CIMPA school on tilings and tesselations

Cellular Automata

Exercises -- session I

Guillaume THEYSSIER (guillaume.theyssier@cnrs.fr)

Exercice 1 : The XOR cellular automaton.

In this exercise we consider the cellular automaton defined by :

$$d = 1, \mathcal{A} = \{0, 1\}, \mathbb{U} = \{-1, 1\}, f(a, b) = a + b \mod 2$$

and therefore

$$F(x)(\mathbf{i}) = x(\mathbf{i} - 1) + x(\mathbf{i} + 1) \mod 2$$

Question 1. Define $x \in \mathcal{A}^{\mathbb{Z}^d}$ by

$$x(\mathbf{i}) = \begin{cases} 1 & \text{if } \mathbf{i} = 0\\ 0 & \text{else.} \end{cases}$$

Compute the space-time diagram of F up to time 8 starting from x.

Question 2. Consider any configuration x. $F^{2^n}(x) = ?$

Question 3. Let us define the group law \oplus on $\mathcal{A}^{\mathbb{Z}}$ by

$$x \oplus y = \mathbf{i} \mapsto x(\mathbf{i}) + y(\mathbf{i}) \mod 2$$

 $F^n(x \oplus y) = ?$

Question 4. A cellular automaton G on $\mathcal{A}^{\mathbb{Z}}$ is linear if $G(x \oplus y) = G(x) \oplus G(y)$. Let Λ be the set of linear CA over $\mathcal{A}^{\mathbb{Z}}$ and $\overline{\oplus}$ is the natural extension of \oplus to maps :

$$(F \oplus G)(x) = F(x) \oplus G(x)$$

- 1. Show that $H \circ (F \oplus G) = H \circ F \oplus H \circ G$ for any $F, G, H \in \Lambda$, where \circ is the composition of maps.
- 2. Quickly check that $(\Lambda, \overline{\oplus}, \circ)$ is a ring.

Question 5. *Give an explicit formula for* $F^n(x)$ *, for any* n*, using only the* $x(\mathbf{i})$ *for* $\mathbf{i} \in \mathbb{Z}$ *.*

Hint. Show that $F = \mathfrak{S}_L \oplus \mathfrak{S}_R$ where \mathfrak{S}_L (resp. \mathfrak{S}_R) is the translation to the left (resp. right).

Question 6. We say that $F^n(x)(0)$ "depends on position i" if the value $F^n(x)(0)$ changes when you change x at position i. How many positions $F^n(x)(0)$ depends on ?

Hint. Use Lucas Lemma (or, of your favorite professor, use the force)

Exercice 2 : Positive expansiveness.

Let's define the trace map $T_F : \mathcal{A}^{\mathbb{Z}} \to (\mathcal{A}^2)^{\mathbb{N}}$ by :

$$T_F(x) = (x_0, x_1), (F(x)_0, F(x)_1), \dots, (F^n(x)_0, F^n(x)_1), \dots$$

Question 7. Show that $T_F(x) = (0,0), (0,0), (0,0), ...$ if and only if x(i) = 0 for all i.

Question 8. Show that $x \neq y$ implies $T_F(x) \neq T_F(y)$.

Question 9. Consider the Cantor metric on $\mathcal{A}^{\mathbb{Z}}$, i.e. the distance between x and y is

 $2^{-min\{|\mathbf{i}|:x(\mathbf{i})\neq y(\mathbf{i})\}}$

Take two configurations $x \neq y$ that are very close, e.g. distant from less than $\frac{1}{1000000}$. Is it possible that $F^n(x)$ and $F^n(y)$ are also very close for all n?

Question 10. Show that $T_F(\mathcal{A}^{\mathbb{Z}}) = (\mathcal{A}^2)^{\mathbb{N}}$.

Exercice 3 : Second order shift.

In this exercise we consider the CA defined by :

 $d = 1, \mathcal{A} = \{0, 1\} \times \{0, 1\}, \mathbb{U} = \{-1, 0\}, f(a, b) = (\pi_1(a) + \pi_2(b) \mod 2, \pi_1(b))$

and therefore

$$F(x)(\mathbf{i}) = (\pi_1(x(\mathbf{i}-1)) + \pi_2(x(\mathbf{i})) \mod 2, \pi_1(x(\mathbf{i})))$$

where π_1 and π_2 denote the projections on the first and second component of A.

Question 11. *Show that F is reversible.*

Question 12. Give an expression of $F^{2^{n+1}}$ using F^{2^n} , the shift maps and the identity map.