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Tiling a Square with Similar Rectangles 

 Exercise 1 (Determination of the ration) 
a) In order to tile a square with rectangles similar to 1 × 𝑥 (up to rotation) as described in the figure 

below, which ratio 𝑥 can you choose? 

 
Figure 0 

Solution: 

“Similar rectangles” are rectangles with the same “width to length ratio” which can be also be stated as “if 

we have rectangles 𝑎 × 𝑏 and 𝑐 × 𝑑, they are similar if and only if 
𝑎

𝑏
=

𝑐

𝑑
 or 

𝑎

𝑏
=

𝑑

𝑐
” 

The big bounding square, in Figure 0, is 1 × 1. The sum of the widths (the shorter edge of the rectangles) 

of bottom rectangles has to be 1. 

There are 5 of them so each should have a width of 
1

5
. And look at the picture below for more information: 

 



The necessary and sufficient condition for rectangles (1/5) × (1 − 𝑥) and 𝑥 × 1 to be similar is 

1

5

1−𝑥
=

𝑥

1
 

(because we know visually that width of rectangles are 1/5 and 𝑥 respectively). 

Then the desired 𝑥 are the solutions of 𝑥 × (1 − 𝑥) = 1/5 × 1 which in fact is 𝑥2 − 𝑥 + 1/5 = 0 and its 

solutions are 𝑥± =
1±√1/5

2
=

5±√5

10
. 

As it is clear visually from Figure 0, the 𝑥 is greater than 1/2 so 𝑥 in Figure 1, is in fact 𝑥+ =
5+√5

10
. 

b) What happens now if you choose 𝑥 =
5−√5

10
 ? 

For the case 𝑥 = 𝑥− =
5−√5

10
, following picture gives the right visual intuition with the upper rectangle 

being 𝑥 × 1: 

 

 

Simple Proofs of a Rectangle Tiling Theorem 
Theorem 1: If a finite number of rectangles, every one of which has at least one integer side, perfectly tile a big 

rectangle, them the big rectangle also has at least one integer side. 

Fourteen proofs of theorem 1 were published by Wagon:  

Wagon, S. (1987) Fourteen proofs of a result about tiling a rectangle. The American Mathematical 

Monthly 94 (7) : 601-617 

In the following we establish two proofs of this theorem. These proofs generalize to other situations. 

In particular Theorem 1 generalizes to the two following statements. 

Theorem 2: If a finite number of rectangles, every one of which has at least one rational side, perfectly tile a big 

rectangle, them the big rectangle also has at least one rational side. 

Theorem 3: If a finite number of rectangles, every one of which has at least one algebra side, perfectly tile a big 

rectangle, them the big rectangle also has at least one algebra side. 



 Exercise 2 (Rational sides vs. integer sides) 
In order to prove the second theorem why is it enough to prove the first one? 

Solution: We are tiling the big (bounding rectangle) by finitely many small rectangles. So we can find the 

lcm (least common multiple) of all the dominators of all the rational numbers and scale the whole picture 

by that factor so all the rational numbers scale to integers. This way Theorem 2 is reduced to Theorem 1 

(they are equivalent for finite tilings). 

 Exercise 3 (Chessboard proof of Theorem 1) 
Take the big rectangle and align its bottom left corner with a half-integer chessboard, that is, a chessboard 

whose squares have side 1/2. Let the bottom left corner be black. 

1. Prove that if the upper corner of the big rectangle is at (𝑥, 𝑦) the excess black area is 

|𝑥 − 𝑟(𝑥)|. |𝑦 − 𝑟(𝑦)| 
where 𝑟(𝑥) denotes the integer nearest to 𝑥. 

Solution: Define [𝑎] ≔ {𝑔𝑟𝑒𝑎𝑡𝑒𝑠𝑡 𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 𝑜𝑓 𝑎𝑙𝑙 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠 𝑙𝑒𝑠𝑠 𝑡ℎ𝑎𝑛 𝑜𝑟 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑎} = 𝑓𝑙𝑜𝑜𝑟[𝑎]. 
There are 3 types of regions in general as depicted below: 

 

a) Region bounded by integer-side red rectangle. It is a rectangular chessboard with even number of 

columns and rows (since small cells have half-integer sides) so the total number of black and 

white cells in this region is equal and there is no excess black area. 

b) Region bounded by red rectangle with one integer side. For example for the upper (horizontal red 

rectangle in the picture) since the length (horizontal dimension) is an integer, we have even 

number of column and if we consider them in pairs starting from left side, we can see that each 2-

column-pairs has excess black area equal to zero. And it shows that (𝑏) does not contribute to 

excess black areas. 

c) The only region in which there is a possibility of having difference between black and white area, 

is (𝑐) 

 Apart from marginal cases (where 𝑥 or 𝑦 are integers or half-integers) there are 3 cases for (𝑐):  



I. 𝑥 − [𝑥] <
1

2
𝑎𝑛𝑑 𝑦 − [𝑦] < 1/2: so 𝑟(𝑥) = [𝑥] and also it is the case for 𝑦. 

 
So the excess black area is just calculated as stated. 

II. 𝑥 − [𝑥] <
1

2
𝑎𝑛𝑑 𝑦 − [𝑦] > 1/2 (or just exchange the role of x and y): so 𝑟(𝑥) = [𝑥] and 𝑟(𝑦) =

[𝑦] + 1. 

 
So the excess black area should be calculated by calculating the black area minus the white area 

which is: 𝐸𝑥𝑐𝑒𝑠𝑠 = (𝑦 − [𝑦]) × |𝑥 − 𝑟(𝑥)| − 2𝑒 × |𝑥 − 𝑟(𝑥)| = (𝑦 − [𝑦] − 2𝑒) × |𝑥 − 𝑟(𝑥)| =
|𝑦 − 𝑟(𝑦)| × |𝑥 − 𝑟(𝑥)| 
 

III. 𝑥 − [𝑥] >
1

2
𝑎𝑛𝑑 𝑦 − [𝑦] >

1

2
: so 𝑟(𝑥) = [𝑥] + 1 and it’s the same case for 𝑦. 

This case is just the same as the above one and you can derive it yourself easily by adding black 

areas and subtracting white areas. 

 
𝐸𝑥𝑐𝑒𝑠𝑠: (𝑦 − [𝑦]) × (𝑥 − [𝑥]) − 2𝑒 × (𝑥 − [𝑥]) − 2𝑒′ × (𝑦 − [𝑦]) + 2𝑒 × 2𝑒′ 



= ((𝑦 − [𝑦]) − 2𝑒) × ((𝑥 − [𝑥]) − 2𝑒′) = |𝑥 − 𝑟(𝑥)| × |𝑦 − 𝑟(𝑦)| 

 

2. Conclude that if the big rectangle can be tiled by a finite number of rectangles, every one of which 

has at least one integer side, the big rectangle must have an integer side. 

Solution: If |𝑥 − 𝑟(𝑥)|. |𝑦 − 𝑟(𝑦)| = 0 then 𝑥 = 𝑟(𝑥) or 𝑦 = 𝑟(𝑦) which means that at least one 

of 𝑥 𝑜𝑟 𝑦 is an integer .If a rectangle has one integer side then there is no excess black (or white) area 

(with respect to the way we defined the chessboard). If we put some rectangles together where there is no 

excess black area in each, the resulting shape (regardless of the shape) will not have any excess black 

area. Now the statement of theorem is that “we put some rectangles which have at least one integer side, 

to make a big rectangle” so the big rectangle has no excess black area (if we choose (𝑥, 𝑦) =

𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑜𝑝 − 𝑟𝑖𝑔ℎ𝑡 𝑣𝑒𝑟𝑡𝑒𝑥 𝑜𝑓 𝑏𝑖𝑔 𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒 and |𝑥 − 𝑟(𝑥)|. |𝑦 − 𝑟(𝑦)| = 0) which 

concludes the theorem. 

 Exercise 4 (Proof of Theorems 1, 2 and 3 and walks in a graph) 
In the three theorems, at least one of the big rectangle’s sides must have a special property. More 

precisely depending whether we wish to prove Theorem 1, 2 or 3, we will call a number special if it is 

integer, rational or algebraic, respectively. We define a point (𝑥, 𝑦) in the plane to be special if both 

coordinates 𝑥 and 𝑦 are special. 

We associate with each small rectangle four vertices and two edges (see Figure 1). The four vertices are 

the four vertices are the four corners of the rectangle. The two edges are two parallel sides of the rectangle 

that are both special in length. (Every small rectangle has two such special edges, by the statement of the 

theorem.) 

 

1. Prove that if a vertex is special, then its neighboring vertex is also special. 

Solution: We suppose that “neighboring vertex” is just in the graph theory sense which means “there is a 

special edge between two vertices”. According to the definition of being special (being integer, rational 

and algebraic), since integer numbers, rational numbers and algebraic numbers are close under summation 

(or subtraction) and moving from one vertex along a special edge to another vertex means “add/subtract 

two special numbers” so whenever we move from one special vertex along a special edge, we will get to 

another vertex which is also special. 

We now define a graph by identifying all the vertices that have identical coordinates. In this graph there 

may be double edges connecting two vertices. Such double edges are not merged into single edges. 



2. Prove that apart from the four vertices at the corners of the big rectangle, which have degree 1, all 

other vertices have degree two or four. 

 

Solution: Considering rectangles in the plane, there are only 2 possibilities for two rectangles to be 

adjacent (have common edge) and have an edge in common (rectangles A and B are assumed adjacent at 

point P): 

I.  
At vertex P, two edges are being identified so the number of edges at P is 2. 

II.  
At vertex P, four edges are being identified so the number of edges at P is 4. 

3. Aligning the coordinate system such that the bottom left vertex of the big rectangle is at the origin, 

prove that at least one side that is special in length. 



Solution: Except at big rectangle corners (call one of the big rectangle’s corners P), all other vertices have 

even degree. Starting from P, walk through the graph along edges and pass no edge more than once. Since 

the only edges with odd degree are the corners of the big rectangle (and number of edges is finite), we 

will get stuck at a point, call it T, after finite steps (no edges of T are left which have not been passed so 

we cannot go to another vertex from T). Since all vertices that have been passed, even edges of them has 

been traversed (except P which had only one vertex), when we get stuck at vertex T, it means that the 

degree of T must be odd. The proof is complete, since the only vertices with odd degree are the corners of 

the big rectangle (so T is a corner of the big rectangle and it cannot be P because P had only one edge 

which has traversed in the first step). 

 Exercise 5 (Proof of Theorems1, 2 and 3 and higher dimensions) 
Both proofs can be applied to the analogous problem in higher dimensions where each small 

hyperrectangle has one special dimension. 

1. How can you generalize the chessboard proof? Then what is the excess black volume of a 

hyperrectangle that has one corner at the origin and one at 𝑥? 

Solution: Before proceeding to generalize the previous proof, let’s try to understand it a bit differently. If 

we keep the 𝑥 coordinate constant and change the 𝑦 coordinate, the contribution from vertical dimension 

is just |𝑦 − 𝑟(𝑦)|. It means regardless of 𝑥, for calculating excess black area, vertical side is (after 

subtracting the possible white areas) |𝑦 − 𝑟(𝑦)|. So for an 𝑛 dimensional version, we just have to think of 

each dimension separately. So the formula below is concluded: 

𝐸𝑥𝑐𝑒𝑠𝑠 𝑛 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 𝑏𝑙𝑎𝑐𝑘 𝑣𝑜𝑙𝑢𝑚𝑒 = |𝑥1 − 𝑟(𝑥1)| × |𝑥2 − 𝑟(𝑥2)| × … × |𝑥𝑛 − 𝑟(𝑥𝑛)| 

2. How do you define the graph associated with each hyperrectangle in higher dimension? 

Solution: Before trying to solve the question, let’s consider an N-dimensional hyperrectangle and recall 

some basic properties. A rectangle in plane is defined by 2 pairs of parallel lines (hyperplanes of ℝ2), 

normal of each pair being parallel to one of the coordinate axes. Hyperrectangle is defined by d pairs of 

parallel hyperplanes, normal of each pair is parallel to one of the coordinate axes. You can see than each 

hyperrectangle has a total of 2𝑑 vertices and 2𝑑−1 edges in each hyperplane (defining the hyperrectangle). 

By looking from another point of view, we can generalize the argument for the plane case. 

Consider the two dimensional case: We associate a coordinate system to the vertex of intersection, e.g. 

one in the picture. Note that at least one rectangle (denoted by ‘B’) has a vertex at the intersection point, 

otherwise it was not a vertex of the final graph. 



 

We can code each rectangle passing point P according to any arbitrary coordinate chosen, but we 

normalize this notation by choosing coordinate basis in a way that B lies in the first quadrant (all points 

belonging to it have all their coordinates positive). By this convention code the rectangles by 2-tuples and 

the axes they cover according to the rules below: 

if a positive (negative) side of an axes is contained in the rectangle, we put + (-) in that coordinate. 

if an axes (both positive side and negative side) is contained in the rectangle, then we put 0 in that 

coordinates. 

Here are the codes for rectangles in the picture: 

𝐵 = (+, +)    ,   𝐴1 = (+, −)    ,   𝐴2 = (−,0) 

According to the convention above we should have following equations in each vertex (“vol(rectangle)” 

means “number of coordinate regions it covers” or “how many unit squares it covers at intersection 

points”) 

∑ 𝑣𝑜𝑙(𝑅)

𝑎𝑙𝑙 𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒𝑠 𝑅 𝑎𝑡 𝑃

= 2𝑑    𝑤ℎ𝑒𝑟𝑒 𝑑 𝑖𝑠 𝑡ℎ𝑒 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑝𝑎𝑐𝑒        (∗) 

Volume of each rectangle is just calculated with the formula 𝑣𝑜𝑙(𝑅) = 2𝑐𝑜𝑢𝑛𝑡 𝑜𝑓 0𝑠 𝑖𝑛 𝑖𝑡𝑠 𝑐𝑜𝑑𝑒. It is not 

hard to see that function 𝑣𝑜𝑙: 𝑅𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒𝑠 → ℕ just calculates the “ordinary volume ( ℝ𝑛) of intersection 

of Rectanlge with a 2 × 2 × … × 2 Cube centered at P”. 

According to (∗) and the formula for volume, if we remove a rectangle with volume greater than 1, the 

sum of the remaining volumes is still even. More clearly stated: 

𝑉 = ∑ 𝑣𝑜𝑙(𝑅)

𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒𝑠 𝑅 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑧𝑒𝑟𝑜𝑠 𝑖𝑛 𝑡ℎ𝑒𝑖𝑟 𝑐𝑜𝑑𝑒

= 2𝑑 − ∑ 𝑣𝑜𝑙(𝑄)

𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒𝑠 𝑄 𝑤𝑖𝑡ℎ 𝑧𝑒𝑟𝑜𝑠 𝑖𝑛 𝑡ℎ𝑒𝑖𝑟 𝑐𝑜𝑑𝑒

 

The only thing which we care about in the above equality is that 𝑉 𝑖𝑠 𝑒𝑣𝑒𝑛. And also V only counts 

the 𝑣𝑜𝑙 of rectangles with only+ or – in their code which means that they have a corner at P. Let’s apply 

this to the dummy case we had in 2-dimensions: 



𝑣𝑜𝑙(𝐵) = 1, 𝑣𝑜𝑙(𝐴1) = 1, 𝑣𝑜𝑙(𝐴2) = 2 ⇒  ∑ 𝑣𝑜𝑙(𝑅)

𝑅 𝑖𝑠 𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒 𝑎𝑡 𝑃

= 1 + 1 + 2 = 4 = 22 

𝑉 = 𝑣𝑜𝑙(𝐵) + 𝑣𝑜𝑙(𝐴1) = 22 − 𝑣𝑜𝑙(𝐴2) = 2      𝑎𝑛𝑑     #𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒𝑠 𝑤𝑖𝑡ℎ 𝑣𝑒𝑟𝑡𝑒𝑥 𝑎𝑡 𝑃 = 2 

This kind of reasoning was independent of the dimension of the space (it means the conclusion is 

independent of “d”). So in any dimension, 𝑉 = #𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑡𝑜 𝑏𝑒 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑎𝑡 𝑃 is even.  


