skeleton stoped, ODD allows one single extra
step to extend the length of the sides by one.

The complete description of the tiles and their proof of correctness cannot be given in details due to
space constraints but can be read easily in Figure 1(b). We thus conclude:

Theorem 1. There exists an ordered self-assembling system with 24 tiles (with rotations allowed) whose
final productions at temperature 2 realize exactly the set of all squares Sn in optimal time.



Note that the tile system proposed in Figure 1(b) is not minimal and one can significantly reduce the
number of tiles by shifting the x- and y-skeletons while preserving time optimality. The classic counter-
based technique in the literature [8] which allows to control precisely the size of the assembly can also be
used with this construction. It consists in adding O(log n/ log logn) tiles to force the production of an
n × n square. Instead of choosing non-deterministically the position of the STOP tile on the diagonal,
one can use the on time region between the x- and y-skeletons to simulate a counter (or any other
computation) and have the (ODD or EVEN) STOP tile to be put exactly at (bn/2c, bn/2c). Moreover,
using the same technique, and by launching simultaneously four real time constructions with a counter
in the directions SE, NE, NW, and SW, one can also obtain a real time assembly of a square rooted on
any of its sites.

5 Assembling Cubes in Real Time

We will now show how our framework allows to obtain readably a tri-dimensional tile system which
assemble in optimal time the family of cubes rooted at the origin, Cn = {0, . . . , n− 1}3 for n > 2. We
extend canonically the definitions in Sections 2 and 3 from 2D to 3D.

5.1 The skeleton

As observed in Section 3.2, the assembling of a convex shape by an ordered tile systems is necessarily
driven by three skeletons consisting in the sequence of sites opening each dimension. Taking inspiration
from the 2D tile system designed above, we consider the following x-, y- and z-skeletons heading
from the origin to the centers of the three opposite faces of the cube: ai = (i, bi/2c, bi/2c), bj =
(bj/2c, j, bj/2c) and ck = (bk/2c, bk/2c, k).

As before, we define the rank function σ induced by the skeleton as follows. For each site u =
(i, j, k), let σX(u) = ||ai||1 + ||u−ai||1, σY (u) = ||bj ||1 + ||u−bj ||1, and σZ(u) = ||ck||1 + ||u−ck||1.
The rank of u induced by the skeleton is then: σ(u) = max(σX(u), σY (u), σZ(u)). Since tiles are
assembled from the skeleton by definition of the skeleton, σ(u) is clearly a lower bound on the earliest
time a tile may be placed at u in the parallel dynamics.

Given two neighboring sites u and v in N3, we say that u is a predecessor of v (and v is a successor
of u) if σ(u) < σ(v). We define the order induced by the skeleton ≺ as the transitive closure of the
predecessor relation: u ≺ v if there exists a finite sequence (u0 = u, u1, . . . , uq = v) such that ui−1

is a predecessor of ui for all i = 1, . . . , q. Our goal is to prove that there exists a tile system whose
local order is exactly ≺. We need first to understand the structure of this order, and thus first, the local
variations of σ.

5.2 On the rank function induced by the skeleton

We denote by (ex, ey, ez) the canonical basis of N3. A careful case study yields the following key lemma
describing the variations of σ along the z-axis.

Lemma 2 (Variations of σ along the z-axis). For all site u = (i, j, k) in N3, if max(i, j) 6 2k+ 1, then
σ(u) < σ(u+ ez); and if max(i, j) > 2k, σ(u) < σ(u− ez) (provided that k 6= 0).

We thus define the following “pyramidal” discrete surfaces: ∆X = {(
⌊max(j,k)

2

⌋
, j, k) : j, k > 0},

∆Y = {(i,
⌊max(i,k)

2

⌋
, k) : i, k > 0} and ∆Z = {(i, j,

⌊max(i,j)
2

⌋
) : i, j > 0}. One can reformulate

Lemma 2 as follows: σ is an increasing function of z above ∆Z , and decreasing function of z below
∆Z .

Figure 2 sums up this result graphically. The discrete surfaces ∆X , ∆Y and ∆Z are respectively
painted in blue and pink colors, green and orange colors, and blue and green colors (the meaning of
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Figure 2: The local variations of σ and the corresponding local order in N3 from two points of views: from
(n, n, n) on the left, and from (n, 0, n) on the right. Only the sites with at most 2 predecessors are represented.
Arrows points in σ’s growth direction along the axes. The white arrows stand for simple predecessors; the red
arrow for double predecessors; and the yellow arrows for triple predecessors. One can clearly see the partition
in seven regions filled with sites with 3 simple predecessors, separated by discrete planes made of sites with two
predecessors including at least one double predecessor, intersecting each other on the x-, y- and z-skeletons (in
pure blue, green and red respectively) made of sites with one single triple predecessor.

the colors will be explained in the following sections). The growth directions of σ along each axis are
represented by the large white arrows within each of the seven regions partitioned by these three surfaces
and by small arrows within each surface.

Two important facts follows. First, σ defines a “proper” local order: σ never takes the same value
on two neighboring sites and thus, for every pair of neighboring sites, one is always the predecessor one
of the other. Second, the highest ranked site in each cube Cn+1 is 3n = ||Cn+1||1, which is attained at
the corner (n, n, n). It follows that the order induced by the skeleton matches the real time constraints
as expected.

5.3 Classification of the sites according to their relative positions with their predecessors

Thanks to Lemma 2 and Figure 2, we observe the following properties of the order ≺ induced by σ:

Fact 2. 1. each site has at most three predecessors among its neighbors;
2. the origin is the unique site with no predecessor;
3. a site u has a unique predecessor if and only if u belongs to the skeleton; this predecessor is u−ez

if u lies in the z-skeleton.
4. every site u = (i, j, k) with exactly two predecessors has two opposite neighbors which are its

successors; and these opposite successors are located in u± ez if and only if u belongs to ∆Z .

Multiplicity. We define the multiplicity of the predecessors of the sites as follows (the missing cases
are obtained by symmetry). The multiplicity will be used later on to define the strength of the bond
between the tiles attached on these sites.

• The multiplicity of the predecessors of any site with three predecesors is 1;
• If u 6= 0 belongs to the skeleton, the multiplicity of its unique predecessor is 3;



• If u = (i, j, k) belongs to ∆Z : if b i2c > b j2c (u belongs to the bluish part of ∆Z), the multiplicity
of its predecessor along the y-axis is 2; if b j2c > b i2c (u belongs to the greenish part of ∆Z), the
multiplicity of its predecessor along the x-axis is 2; if both cases apply (u belongs to the diagonal
sites in cyan of ∆Z in Figure 2), both predecessors of u get a multiplicity of 2, otherwise the other
predecessor gets a multiplicity 1.

In Figure 2, the multiplicities of the predecessors with their successors are represented by white, red
or yellow arrows whether the multiplicity is 1, 2, or 3 respectively. The following fact will ensure that
the tile system we will derive from the order in Section 5.5, assembles the productions in the prescribed
order at temperature 3.

Fact 3. For all site u 6= 0, the sum of the multiplicities of its predecessors is at least 3 and the sum of
the multiplicities of any strict subset of its predecessors is at most 2.

5.4 Deducing the successors from the predecessors

A key property needed to obtain the tile system is that the information transmitted by the glues on the
faces a site u shares with its predecessors, is enough, independently of the position of u, to completely
determine the correct glues of the free faces of u. In terms of order, this property consists for now in
checking that one can deduce the correct types of the successors of u from the types of its predecessors
only, and a small number of criteria that can be transmitted from site to site through the glues. Consider
a site u = (i, j, k), four case are possible, represented by the colors in Figure 2.

• If u has a triple predecessor, w.l.o.g., u − ex, then u = ai belongs to the x-skeleton, u has four
double successors u ± ey and u ± ez , and: if i is even, then u + ex = ai+1 is a triple successor,
and a simple successor otherwise.
• If u has two double predecessors, w.l.o.g., u− ex and u− ey (u belongs to the cyan diagonal part

of ∆Z), then u ± ez are both simple successors, and: if i (resp. j) is even, u + ex (resp. u + ey)
is a double successor, and a simple successor otherwise.
• If u has two predecessors, a double and a simple, w.l.o.g., its double and simple predecessors are

respectively u−ex and u−ey and u belongs to the lighter blue part of ∆Z ; then u±ez are simple
successors and u+ ex and u+ ey are respectively double and simple successors as well.
• If u has three simple predecessors, then either u has three simple successors or it has one triple

successor, w.l.o.g. ai+1, and two simple successors; the second alternative arising only if u =
ai + ey + ez , i.e., if u is a successor of ai + ey which is itself a successor of ai.

5.5 A real time tile systems for cubes

It follows from the study above that one can correctly guess the types of the successors of any site from
the only knowledge of: 1) the multiplicity and relative position of its predecessors, 2) the parity of the
corresponding coordinates, and 3) possibly the immediate proximity to a part of the skeleton. We define
thus the glues as a combination of three labels as follows:

• each face holds a label chosen among + + +,++,+,−,−−,−−− according to the multiplicity
of the predecessor/successor relation with the corresponding neighboring site and according to the
orientation of this relation with respect to the corresponding axis.
• each pair of opposite faces holds a 0 or a 1 to propagate the parity of each coordinate.
• each even site a2i of the x-skeleton propagates to a2i + ey which in turn relays to a2i + ey + ez

the fact that the later has to allow a triple successor on its x+-face to attach the next element a2i+1

of the x-skeleton (the same holds for the y- and z-skeletons).



Figure 3: Some pictures of various steps of the real time assembly of a cube in the parallel dynamics. The color
of each site represents its rank modulo 10; the skeleton is represented in white. From left to the right, the sites of
rank at most ρ0 are represented for increasing values of ρ0.

According to the previous subsections, we now have a set of tiles that agregate themselves from the
seed tile according to the desired local order ≺ induced by σ. We are now left with the problem of the
synchronization of the stop of the three distant signals carrying the x-, y- and z-skeletons. As for the
squares in Section 4.2, we can use for that purpose the central region between the three surfaces ∆X ,
∆Y and ∆Z . Indeed an easy calculation demonstrates that this region consists of the union of all the
q × q × q cubes {q, . . . , 2q}3 and that its sites are all on time (recall definition 6) and can thus be used
to propagate from the main diagonal a GO, STOP-EVEN, STOP-ODD signal to the three part of the
skeleton simultaneously and without delay as we did before in the 2D case. We can thus conclude:

Theorem 3. There exists an ordered self-assembling system with a finite number of tiles whose final
productions at temperature 3 realize exactly the set of all cubes Cn in optimal time.
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