Exercises -- session I

Guillaume THEYSSIER (guillaume.theyssier@cnrs.fr)

Exercice 1 : The XOR cellular automaton.

In this exercise we consider the cellular automaton defined by:

\[d = 1, \mathcal{A} = \{0, 1\}, \mathcal{U} = \{-1, 1\}, f(a, b) = a + b \mod 2 \]

and therefore

\[F(x)(i) = x(i - 1) + x(i + 1) \mod 2 \]

Question 1. Define \(x \in \mathcal{A}^\mathbb{Z} \) by

\[x(i) = \begin{cases} 1 & \text{if } i = 0 \\ 0 & \text{else.} \end{cases} \]

Compute the space-time diagram of \(F \) up to time 8 starting from \(x \).

Question 2. Consider any configuration \(x \). \(F^{2^n}(x) = ? \)

Question 3. Let us define the group law \(\oplus \) on \(\mathcal{A}^\mathbb{Z} \) by

\[x \oplus y = i \mapsto x(i) + y(i) \mod 2 \]

\(F^n(x \oplus y) = ? \)

Question 4. A cellular automaton \(G \) on \(\mathcal{A}^\mathbb{Z} \) is linear if \(G(x \oplus y) = G(x) \oplus G(y) \). Let \(\Lambda \) be the set of linear CA over \(\mathcal{A}^\mathbb{Z} \) and \(\oplus \) is the natural extension of \(\oplus \) to maps:

\[(F \oplus G)(x) = F(x) \oplus G(x) \]

1. Show that \(H \circ (F \oplus G) = H \circ F \oplus H \circ G \) for any \(F, G, H \in \Lambda \), where \(\circ \) is the composition of maps.

2. Quickly check that \((\Lambda, \oplus, \circ) \) is a ring.

Question 5. Give an explicit formula for \(F^n(x) \), for any \(n \), using only the \(x(i) \) for \(i \in \mathbb{Z} \).

Hint. Show that \(F = \mathcal{S}_L \oplus \mathcal{S}_R \) where \(\mathcal{S}_L \) (resp. \(\mathcal{S}_R \)) is the translation to the left (resp. right).

Question 6. We say that \(F^n(x)(0) \) “depends on position \(i \)” if the value \(F^n(x)(0) \) changes when you change \(x \) at position \(i \). How many positions \(F^n(x)(0) \) depends on ?

Hint. Use Lucas Lemma (or, of your favorite professor, use the force)

Exercice 2 : Positive expansiveness.

Let’s define the trace map \(T_F : \mathcal{A}^\mathbb{Z} \to (\mathcal{A}^\mathbb{Z})^\mathbb{N} \) by:

\[T_F(x) = (x_0, x_1), (F(x)_0, F(x)_1), \ldots, (F^n(x)_0, F^n(x)_1), \ldots \]
Question 7. Show that \(T_F(x) = (0, 0), (0, 0), (0, 0), \ldots \) if and only if \(x(i) = 0 \) for all \(i \).

Question 8. Show that \(x \neq y \) implies \(T_F(x) \neq T_F(y) \).

Question 9. Consider the Cantor metric on \(A^\mathbb{Z} \), i.e. the distance between \(x \) and \(y \) is
\[
2^{-\min\{|i|: x(i) \neq y(i)\}}
\]
Take two configurations \(x \neq y \) that are very close, e.g. distant from less than \(\frac{1}{1000000} \). Is it possible that \(F^n(x) \) and \(F^n(y) \) are also very close for all \(n \)?

Question 10. Show that \(T_F(A^\mathbb{Z}) = (A^2)^\mathbb{N} \).

Exercise 3: Second order shift.

In this exercise we consider the CA defined by:
\[
d = 1, \ A = \{0, 1\} \times \{0, 1\}, \ U = \{-1, 0\}, \ f(a, b) = (\pi_1(a) + \pi_2(b) \mod 2, \pi_1(b))
\]
and therefore
\[
F(x)(i) = (\pi_1(x(i - 1)) + \pi_2(x(i)) \mod 2, \pi_1(x(i)))
\]
where \(\pi_1 \) and \(\pi_2 \) denote the projections on the first and second component of \(A \).

Question 11. Show that \(F \) is reversible.

Question 12. Give an expression of \(F^{2n+1} \) using \(F^{2n} \), the shift maps and the identity map.