Gröbner Bases and Tilings

Amir Hashemi

Isfahan University of Technology & IPM

CIMPA-IRAN school on Tilings and Tessellations, Isfahan, Iran, 2015
Abu Abdallah Muhammed Ibn Mussa Al-Khwarizmi, Persian mathematician, was born in Khwarizm (Kheva) around the year 770, in a village south of the Oxus River in a region that is now named the Uzbekistan (Persian empire, the former Iran). He died around the year 840. He is known for having introduced the concept of mathematical algorithm. *The word algorithm derives from his name.* His algebra treatise “Hisab al-jabr w’al-muqabala” gives us the word algebra and can be considered as the first book to be written on algebra.
Outline of talk

1. Introduction
2. Gröbner bases
 - Monomial Orderings
 - Gröbner Bases
3. Computation of Gröbner Bases
 - History of Gröbner Bases
 - Mathematical Softwares
4. Applications
 - Elimination Theory
 - Solving Polynomial Systems
5. Gröbner Bases over Integers
 - Application to Tilings
Notations

- K; a field e.g. $K = \mathbb{R}, \mathbb{Q}, \ldots$
- x_1, \ldots, x_n; a sequence of variables
- A polynomial is a sum of products of numbers and variables, e.g.
 \[f = x_1 x_2 + 12x_1 - x_2^3 \]
- $R = K[x_1, \ldots, x_n]$; set of all polynomials
- $f_1, \ldots, f_k \in R$ and $F = \{f_1, \ldots, f_k\}$
- $I = \langle F \rangle = \{p_1 f_1 + \cdots + p_k f_k \mid p_i \in R\}$
The variety of a system: Consider \(F = \{f_1, \ldots, f_k\} \)

\[
\begin{align*}
 f_1 &= 0 \\
 &
\end{align*}
\]

\[\vdots\]

\[
\begin{align*}
 f_k &= 0.
\end{align*}
\]

\[\triangleright\quad V(f_1, \ldots, f_k) = V(F) : \text{The solutions of the system}\]

\[
\begin{align*}
 x^2 + y^2 + z^2 &= 4 \\
 x^2 + 2y^2 &= 5 \\
 xz &= 1
\end{align*}
\]

\[\triangleright\quad \text{E.g.}\]

\[
\begin{align*}
 V(f_1, f_2, f_3) = \{(1, \sqrt{2}, 1), \ldots\} \quad \text{where} \\
 f_1 &= x^2 + y^2 + z^2 - 4, \ldots
\end{align*}
\]
What is Algebraic Geometry?

- Studying the solutions of a polynomial system
 i.e. computing $\mathbf{V}(F)$ using algebraic tools:
 - Algebra
 - Geometry
 - Computer Science (Computational Algebraic Geometry)
What is Algebraic Geometry?

- Studying the solutions of a polynomial system
 i.e. computing $\mathbf{V}(F)$ using algebraic tools:
 - Algebra
 - Geometry
 - Computer Science (Computational Algebraic Geometry)

- Example: $I = \langle x^2 - y^2 - z, z - 2 \rangle \subset \mathbb{R}[x, y, z]$
Variables versus Unknowns

- If we consider the equation $x^2 - x + 1 = 0$; i.e. we look for its zeros then x is called an unknown.
Variables versus Unknowns

- If we consider the equation $x^2 - x + 1 = 0$; i.e. we look for its zeros then x is called an *unknown*.
- If we consider the polynomial $x^2 - x + 1$ then x is called a *variable*.
If we consider the equation $x^2 - x + 1 = 0$; i.e. we look for its zeros then x is called an unknown. If we consider the polynomial $x^2 - x + 1$ then x is called a variable. So, the polynomial $x^2 - x + 1$ is never 0.
Variables versus Unknowns

- If we consider the equation \(x^2 - x + 1 = 0 \); i.e. we look for its zeros then \(x \) is called an unknown.
- If we consider the polynomial \(x^2 - x + 1 \) then \(x \) is called a variable.
- So, the polynomial \(x^2 - x + 1 \) is never 0.
- For example if we consider the polynomial \(ax^2 - bx + c = 0 \) in \(x \) then \(a = b = c = 0 \).
If we consider the equation $x^2 - x + 1 = 0$; i.e. we look for its zeros then x is called an unknown.

If we consider the polynomial $x^2 - x + 1$ then x is called a variable.

So, the polynomial $x^2 - x + 1$ is never 0.

For example if we consider the polynomial $ax^2 - bx + c = 0$ in x then $a = b = c = 0$.

\begin{align*}
\text{Equation} & \sim \text{Unknown} \\
\text{Polynomial} & \sim \text{Variable}
\end{align*}
Univariate Polynomial Ring

- Let K be a field and $K[x]$ the ring of polynomials in x
Univariate Polynomial Ring

- Let K be a field and $K[x]$ the ring of polynomials in x
- If $f_1, \ldots, f_k \in K[x]$ then $\langle f_1, \ldots, f_k \rangle = \langle \gcd(f_1, \ldots, f_k) \rangle$
Univariate Polynomial Ring

- Let K be a field and $K[x]$ the ring of polynomials in x
- If $f_1, \ldots, f_k \in K[x]$ then $\langle f_1, \ldots, f_k \rangle = \langle \gcd(f_1, \ldots, f_k) \rangle$
- $K[x]$ is a PID, e.g. $\langle x - 1, x^2 - 1 \rangle = \langle x - 1 \rangle$
Let K be a field and $K[x]$ the ring of polynomials in x
If $f_1, \ldots, f_k \in K[x]$ then $\langle f_1, \ldots, f_k \rangle = \langle \gcd(f_1, \ldots, f_k) \rangle$
$K[x]$ is a PID, e.g. $\langle x - 1, x^2 - 1 \rangle = \langle x - 1 \rangle$
Thus, gcd computations (using Euclid algorithm) can solve many problems in $K[x]$.
Univariate Polynomial Ring

- Let K be a field and $K[x]$ the ring of polynomials in x
- If $f_1, \ldots, f_k \in K[x]$ then $\langle f_1, \ldots, f_k \rangle = \langle \gcd(f_1, \ldots, f_k) \rangle$
- $K[x]$ is a PID, e.g. $\langle x - 1, x^2 - 1 \rangle = \langle x - 1 \rangle$
- Thus, gcd computations (using Euclid algorithm) can solve many problems in $K[x]$
- Suppose that
 \[
 f := x^3 - 6x^2 + 11x - 6
 \]
 \[
 g := x^3 - 10x^2 + 29x - 20
 \]
Let K be a field and $K[x]$ the ring of polynomials in x

If $f_1, \ldots, f_k \in K[x]$ then $\langle f_1, \ldots, f_k \rangle = \langle \gcd(f_1, \ldots, f_k) \rangle$

$K[x]$ is a PID, e.g. $\langle x - 1, x^2 - 1 \rangle = \langle x - 1 \rangle$

Thus, gcd computations (using Euclid algorithm) can solve many problems in $K[x]$

Suppose that

$$f := x^3 - 6x^2 + 11x - 6$$

$$g := x^3 - 10x^2 + 29x - 20$$

Since $\gcd(f, g) = x - 1$ then $V(f, g) = V(\langle f, g \rangle) = V(x - 1)$
Let K be a field and $K[x]$ the ring of polynomials in x

If $f_1, \ldots, f_k \in K[x]$ then $\langle f_1, \ldots, f_k \rangle = \langle \gcd(f_1, \ldots, f_k) \rangle$

$K[x]$ is a PID, e.g. $\langle x - 1, x^2 - 1 \rangle = \langle x - 1 \rangle$

Thus, gcd computations (using Euclid algorithm) can solve many problems in $K[x]$

Suppose that

\[f := x^3 - 6x^2 + 11x - 6 \]
\[g := x^3 - 10x^2 + 29x - 20 \]

Since $\gcd(f, g) = x - 1$ then $V(f, g) = V(\langle f, g \rangle) = V(x - 1)$

The only solution of the system $f = g = 0$ is $x = 1$
Let K be a field and $K[x]$ the ring of polynomials in x.

If $f_1, \ldots, f_k \in K[x]$ then $\langle f_1, \ldots, f_k \rangle = \langle \gcd(f_1, \ldots, f_k) \rangle$.

$K[x]$ is a PID, e.g. $\langle x - 1, x^2 - 1 \rangle = \langle x - 1 \rangle$.

Thus, gcd computations (using Euclid algorithm) can solve many problems in $K[x]$.

Suppose that

$$f := x^3 - 6x^2 + 11x - 6$$

$$g := x^3 - 10x^2 + 29x - 20$$

Since $\gcd(f, g) = x - 1$ then $V(f, g) = V(\langle f, g \rangle) = V(x - 1)$.

The only solution of the system $f = g = 0$ is $x = 1$.

Membership Problem: $x^2 - 1 \in \langle f, g \rangle$ because $x - 1 \mid x^2 - 1$.
Two Questions

\[R = K[x_1, \ldots, x_n]; \text{ a multivariate polynomial ring} \]
\[F \subset R; \text{ a finite set of polynomials} \]
\[I \subset R; \text{ an ideal} \]

- Membership problem: \(h \in I? \)
- Solving polynomial systems: \(\mathbf{V}(F)? \)

- In practice, the answer to these questions is not easy!
Two Questions

☞ \(R = K[x_1, \ldots, x_n] \); a multivariate polynomial ring
☞ \(F \subset R \); a finite set of polynomials
☞ \(I \subset R \); an ideal

- Membership problem: \(h \in I \)?
- Solving polynomial systems: \(V(F) \)?

- In practice, the answer to these questions is not easy!
- Gröbner bases can answer them!
Multivariate Polynomial Ring

\[F \subset K[x_1, \ldots, x_n] \]
Multivariate Polynomial Ring

- $F \subset K[x_1, \ldots, x_n]$
- $V(F)$ doesn't depend on the generators of $\langle F \rangle$
Multivariate Polynomial Ring

- $F \subset K[x_1, \ldots, x_n]$
- $\mathbf{V}(F)$ doesn't depend on the generators of $\langle F \rangle$
- $f := 2x^2 + 3y^2 - 11$, $g := x^2 - y^2 - 3$
Multivariate Polynomial Ring

- \(F \subset K[x_1, \ldots, x_n] \)
- \(V(F) \) doesn't depend on the generators of \(\langle F \rangle \)
- \(f := 2x^2 + 3y^2 - 11, \ g := x^2 - y^2 - 3 \)
- Since \(\langle f, g \rangle = \langle x^2 - 4, y^2 - 1 \rangle \) then \(V(f, g) = \{ (\pm 2, \pm 1) \} \)
Multivariate Polynomial Ring

- \(F \subset K[x_1, \ldots, x_n] \)
- \(V(F) \) doesn't depend on the generators of \(\langle F \rangle \)
- \(f := 2x^2 + 3y^2 - 11, g := x^2 - y^2 - 3 \)
- Since \(\langle f, g \rangle = \langle x^2 - 4, y^2 - 1 \rangle \) then \(V(f, g) = \{ (\pm 2, \pm 1) \} \)
- So we look for a more convenient generating set for \(\langle F \rangle \)
Multivariate Polynomial Ring

- \(F \subset K[x_1, \ldots, x_n] \)
- \(V(F) \) doesn't depend on the generators of \(\langle F \rangle \)
- \(f := 2x^2 + 3y^2 - 11, g := x^2 - y^2 - 3 \)
- Since \(\langle f, g \rangle = \langle x^2 - 4, y^2 - 1 \rangle \) then \(V(f, g) = \{ (\pm 2, \pm 1) \} \)
- So we look for a more convenient generating set for \(\langle F \rangle \)
- To bring it into computer, we need \(|F| < \infty \)
Multivariate Polynomial Ring

- $F \subset K[x_1, \ldots, x_n]$
- $V(F)$ doesn't depend on the generators of $\langle F \rangle$
- $f := 2x^2 + 3y^2 - 11, g := x^2 - y^2 - 3$
- Since $\langle f, g \rangle = \langle x^2 - 4, y^2 - 1 \rangle$ then $V(f, g) = \{ (\pm 2, \pm 1) \}$
- So we look for a more convenient generating set for $\langle F \rangle$
- To bring it into computer, we need $|F| < \infty$
- By Hilbert Basis Theorem there exist $f_1, \ldots, f_m \in F$ so that

$$\langle F \rangle = \langle f_1, \ldots, f_m \rangle$$
Polynomial Ring

- K a field

- We denote the monomial $x_1^{\alpha_1} \cdots x_n^{\alpha_n}$ by X^α with $\alpha = (\alpha_1, \ldots, \alpha_n)$

- \{monomials in R\} $\leftrightarrow \mathbb{Z}_{\geq 0}^n$

- If X^α is a monomial and $a \in K$, then aX^α is a term

- A polynomial is a finite sum of terms.

$R = K[x_1, \ldots, x_n]$; the ring of all polynomials.
Definition

A **monomial ordering** is a total ordering \prec on the set of monomials $X^\alpha = x_1^{\alpha_1} \cdots x_n^{\alpha_n}, \alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{Z}_{\geq 0}^n$ such that,

- $X^\alpha \prec X^\beta \implies X^{\alpha+\gamma} \prec X^{\beta+\gamma}$ and
- $1 \prec X^\alpha$ for all α

Convention

For a monomial $X^\alpha = x_1^{\alpha_1} \cdots x_n^{\alpha_n}$, We call $|\alpha| := \alpha_1 + \cdots + \alpha_n$, the total degree of X^α.
Some important monomial orderings

Lex (Lexicographic) Ordering

\[X^\alpha \prec_{\text{lex}} X^\beta \text{ if leftmost nonzero of } \alpha - \beta \text{ is } < 0 \]

Degree Reverse Lex Ordering

\[X^\alpha \prec_{\text{drl}} X^\beta \text{ if } \begin{cases} |\alpha| < |\beta| \\ \text{or} \\ |\alpha| = |\beta| \text{ and rightmost nonzero of } \alpha - \beta \text{ is } > 0 \end{cases} \]

Example

\[x < x^3 \quad x^2y^3 \prec_{\text{lex}(x,y)} x^3y^2 \quad x^3y \prec_{\text{drl}(x,y)} xy^5 \]
Notations

\(R = K[x_1, \ldots, x_n], f \in R \)

\(\prec \) a monomial ordering on \(R \)

\(I \subset R \) an ideal

LM(\(f \)): The greatest monomial (with respect to \(\prec \)) in \(f \)

\[5x^3y^2 + 4x^2y^3 + xy + 1 \]

LC(\(f \)): The coefficient of **LM(\(f \))** in \(f \)

\[5x^3y^2 + 4x^2y^3 + xy + 1 \]

LT(\(f \)): **LC(\(f \))**\(\text{LM}(f) \)

\[5x^3y^2 + 4x^2y^3 + xy + 1 \]

LT(\(I \)): \(<\text{LT}(f) \mid f \in I>\)
Introduction
Gröbner bases
Computation of Gröbner Bases
Applications
Gröbner Bases over Integers

Monomial Orderings
Gröbner Bases

Definition

▷ $I \subset K[x_1, \ldots, x_n]$
▷ \prec A monomial ordering
▷ A finite set $G \subset I$ is a Gröbner Basis for I w.r.t. \prec, if

$$\text{LT}(I) = \langle \text{LT}(g) \mid g \in G \rangle$$

Existence of Gröbner bases

Each ideal has a Gröbner basis

Example

$I = \langle xy - x, x^2 - y \rangle$, $y \prec_{\text{lex}} x$

$\text{LT}(I) = \langle x^2, xy, y^2 \rangle$

A Gröbner basis is: $\{xy - x, x^2 - y, y^2 - y\}$.
Unicity

Definition

- $G \subseteq I$ is a reduced Gröbner basis w.r.t. \prec if
 - G is a Gröbner basis for I w.r.t. \prec
 - $\forall g \in G$, $\text{LC}(g) = 1$
 - $\forall f, g \in G$, $\text{LT}(f) \nmid \text{any term of } g$

Theorem

Every ideal I has a unique reduced Gröbner basis w.r.t. \prec
Theorem

Fix a monomial ordering \prec and let $F := (f_1, \ldots, f_k)$ be an ordered s–tuple of polynomials in $K[x_1, \ldots, x_n]$. Then, every $f \in K[x_1, \ldots, x_n]$ can be written as

$$f = q_1 f_1 + \cdots + q_k f_k + r$$

where $q_i, r \in K[x_1, \ldots, x_n]$ and either $r = 0$ or no term of r is divisible by any of $\text{LT}(f_1), \ldots, \text{LT}(f_k)$. We call r, the remainder on division of f by F.
Algorithm 1 Division Algorithm

Require: f, f_1, \ldots, f_k and \prec
Ensure: q_1, \ldots, q_k, r

$q_1 := 0; \cdots ; q_k := 0$
$p := f$

while $\exists f_i$ s.t. $\text{LT}(f_i)$ divides a term m in p do

$q_i := q_i + \frac{m}{\text{LT}(f_i)}$
$p := p - \left(\frac{m}{\text{LT}(f_i)}\right)f_i$

end while

return q_1, \ldots, q_k, p
Example

- Divide $f = xy^2 + 1$ by $f_1 = xy + 1$, $f_2 = y + 1$ and $y <_{lex} x$
Example

- Divide \(f = xy^2 + 1 \) by \(f_1 = xy + 1, f_2 = y + 1 \) and \(y <_{lex} x \)
- \(f \rightarrow (xy^2 + 1) - y(xy + 1) = 1 - y \rightarrow (1 - y) + (y + 1) = 2 \)
Example

- Divide $f = xy^2 + 1$ by $f_1 = xy + 1$, $f_2 = y + 1$ and $y \prec_{\text{lex}} x$
- $f \rightarrow (xy^2 + 1) - y(xy + 1) = 1 - y \rightarrow (1 - y) + (y + 1) = 2$
- So we can write $f = y(xy + 1) + (-1)(y + 1) + 2$
Example

- Divide $f = xy^2 + 1$ by $f_1 = xy + 1$, $f_2 = y + 1$ and $y \prec_{lex} x$
- $f \rightarrow (xy^2 + 1) - y(xy + 1) = 1 - y \rightarrow (1 - y) + (y + 1) = 2$
- So we can write $f = y(xy + 1) + (-1)(y + 1) + 2$
Example

1. Divide \(f = xy^2 + 1 \) by \(f_1 = xy + 1 \), \(f_2 = y + 1 \) and \(y \prec_{\text{lex}} x \)

2. \(f \rightarrow (xy^2 + 1) - y(xy + 1) = 1 - y \rightarrow (1 - y) + (y + 1) = 2 \)

3. So we can write \(f = y(xy + 1) + (-1)(y + 1) + 2 \)

Example

1. \(f = xy^2 + x^2y + y^2, f_1 = y^2 - 1, f_2 = xy - 1, y \prec_{\text{lex}} x \)

2. \(f = (x + 1)f_1 + xf_2 + 2x + 1 \)

3. \(f = (x + y)f_2 + f_1 + x + y + 1 \)

⇒ The remainder is not unique.
Example

- Divide $f = xy^2 + 1$ by $f_1 = xy + 1$, $f_2 = y + 1$ and $y <_{lex} x$
- $f \rightarrow (xy^2 + 1) - y(xy + 1) = 1 - y \rightarrow (1 - y) + (y + 1) = 2$
- So we can write $f = y(xy + 1) + (-1)(y + 1) + 2$

Example

- $f = xy^2 + x^2y + y^2$, $f_1 = y^2 - 1$, $f_2 = xy - 1$, $y <_{lex} x$
- $f = (x + 1)f_1 + xf_2 + 2x + 1$
- $f = (x + y)f_2 + f_1 + x + y + 1$
- The remainder is not unique.

Theorem

$\{g_1, \ldots, g_k\}$ is a Gröbner basis iff for each $f \in R$ the remainder of f by G is unique.
Buchberger’s Criterion

Definition

S-polynomial

\[\text{Spoly}(f, g) = \frac{x^\gamma}{\text{LT}(f)} f - \frac{x^\gamma}{\text{LT}(g)} g \]

\[x^\gamma = \text{lcm}(\text{LM}(f), \text{LM}(g)) \]

\[\text{Spoly}(x^3y^2 + xy^3, xyz - z^3) = z(x^3y^2 + xy^3) - x^2y(xyz - z^3) = zxy^3 + x^2yz^3 \]

Buchberger’s Criterion

- \(G \) is a Gröbner basis for \(\langle G \rangle \)
- \(\forall g_i, g_j \in G, \) remainder\((\text{Spoly}(g_i, g_j), G) = 0 \)
Algorithm 2 **Buchberger’s Algorithm**

Require: $F := (f_1, \ldots, f_s)$ and \prec

Ensure: A Gröbner basis for the ideal $\langle f_1, \ldots, f_s \rangle$ w.r.t. \prec

\[
G := F \\
B := \{\{f, g\} | f, g \in F\}
\]

while $B \neq \emptyset$ **do**

Select and remove a pair $\{f, g\}$ from B

Let r be the remainder of $\text{Spoly}(f, g)$ by F

if $r \neq 0$ **then**

\[
B := B \cup \{\{h, r\} | h \in G\} \\
G := G \cup \{r\}
\]

end if

end while

return G
Example

\[I = \langle f_1, f_2 \rangle = \langle xy - x, x^2 - y \rangle \quad y <_{lex} x \]

\[G := \{ f_1, f_2 \} \]

\[\text{Spoly}(f_1, f_2) = xf_1 - yf_2 = y^2 - x^2 \quad \xRightarrow{f_2} \quad y^2 - y = f_3 \]

\[G := \{ f_1, f_2, f_3 \} \]

\[\text{Spoly}(f_i, f_j) \xrightarrow{G} 0 \]

\[G := \{ f_1, f_2, f_3 \} \text{ is a Gröbner basis for } I \]
Buchberger, 65:
- Developing the theory of Gröbner bases
- Buchberger criteria

Lazard, 83:
- Using linear algebra

Gebauer, Möller, 88:
- Installing Buchberger criteria

Faugère, 93, 94, 02:
- FGLM
- F_4 algorithm (intensive linear algebra)
- F_5 algorithm

Gao, Volny, 10:
- G^2V (with Guan)
- GVW (with Wang)
MAGMA
University of Sydney, Australia

MAPLE
University of Waterloo, Canada

SINGULAR
University of Kaiserslautern, Germany

MACAULAY 2
University of Cornell, USA

COCOA
University of Geneva, Italy
Ideal Membership

Theorem

\[f \in I \text{ iff } f \sim_G 0 \text{ where } G \text{ is a GB of } I \]

Example

\[I = \langle xy - x, x^2 - y \rangle \]

Is \(y^2 + y \in I \)?
Ideal Membership

Theorem

\[f \in I \text{ iff } f \sim_G 0 \text{ where } G \text{ is a GB of } I \]

Example

- \(I = \langle xy - x, x^2 - y \rangle \)
- Is \(y^2 + y \in I \)?
- \(y \prec_{\text{lex}} x \)
- The reduced Gröbner basis of \(I \) is
 \(G = \{ xy - x, x^2 - y, y^2 - y \} \)
 \(\Rightarrow y^2 + y \not\sim_G 2y \neq 0, \text{ and thus } y^2 + y \notin I. \)
Ideal Membership (cont.)

Theorem (Weak Hilbert’s Nullstellensatz)

\[\text{V}(F) = \emptyset \iff 1 \in \langle F \rangle \iff 1 \in G \]

Example

- Let \(F \) be the set
 \[\{ x^2 + 3y + z - 1, x - 3y^2 - z^2, x - y, y^2 - zxy - x, x^2 - y \} \]
- \(I = \langle F \rangle \)
- \(z <_{\text{lex}} y <_{\text{lex}} x \)
- The reduced Gröbner basis of \(I \) is \(= \{ 1 \} \)
- \(\Rightarrow \text{V}(F) = \emptyset \)
Elimination

Theorem

\[I \subset K[x_1, \ldots, x_n]; \text{an ideal} \]

\[G \subset I; \text{a GB of } I \text{ for } x_n \prec_{\text{lex}} \cdots \prec_{\text{lex}} x_1 \]

\[\Rightarrow G \cap K[x_i, \ldots, x_n] \text{ generates } I \cap K[x_i, \ldots, x_n]. \]

Example

\[I = \langle x^2 + y^2 + z^2 - 4, x^2 + 2y^2 - 5, xz - 1 \rangle \]

\[\text{Gröbner basis of } I \text{ w.r.t. } z \prec_{\text{lex}} x \prec_{\text{lex}} y \]

\[\{1 - 3z^2 + 2z^4, -1 - z^2 + y^2, -3z + 2z^3 + x\} \]

\[\Rightarrow I \cap K[z, x] = \langle 1 - 3z^2 + 2z^4, -3z + 2z^3 + x \rangle. \]
Solving Polynomial Systems

\[
\begin{aligned}
 x^2 + y^2 + z^2 & = 4 \\
 x^2 + 2y^2 & = 5 \\
 xyz & = 1
\end{aligned}
\]
Solving Polynomial Systems

\[
\begin{align*}
 x^2 + y^2 + z^2 &= 4 \\
 x^2 + 2y^2 &= 5 \\
 xz &= 1
\end{align*}
\]

\[I = \langle x^2 + y^2 + z^2 - 4, x^2 + 2y^2 - 5, xz - 1 \rangle \]
Solving Polynomial Systems

\[
\begin{aligned}
x^2 + y^2 + z^2 &= 4 \\
x^2 + 2y^2 &= 5 \\
xz &= 1 \\
\end{aligned}
\]

▷ $I = \langle x^2 + y^2 + z^2 - 4, x^2 + 2y^2 - 5, xz - 1 \rangle$

▷ Gröbner basis of I w.r.t. $z \prec_{\text{lex}} x \prec_{\text{lex}} y$

\[
\{1 - 3z^2 + 2z^4, -1 - z^2 + y^2, -3z + 2z^3 + x\}
\]
Solving Polynomial Systems

\[
\begin{align*}
 x^2 + y^2 + z^2 &= 4 \\
 x^2 + 2y^2 &= 5 \\
 xz &= 1
\end{align*}
\]

\(I = \langle x^2 + y^2 + z^2 - 4, x^2 + 2y^2 - 5, xz - 1 \rangle \)

Gröbner basis of \(I \) w.r.t. \(z \prec_{lex} x \prec_{lex} y \)

\[\{ 1 - 3z^2 + 2z^4, -1 - z^2 + y^2, -3z + 2z^3 + x \}\]

The zero set corresponding to \(G \) is equal to the that of the initial system.
Solving Polynomial Systems

\[
\begin{align*}
x^2 + y^2 + z^2 &= 4 \\
x^2 + 2y^2 &= 5 \\
xyz &= 1 \\
\end{align*}
\]

\(I = \langle x^2 + y^2 + z^2 - 4, x^2 + 2y^2 - 5, xyz - 1 \rangle \)

\(\triangleright \) Gröbner basis of \(I \) w.r.t. \(z <_{lex} x <_{lex} y \)

\[
\{ 1 - 3z^2 + 2z^4, -1 - z^2 + y^2, -3z + 2z^3 + x \}
\]

\(\triangleright \) The zero set corresponding to \(G \) is equal to the that of the initial system.

\[
\begin{align*}
3z^2 - 2z^4 &= 1 \\
-z^2 + y^2 &= 1 \\
-3z + 2z^3 + x &= 0 \\
\end{align*}
\]
Solving Polynomial Systems

\[
\begin{align*}
 x^2 + y^2 + z^2 &= 4 \\
 x^2 + 2y^2 &= 5 \\
 xz &= 1
\end{align*}
\]

▷ \(I = \langle x^2 + y^2 + z^2 - 4, x^2 + 2y^2 - 5, xz - 1 \rangle \)

▷ Gröbner basis of \(I \) w.r.t. \(z \prec_{\text{lex}} x \prec_{\text{lex}} y \)

\(\{1 - 3z^2 + 2z^4, -1 - z^2 + y^2, -3z + 2z^3 + x\} \)

▷ The zero set corresponding to \(G \) is equal to the that of the initial system.

\[
\begin{align*}
 3z^2 - 2z^4 &= 1 \\
 -z^2 + y^2 &= 1 \\
 -3z + 2z^3 + x &= 0
\end{align*}
\]

\((1, \pm \sqrt{2}, 1), (-1, \pm \sqrt{2}, -1), (\sqrt{2}, \pm \sqrt{6}/2, 1/\sqrt{2}), (-\sqrt{2}, \pm \sqrt{6}/2, -1/\sqrt{2}) \)
\[(1, \pm \sqrt{2}, 1), (-1, \pm \sqrt{2}, -1), (\sqrt{2}, \pm \sqrt{6}/2, 1/\sqrt{2}), (-\sqrt{2}, \pm \sqrt{6}/2, -1/\sqrt{2})\]
Theorem

Consider a rational parametrization:

\[
\begin{align*}
x_1 &= \frac{f_1(t_1,\ldots,t_m)}{g_1(t_1,\ldots,t_m)} \\
\vdots & \quad \vdots \\
x_n &= \frac{f_n(t_1,\ldots,t_m)}{g_n(t_1,\ldots,t_m)}
\end{align*}
\]

▷ \(I = \langle x_1 g_1 - f_1, \ldots, x_n g_n - f_n, 1 - y g_1 \cdots g_n \rangle \)

▷ Note that \(I \subset K[x_1, \ldots, x_n, t_1, \ldots, t_m, y] \)

⇒ \(I \cap K[x_1, \ldots, x_n] \) provides an implication.
Example

Consider the folium of Descartes:

\[
\begin{align*}
 x_1 &= \frac{3t}{1 + t^3} \\
 x_2 &= \frac{3t^2}{1 + t^3}
\end{align*}
\]

▷ \(I = \langle x_1(1 + t^3) - 3t, x_2(1 + t^3) - 3t^2, 1 - y(1 + 3t^2) \rangle \)

▷ \(G := \text{A GB of } I \text{ w.r.t. } x_1 <_{\text{lex}} x_2 <_{\text{lex}} t <_{\text{lex}} y \)

⇒ Since \(x_1^3 + x_2^3 - 3x_1x_2 \in G \) then

\[
x_1^3 + x_2^3 = 3x_1x_2
\]

is an implicitation of the curve.
Computing Minimal Polynomial

Definition

Let M be a square matrix over the field K. The monic polynomial $m \in K[x]$ where

\[
\langle m \rangle = \langle f \in K[x] \mid f(M) = 0 \rangle
\]

is called **minimal polynomial** of M

Example

Minimal polynomial of

\[
\begin{pmatrix}
2 & 1 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & -2 & 4
\end{pmatrix}
\]

is $x^3 - 7x^2 + 16x - 12$
Algorithm for Computing Minimal Polynomial

\[M := \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, M^2 = \begin{pmatrix} 7 & 10 \\ 15 & 22 \end{pmatrix} \]
Algorithm for Computing Minimal Polynomial

Input \(M := \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, M^2 = \begin{pmatrix} 7 & 10 \\ 15 & 22 \end{pmatrix} \)

\(m := a_2 x^2 + a_1 x + a_0 \)
Algorithm for Computing Minimal Polynomial

Input $M := \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$, $M^2 = \begin{pmatrix} 7 & 10 \\ 15 & 22 \end{pmatrix}$

$m := a_2 x^2 + a_1 x + a_0$

$a_2 M^2 + a_1 M + a_0 I_{2\times2} = \begin{pmatrix} 7a_2 + a_1 + a_0 & 10a_2 + 2a_1 \\ 15a_2 + 3a_1 & 22a_2 + 4a_1 + a_0 \end{pmatrix} = 0$
Algorithm for Computing Minimal Polynomial

Input $M := \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, M^2 = \begin{pmatrix} 7 & 10 \\ 15 & 22 \end{pmatrix}$

$m := a_2 x^2 + a_1 x + a_0$

$a_2 M^2 + a_1 M + a_0 I_{2 \times 2} =
\begin{pmatrix} 7a_2 + a_1 + a_0 & 10a_2 + 2a_1 \\ 15a_2 + 3a_1 & 22a_2 + 4a_1 + a_0 \end{pmatrix} = 0$

$I := \langle 7a_2 + a_1 + a_0, 10a_2 + 2a_1, 15a_2 + 3a_1, 22a_2 + 4a_1 + a_0 \rangle$
Input $M := \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$, $M^2 = \begin{pmatrix} 7 & 10 \\ 15 & 22 \end{pmatrix}$

$m := a_2 x^2 + a_1 x + a_0$

$a_2 M^2 + a_1 M + a_0 I_{2 \times 2} =
\begin{pmatrix}
7a_2 + a_1 + a_0 & 10a_2 + 2a_1 \\
15a_2 + 3a_1 & 22a_2 + 4a_1 + a_0
\end{pmatrix} = 0$

$I := \langle 7a_2 + a_1 + a_0, 10a_2 + 2a_1, 15a_2 + 3a_1, 22a_2 + 4a_1 + a_0 \rangle$

$G := \{2a_1 - 5a_0, 2a_2 + a_0\}$ GB w.r.t. $a_0 \prec_{lex} a_1 \prec_{lex} a_2$
Algorithm for Computing Minimal Polynomial

Input \(M := \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, M^2 = \begin{pmatrix} 7 & 10 \\ 15 & 22 \end{pmatrix} \)

\(m := a_2x^2 + a_1x + a_0 \)

\(a_2M^2 + a_1M + a_0I_{2 \times 2} = \)
\[
\begin{pmatrix}
7a_2 + a_1 + a_0 & 10a_2 + 2a_1 \\
15a_2 + 3a_1 & 22a_2 + 4a_1 + a_0
\end{pmatrix} = 0
\]

\(I := \langle 7a_2 + a_1 + a_0, 10a_2 + 2a_1, 15a_2 + 3a_1, 22a_2 + 4a_1 + a_0 \rangle \)

\(G := \{2a_1 - 5a_0, 2a_2 + a_0\} \) GB w.r.t. \(a_0 \prec_{lex} a_1 \prec_{lex} a_2 \)

\(m := \text{Remainder}(m, G) = -\frac{1}{2}a_0x^2 + \frac{5}{2}a_0x + a_0 \)
Algorithm for Computing Minimal Polynomial

Input

\[M := \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, M^2 = \begin{pmatrix} 7 & 10 \\ 15 & 22 \end{pmatrix} \]

\[m := a_2x^2 + a_1x + a_0 \]

\[a_2M^2 + a_1M + a_0I_{2 \times 2} = \begin{pmatrix} 7a_2 + a_1 + a_0 & 10a_2 + 2a_1 \\ 15a_2 + 3a_1 & 22a_2 + 4a_1 + a_0 \end{pmatrix} = 0 \]

\[I := \langle 7a_2 + a_1 + a_0, 10a_2 + 2a_1, 15a_2 + 3a_1, 22a_2 + 4a_1 + a_0 \rangle \]

\[G := \{ 2a_1 - 5a_0, 2a_2 + a_0 \} \text{ GB w.r.t. } a_0 \prec_{\text{lex}} a_1 \prec_{\text{lex}} a_2 \]

\[m := \text{Remainder}(m, G) = -\frac{1}{2}a_0x^2 + \frac{5}{2}a_0x + a_0 \]

\[a_0 \neq 0, \text{ so } m := \frac{-m}{-\frac{1}{2}a_0} = x^2 - 5x - 2 \]
Algorithm for Computing Minimal Polynomial

Input $M := \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$, $M^2 = \begin{pmatrix} 7 & 10 \\ 15 & 22 \end{pmatrix}$

$m := a_2 x^2 + a_1 x + a_0$

$a_2 M^2 + a_1 M + a_0 I_{2 \times 2} =$

$\begin{pmatrix} 7a_2 + a_1 + a_0 & 10a_2 + 2a_1 \\ 15a_2 + 3a_1 & 22a_2 + 4a_1 + a_0 \end{pmatrix} = 0$

$I := \langle 7a_2 + a_1 + a_0, 10a_2 + 2a_1, 15a_2 + 3a_1, 22a_2 + 4a_1 + a_0 \rangle$

$G := \{2a_1 - 5a_0, 2a_2 + a_0\}$ GB w.r.t. $a_0 \prec_{\text{lex}} a_1 \prec_{\text{lex}} a_2$

$m := \text{Remainder}(m, G) = -\frac{1}{2}a_0 x^2 + \frac{5}{2}a_0 x + a_0$

$a_0 \neq 0$, so $m := \frac{m}{-\frac{1}{2}a_0} = x^2 - 5x - 2$

\Rightarrow Minimal polynomial of M is $x^2 - 5x - 2$
Algorithm 3 MinPoly

Require: $M_{n \times n}$

Ensure: Minimal polynomial m of M in x

$I := \langle \sum_{k=0}^{n} a_k M^k [i,j] \mid i,j = 1, \ldots, n \rangle$

$G :=$ A Gröbner basis for I w.r.t. $a_0 \prec_{lex} \ldots \prec_{lex} a_n$

$d := |G|$

$m :=$ Remainder$(\sum_{i=0}^{d} a_i x^i, G_{a_{d+1}=\ldots=a_n=0})$

$m := \frac{m}{\text{LC}(m)}$

Return(m)
A Surprising Example

Timing

M : a random 90×90 matrix

<table>
<thead>
<tr>
<th></th>
<th>time (sec)</th>
<th>memory (Gb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MinPoly</td>
<td>19m39s</td>
<td>8.3</td>
</tr>
<tr>
<td>Maple</td>
<td>7h26m33s</td>
<td>74.6</td>
</tr>
</tbody>
</table>
Definition. A simple graph G is proper k–colorable if one can assign k colors to the vertices of G such that the adjacent vertices receive different colors.

Three questions:

- Is a simple graph k–colorable?
- If yes, how many solutions?
- If yes, how we can find all the solutions?

Example. 3–colorable?
• Assign x_i to the vertex i
• Correspond a 3-th root of unity to a color

$I := \langle x_1^3 - 1, \ldots, x_5^3 - 1 \rangle$
$I := I + \langle x_i^2 + x_i x_j + x_j^2 \mid (i, j) \text{ is an edge} \rangle$

Theorem

The elements of $V(I)$ provide the different possible colorings and $|V(I)| = \text{the number of colorings}$

Algorithm for Graph Coloring

▷ Compute a Gröbner basis for I
▷ if $1 \in G \implies G$ is not k–colorable
▷ else, compute $V(I)$ using G
The corresponding polynomial system:

\[F := [x_1^3 - 1, \ldots, x_4^2 + x_4 x_5 + x_5^2]; \]

with(Groebner); G:=Basis(F,plex(x_1,\ldots,x_5));

\[G = [x_5^3 - 1, x_4^2 + x_4 x_5 + x_5^2, x_5 + x_3 + x_4, x_2 - x_4, x_1 + x_4 + x_5] \]

Theorem

The set of zeros of \(F \) *is equal to the one of* \(G \).

- \(x_5 \in \{1, \omega, \omega^2\} \), we let \(x_5 = 1 \)
- by second equation \(x_4 \neq x_5 \), so \(x_4 \in \{\omega, \omega^2\} \), we set \(x_4 = \omega \)
- \(x_3 = \omega^2, x_2 = \omega, x_1 = \omega^2. \)
\[V(I) = \begin{cases}
(\omega & \omega^2 & \omega & \omega^2 & 1 \\
\omega^2 & \omega & \omega^2 & \omega & 1 \\
\omega & 1 & \omega & 1 & \omega^2 \\
1 & \omega & 1 & \omega & \omega^2 \\
\omega^2 & 1 & \omega^2 & 1 & \omega \\
1 & \omega^2 & 1 & \omega^2 & \omega
\end{cases} \]
Consider $F : K^n \rightarrow K^n$ with
$$F(a_1, \ldots, a_n) = (f_1(a_1, \ldots, a_n), \ldots, f_n(a_1, \ldots, a_n))$$

Suppose that $J(F) = \det\left[\begin{array}{ccc}
\frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_n}{\partial x_1} & \cdots & \frac{\partial f_n}{\partial x_n}
\end{array}\right]$.

If $J(F)(p) \neq 0$ then F has a local inverse at $p \in K^n$.

Amir Hashemi
Gröbner Bases and Tilings
Consider $F : \mathbb{K}^n \mapsto \mathbb{K}^n$ with

$F(a_1, \ldots, a_n) = (f_1(a_1, \ldots, a_n), \ldots, f_n(a_1, \ldots, a_n))$

Suppose that $J(F) = \det \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \cdots & \frac{\partial f_n}{\partial x_n} \end{bmatrix}$

⇒ If $J(F)(p) \neq 0$ then F has a local inverse at $p \in \mathbb{K}^n$.

Example

We consider $F(x, y) = (e^x \cos(y), e^x \sin(y))$ then

$J(F) = e^{2x}$ and therefore

⇒ F has a local inverse at each point (no global).
Jacobian Conjecture (cont.)

Jacobian conjecture

- If \(f_1, \ldots, f_n \in \mathbb{C}[x_1, \ldots, x_n] \) and \(J(F) \in \mathbb{C} \setminus \{0\} \), then \(F \) has a global inverse.

History

- It was first posed in 1939 by Ott-Heinrich Keller,
- Wang in 1980 proved it for polynomials of degree 2,
- It is still open for degree \(\geq 3 \).
Jacobian Conjecture (cont.)

<table>
<thead>
<tr>
<th>Theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ Let $I = \langle y_1 - f_1, \ldots, y_n - f_n \rangle$.</td>
</tr>
<tr>
<td>▶ $G = \text{Basis}(I, \text{plex}(x_1, \ldots, x_n, y_1, \ldots, y_n))$.</td>
</tr>
<tr>
<td>⇒ Then F has a global inverse iff $G = {x_1 - g_1, \ldots, x_n - g_n}$ with $g_i \in K[y_1, \ldots, y_n]$.</td>
</tr>
</tbody>
</table>
Jacobian Conjecture (cont.)

Theorem

- Let \(I = \langle y_1 - f_1, \ldots, y_n - f_n \rangle \).
- \(G = \text{Basis}(I, \text{plex}(x_1, \ldots, x_n, y_1, \ldots, y_n)) \).

\[\Rightarrow \quad \text{Then } F \text{ has a global inverse iff } G = \{ x_1 - g_1, \ldots, x_n - g_n \} \text{ with } g_i \in K[y_1, \ldots, y_n]. \]

Example

- \(F(x_1, x_2) = (x_1 + (x_1 + x_2)^3, x_2 - (x_1 + x_2)^3) \)
- \(G = \{ x_1 - y_1 + (y_1 + y_2)^3, x_2 - y_1 - (y_1 + y_2)^3 \} \).
Let $I = \langle y_1 - f_1, \ldots, y_n - f_n \rangle$.

$G = \text{Basis}(I, \text{plex}(x_1, \ldots, x_n, y_1, \ldots, y_n))$.

Then F has a global inverse iff $G = \{x_1 - g_1, \ldots, x_n - g_n\}$ with $g_i \in K[y_1, \ldots, y_n]$.

Example

$F(x_1, x_2) = (x_1 + (x_1 + x_2)^3, x_2 - (x_1 + x_2)^3)$

$G = \{x_1 - y_1 + (y_1 + y_2)^3, x_2 - y_1 - (y_1 + y_2)^3\}$.

Thus F has a global local inverse ($J(F) = 1$),
Jacobian Conjecture (cont.)

Theorem

- Let $I = \langle y_1 - f_1, \ldots, y_n - f_n \rangle$.
- $G = \text{Basis}(I, \text{plex}(x_1, \ldots, x_n, y_1, \ldots, y_n))$.
- Then F has a global inverse iff $G = \{x_1 - g_1, \ldots, x_n - g_n\}$ with $g_i \in K[y_1, \ldots, y_n]$.

Example

- $F(x_1, x_2) = (x_1 + (x_1 + x_2)^3, x_2 - (x_1 + x_2)^3)$
- $G = \{x_1 - y_1 + (y_1 + y_2)^3, x_2 - y_1 - (y_1 + y_2)^3\}$.
- Thus F has a global local inverse ($J(F) = 1$),
- $F^{-1}(y_1, y_2) = (y_1 - (y_1 + y_2)^3, y_1 + (y_1 + y_2)^3)$.
Definition: Orderly Lattice

A poset \((L, \leq)\) is called a **Lattice**, if

\[
\forall a, b \in L, \quad \sup\{a, b\}, \inf\{a, b\} \in L
\]
Definition: Orderly Lattice

A poset \((L, \leq)\) is called a **Lattice**, if

\[
\forall a, b \in L, \quad \text{sup}\{a, b\}, \text{inf}\{a, b\} \in L
\]

Definition: Algebraic Lattice

- \(L\) : a set;
- \(\lor, \land\) : two binary operations on \(L\);
- \((L, \lor, \land)\) is a **Lattice**, if for all \(a, b, c \in L\) :
 - **Commutative** \(a \lor b = b \lor a, \quad a \land b = b \land a\)
 - **Associative** \(a \lor (b \lor c) = (a \lor b) \lor c, \quad a \land (b \land c) = (a \land b) \land c\)
 - **Absorptance** \(a \lor (a \land b) = a, \quad a \land (a \lor b) = a\)
The image contains a section from a presentation or document about Gröbner bases. The content includes:

- An introduction to Gröbner bases
- Computation of Gröbner bases
- Applications
- Gröbner bases over integers
- Elimination theory
- Solving polynomial systems

The text also includes a mathematical expression:

\[(L, \leq) = (L, \lor, \land)\]

The presentation discusses the relationship between Orderly and Algebraic, with the following points:

Orderly ⇔ Algebraic

Orderly ⇒ Algebraic

Let: \(a \lor b = \sup\{a, b\}\), \(a \land b = \inf\{a, b\}\)

Algebraic ⇒ Orderly

Define: \(a \leq b \iff a \lor b = b\) (or \(a \land b = a\))
Orderly \iff Algebraic

Orderly \implies Algebraic
Let: $a \lor b = \sup\{a, b\}$, $a \land b = \inf\{a, b\}$

Algebraic \implies Orderly
Define: $a \leq b \iff a \lor b = b$ (or $a \land b = a$)

Example

Let A be a set;

$$(P(A), \subseteq) = (P(A), \cup, \cap)$$
A lattice L is **distributive**, if for each $a, b, c \in L$

$$\begin{align*}
a \lor (b \land c) &= (a \lor b) \land (a \lor c) \\
a \land (b \lor c) &= (a \land b) \lor (a \land c)
\end{align*}$$
A lattice L is **distributive**, if for each $a, b, c \in L$

\[
a \lor (b \land c) = (a \lor b) \land (a \lor c) \quad \text{and} \quad a \land (b \lor c) = (a \land b) \lor (a \land c)
\]

Theorem

L is distributive if and only if none of its sublattices is isomorphic to M_3 or N_5.

![Diamond Lattice M_3](image1.png)

![Pentagon Lattice N_5](image2.png)
Problem

Lattice Distributivity Problem

How can we determine whether a finite lattice is distributive?
\begin{itemize}
 \item L: a finite lattice
 \item $I_L := \langle z_a z_b - z_a \land b z_a \lor b \mid a, b \in L \rangle \subset K[z_a \mid a \in L]$}

\end{itemize}
\(L: \) a finite lattice

\(I_L := \langle z_\alpha z_\beta - z_\alpha \wedge z_\beta \, z_\alpha \vee z_\beta \mid a, b \in L \rangle \subset K[z_\alpha \mid a \in L] \)

Theorem: (a) \(\Rightarrow \) (b): Hibi, 1987, (b) \(\Rightarrow \) (a): Qureshi, 2012

The following are equivalent:

(a) \(L \) is distributive,

(b) \(G_L := \{ z_\alpha z_\beta - z_\alpha \wedge z_\beta \, z_\alpha \vee z_\beta \mid a, b \in L \text{ are incomparable} \} \) is a Gröbner basis for \(I_L \) w.r.t. each rank reverse lexicographic ordering.
Example:
Example:

\[G_{M_3} = \{ z_b z_c - z_a z_e, z_b z_d - z_a z_e, z_c z_d - z_a z_e \} \]

is not a Gröbner basis w.r.t. \(z_e \prec z_b \prec z_c \prec z_d \prec z_a \), because:
Example:

\[G_{M_3} = \{ z_b z_c - z_a z_e, z_b z_d - z_a z_e, z_c z_d - z_a z_e \} \] is not a Gröbner basis w.r.t. \(z_e \prec z_b \prec z_c \prec z_d \prec z_a \), because:

\[
\text{LM}(\text{Spoly}(z_b z_c - z_a z_e, z_b z_d - z_a z_e)) = z_d z_a z_e \notin \text{LM}(G_{M_3})
\]
Example:

$G_{M_3} = \{z_b z_c - z_a z_e, z_b z_d - z_a z_e, z_c z_d - z_a z_e\}$ is not a Gröbner basis w.r.t. $z_e < z_b < z_c < z_d < z_a$, because:

$$\text{LM}(\text{Spoly}(z_b z_c - z_a z_e, z_b z_d - z_a z_e)) = z_d z_a z_e \notin \text{LM}(G_{M_3})$$

Result

M_3 is not distributive.
Example:

\[G_{M_3} = \{ z_b z_c - z_a z_e, z_b z_d - z_a z_e, z_c z_d - z_a z_e \} \]

is not a Gröbner basis w.r.t. \(z_e \prec z_b \prec z_c \prec z_d \prec z_a \), because:

\[
\text{LM}(\text{Spoly}(z_b z_c - z_a z_e, z_b z_d - z_a z_e)) = z_d z_a z_e \notin \text{LM}(G_{M_3})
\]

Result

\(M_3 \) is not distributive.

Note

\[
b = b \land (c \lor d) \neq (b \land c) \lor (b \land d) = e
\]
Example

Pappus theorem: P, Q and R are collinear
Coordinate of points:

\[D := (0, 0) \quad E := (u_1, 0) \quad F := (u_2, 0) \]
\[A := (u_3, u_4) \quad B := (u_5, u_6) \quad C := (u_7, x_1) \]
\[P := (x_2, x_3) \quad Q := (x_4, x_5) \quad R := (x_6, x_7) \]
Since A, B, C are colinear, we have \[\frac{u_5 - u_3}{u_6 - u_4} = \frac{u_7 - u_3}{x_1 - u_4} \], and so from the collinearity of points we obtain:
Since A, B, C are colinear, we have $\frac{u_5-u_3}{u_6-u_4} = \frac{u_7-u_3}{x_1-u_4}$, and so from the collinearity of points we obtain:

Hypothesis polynomials

\[
\begin{align*}
 h_1 & := x_1u_3 + u_6u_7 - u_6u_3 - x_1u_5 - u_4u_7 + u_4u_5 \\
 h_2 & := u_4u_1 + x_3u_3 - x_3u_1 - u_4x_2 \\
 h_3 & := u_5x_3 - u_6x_2 \\
 h_4 & := u_4u_2 + x_5u_3 - x_5u_2 - u_4x_4 \\
 h_5 & := u_7x_5 - x_1x_4 \\
 h_6 & := u_6u_2 + x_7u_5 - x_7u_2 - u_6x_6 \\
 h_7 & := x_1u_1 + x_7u_7 - x_7u_1 - x_1x_6
\end{align*}
\]
Since A, B, C are colinear, we have $\frac{u_5 - u_3}{u_6 - u_4} = \frac{u_7 - u_3}{x_1 - u_4}$, and so from the collinearity of points we obtain:

Hypothesis polynomials

\[
\begin{align*}
 h_1 & := x_1 u_3 + u_6 u_7 - u_6 u_3 - x_1 u_5 - u_4 u_7 + u_4 u_5 \\
 h_2 & := u_4 u_1 + x_3 u_3 - x_3 u_1 - u_4 x_2 \\
 h_3 & := u_5 x_3 - u_6 x_2 \\
 h_4 & := u_4 u_2 + x_5 u_3 - x_5 u_2 - u_4 x_4 \\
 h_5 & := u_7 x_5 - x_1 x_4 \\
 h_6 & := u_6 u_2 + x_7 u_5 - x_7 u_2 - u_6 x_6 \\
 h_7 & := x_1 u_1 + x_7 u_7 - x_7 u_1 - x_1 x_6
\end{align*}
\]

Conclusion polynomial

\[
g := x_7 x_2 + x_5 x_6 - x_5 x_2 - x_7 x_4 - x_3 x_6 + x_3 x_4
\]
\[I := \langle h_1, \ldots, h_r \rangle \subset \mathbb{R}[x_1, \ldots, x_n, u_1, \ldots, u_m] \]
\[I := \langle h_1, \ldots, h_r \rangle \subset \mathbb{R}[x_1, \ldots, x_n, u_1, \ldots, u_m] \]
\[I := \langle h_1, \ldots, h_r \rangle \subset \mathbb{R}[x_1, \ldots, x_n, u_1, \ldots, u_m] \]

Theorem

Conclusion is true iff the reduced Gröbner basis of

\[\langle h_1, \ldots, h_r, 1 - yg \rangle \subset \mathbb{R}(u_1, \ldots, u_m)[x_1, \ldots, x_n, y] \]

equal to \{1\}
\[I := \langle h_1, \ldots, h_r \rangle \subset \mathbb{R}[x_1, \ldots, x_n, u_1, \ldots, u_m] \]

Theorem

Conclusion is true iff the reduced Gröbner basis of

\[\langle h_1, \ldots, h_r, 1 - yg \rangle \subset \mathbb{R}(u_1, \ldots, u_m)[x_1, \ldots, x_n, y] \]

equals to \{1\}

The reduced Gröbner basis of

\[\langle h_1, \ldots, h_7, 1 - yg \rangle \subset \mathbb{R}(u_1, \ldots, u_7)[x_1, \ldots, x_7, y] \]

is \{1\}, so the Pappus theorem is proved.
Frobenius Problem

- \(a_1 \leq a_2 \leq \cdots \leq a_r \) natural numbers
- \(\gcd(a_1, \ldots, a_r) = 1 \)
- \(N(a_1, \ldots, a_r) := \max\{n \in \mathbb{N} \mid n \neq \lambda_1 a_1 + \cdots + \lambda_r a_r\} \)
- **Frobenius problem**: Find \(N(a_1, \ldots, a_r) \)

Example

- \(N(5, 7) = 23 \)
- \(N(11, 13, 17) = 53 \)
- \(N(238, 569, 791) = 18205 \)
\[I := \langle x_1 - t^{a_1}, \ldots, x_r - t^{a_r} \rangle \subset \mathbb{Q}[x_1, \ldots, x_r, t] \]
\(I := \langle x_1 - t^{a_1}, \ldots, x_r - t^{a_r} \rangle \subset \mathbb{Q}[x_1, \ldots, x_r, t] \)

\(G := \) A Gröbner basis for \(I \) w.r.t. \(x_i \prec_{\text{lex}} t \)
$I := \langle x_1 - t^{a_1}, \ldots, x_r - t^{a_r} \rangle \subset \mathbb{Q}[x_1, \ldots, x_r, t]$

$G := \text{A Gröbner basis for } I \text{ w.r.t. } x_i \prec_{lex} t$
\[I := \langle x_1 - t^{a_1}, \ldots, x_r - t^{a_r} \rangle \subset \mathbb{Q}[x_1, \ldots, x_r, t] \]

\[G := \text{A Gröbner basis for } I \text{ w.r.t. } x_i \prec_{\text{lex}} t \]

Theorem

\[N = \lambda_1 a_1 + \cdots + \lambda_r a_r \text{ iff } \text{remainder}(t^N, G) = x_1^{\lambda_1} \cdots x_r^{\lambda_r} \]
Example

McNugget numbers \(N(6, 9, 20) = 43 \)
Example

McNugget numbers \(N(6, 9, 20) = 43 \)

\[J := \langle x_1 - t^6, x_2 - t^9, x_3 - t^{20} \rangle : \]
Example

McNugget numbers \(N(6, 9, 20) = 43 \)

\[
J := \langle x_1 - t^6, x_2 - t^9, x_3 - t^{20} \rangle : \\
G := \text{Basis}(J, \text{plex}(t, x_1, x_2, x_3));
\]
Example

McNugget numbers\(N(6, 9, 20) = 43 \)

\[
J := \langle x_1 - t^6, x_2 - t^9, x_3 - t^{20} \rangle :
\]

\[
G := \text{Basis}(J, \text{plex}(t, x_1, x_2, x_3));
\]

\[
\text{NormalForm}(t^{41}, G, \text{plex}(t, x_1, x_2, x_3));
\]
Example

McNugget numbers \(N(6, 9, 20) = 43 \)

\[J := \langle x_1 - t^6, x_2 - t^9, x_3 - t^{20} \rangle : \]

\[G := \text{Basis}(J, \text{plex}(t, x_1, x_2, x_3)); \]

\[\text{NormalForm}(t^{41}, G, \text{plex}(t, x_1, x_2, x_3)); \]

\[x_1^2 x_2 x_3 \Rightarrow 41 = 2 \times 6 + 1 \times 9 + 1 \times 20 \]
Example

McNugget numbers \(N(6, 9, 20) = 43 \)

\[J := \langle x_1 - t^6, x_2 - t^9, x_3 - t^{20} \rangle : \]

\[G := \text{Basis}(J, plex(t, x_1, x_2, x_3)); \]

\[\text{NormalForm}(t^{41}, G, plex(t, x_1, x_2, x_3)); \]

\[x_1^2x_2x_3 \Rightarrow 41 = 2 \times 6 + 1 \times 9 + 1 \times 20 \]

\[\text{NormalForm}(t^{43}, G, plex(t, x_1, x_2, x_3)); \]
Example

McNugget numbers \(N(6, 9, 20) = 43 \)

\[
J := \langle x_1 - t^6, x_2 - t^9, x_3 - t^{20} \rangle : \\
G := \text{Basis}(J, \text{plex}(t, x_1, x_2, x_3)); \\
\text{NormalForm}(t^{41}, G, \text{plex}(t, x_1, x_2, x_3)); \\
x_1^2 x_2 x_3 \Rightarrow 41 = 2 \times 6 + 1 \times 9 + 1 \times 20 \\
\text{NormalForm}(t^{43}, G, \text{plex}(t, x_1, x_2, x_3)); \\
t x_1 x_2^4
\]
Example

McNugget numbers \(N(6, 9, 20) = 43 \)

\[
J := \langle x_1 - t^6, x_2 - t^9, x_3 - t^{20} \rangle :
\]

\[
G := \text{Basis}(J, \text{plex}(t, x_1, x_2, x_3));
\]

\[
\text{NormalForm}(t^{41}, G, \text{plex}(t, x_1, x_2, x_3));
\]

\[
x_1^2 x_2 x_3 \Rightarrow 41 = 2 \times 6 + 1 \times 9 + 1 \times 20
\]

\[
\text{NormalForm}(t^{43}, G, \text{plex}(t, x_1, x_2, x_3));
\]

\[
rx_2 x_1^4
\]

\[
\text{NormalForm}(t^{44}, G, \text{plex}(t, x_1, x_2, x_3));
\]
Example

McNugget numbers \(N(6, 9, 20) = 43 \)

\[J := \langle x_1 - t^6, x_2 - t^9, x_3 - t^{20} \rangle : \]

\[G := \text{Basis}(J, plex(t, x_1, x_2, x_3)); \]

\[\text{NormalForm}(t^{41}, G, plex(t, x_1, x_2, x_3)); \]

\[x_1^2 x_2 x_3 \Rightarrow 41 = 2 \times 6 + 1 \times 9 + 1 \times 20 \]

\[\text{NormalForm}(t^{43}, G, plex(t, x_1, x_2, x_3)); \]

\[t x_1 x_2^4 \]

\[\text{NormalForm}(t^{44}, G, plex(t, x_1, x_2, x_3)); \]

\[x_1 x_2^2 x_3 \Rightarrow 44 = 1 \times 6 + 2 \times 9 + 1 \times 20 \]

\[\ldots \]
Example

McNugget numbers $N(6, 9, 20) = 43$

\[J := \langle x_1 - t^6, x_2 - t^9, x_3 - t^{20} \rangle : \]

\[G := \text{Basis}(J, \text{plex}(t, x_1, x_2, x_3)); \]

\[\text{NormalForm}(t^{41}, G, \text{plex}(t, x_1, x_2, x_3)); \]

\[x_1^2 x_2 x_3 \Rightarrow 41 = 2 \times 6 + 1 \times 9 + 1 \times 20 \]

\[\text{NormalForm}(t^{43}, G, \text{plex}(t, x_1, x_2, x_3)); \]

\[tx_1 x_2^4 \]

\[\text{NormalForm}(t^{44}, G, \text{plex}(t, x_1, x_2, x_3)); \]

\[x_1 x_2^2 x_3 \Rightarrow 44 = 1 \times 6 + 2 \times 9 + 1 \times 20 \]

\[\ldots \]

\[\text{NormalForm}(t^{50}, G, \text{plex}(t, x_1, x_2, x_3)); \]
Example

McNugget numbers \(N(6, 9, 20) = 43 \)

\[J := \langle x_1 - t^6, x_2 - t^9, x_3 - t^{20} \rangle : \]

\[G := \text{Basis}(J, \text{plex}(t, x_1, x_2, x_3)); \]

\[\text{NormalForm}(t^{41}, G, \text{plex}(t, x_1, x_2, x_3)); \]

\[x_1^2x_2x_3 \Rightarrow 41 = 2 \times 6 + 1 \times 9 + 1 \times 20 \]

\[\text{NormalForm}(t^{43}, G, \text{plex}(t, x_1, x_2, x_3)); \]

\[tx_1x_2^4 \]

\[\text{NormalForm}(t^{44}, G, \text{plex}(t, x_1, x_2, x_3)); \]

\[x_1x_2^2x_3 \Rightarrow 44 = 1 \times 6 + 2 \times 9 + 1 \times 20 \]

\[\text{NormalForm}(t^{50}, G, \text{plex}(t, x_1, x_2, x_3)); \]

\[x_1^2x_2^2x_3 \Rightarrow 50 = 2 \times 6 + 2 \times 9 + 1 \times 20 \]
<table>
<thead>
<tr>
<th>N</th>
<th>Remainder</th>
<th>λ_i's</th>
</tr>
</thead>
<tbody>
<tr>
<td>53</td>
<td>$x_2^4 t$</td>
<td>-</td>
</tr>
<tr>
<td>54</td>
<td>$x_1 x_2^2 x_3$</td>
<td>[1, 2, 1]</td>
</tr>
<tr>
<td>55</td>
<td>x_1^5</td>
<td>[5, 0, 0]</td>
</tr>
<tr>
<td>56</td>
<td>$x_2^3 x_3$</td>
<td>[0, 3, 1]</td>
</tr>
<tr>
<td>57</td>
<td>$x_1^4 x_2$</td>
<td>[4, 1, 0]</td>
</tr>
<tr>
<td>58</td>
<td>$x_1 x_2 x_3^2$</td>
<td>[1, 1, 2]</td>
</tr>
<tr>
<td>59</td>
<td>$x_1^3 x_2^2$</td>
<td>[3, 2, 0]</td>
</tr>
<tr>
<td>60</td>
<td>$x_2^2 x_3^2$</td>
<td>[0, 2, 2]</td>
</tr>
<tr>
<td>61</td>
<td>$x_1^2 x_2^3$</td>
<td>[2, 3, 0]</td>
</tr>
<tr>
<td>62</td>
<td>$x_1 x_3^3$</td>
<td>[1, 0, 3]</td>
</tr>
<tr>
<td>63</td>
<td>$x_1 x_2^4$</td>
<td>[1, 4, 0]</td>
</tr>
<tr>
<td>64</td>
<td>$x_2 x_3^3$</td>
<td>[0, 1, 3]</td>
</tr>
</tbody>
</table>

$\Rightarrow \quad N(11, 13, 17) = 53$
Consider $a_{ij}, b_i \in \mathbb{N}$ and the following Diophantine systems:

$$
\begin{align*}
& a_{11}\sigma_1 + \cdots + a_{1n}\sigma_n = b_1 \\
& \vdots \\
& a_{m1}\sigma_1 + \cdots + a_{mn}\sigma_n = b_m.
\end{align*}
$$

$I := \langle y_1 - x_1^{a_{11}} \cdots x_m^{a_{m1}}, \ldots, y_n - x_1^{a_{1n}} \cdots x_m^{a_{mn}} \rangle$
Consider $a_{ij}, b_i \in \mathbb{N}$ and the following Diophantine systems:

\[
\begin{align*}
 a_{11}\sigma_1 + \cdots + a_{1n}\sigma_n &= b_1 \\
 &\vdots \\
 a_{m1}\sigma_1 + \cdots + a_{mn}\sigma_n &= b_m.
\end{align*}
\]

- $I := \langle y_1 - x_1^{a_{11}} \cdots x_m^{a_{m1}}, \ldots, y_n - x_1^{a_{1n}} \cdots x_m^{a_{mn}} \rangle$
- $G = \text{Gröbner basis of } I \text{ w.r.t } y_i \prec_{lex} x_j$
Consider $a_{ij}, b_i \in \mathbb{N}$ and the following Diophantine systems:

$$\begin{align*}
\left\{\begin{array}{c}
 a_{11}\sigma_1 + \cdots + a_{1n}\sigma_n &= b_1 \\
 \vdots \quad \\
 a_{m1}\sigma_1 + \cdots + a_{mn}\sigma_n &= b_m.
\end{array}\right.
\end{align*}$$

- $I := \langle y_1 - x_1^{a_{11}} \cdots x_m^{a_{m1}}, \ldots, y_n - x_1^{a_{1n}} \cdots x_m^{a_{mn}} \rangle$
- $G =$ Gröbner basis of I w.r.t $y_i \prec_{lex} x_j$
- $x_1^{b_1} \cdots x_m^{b_m} \rightsquigarrow G \ h$
Consider $a_{ij}, b_i \in \mathbb{N}$ and the following Diophantine systems:

$$
\begin{align*}
\begin{cases}
a_{11}\sigma_1 + \cdots + a_{1n}\sigma_n &= b_1 \\
&
\vdots \\
a_{m1}\sigma_1 + \cdots + a_{mn}\sigma_n &= b_m.
\end{cases}
\end{align*}
$$

- $I := \langle y_1 - x_1^{a_{11}} \cdots x_m^{a_{m1}}, \ldots, y_n - x_1^{a_{1n}} \cdots x_m^{a_{mn}} \rangle$
- $G =$ Gröbner basis of I w.r.t $y_i \prec_{lex} x_j$
- $x_1^{b_1} \cdots x_m^{b_m} \not\sim G h$
- $h = y_1^{\sigma_1} \cdots y_n^{\sigma_n} \iff (\sigma_1, \ldots, \sigma_n)$ is a natural solution.
Solving Linear Diophantine Systems (cont.)

Example

\[
\begin{align*}
3\sigma_1 & + 2\sigma_2 & + \sigma_3 & + \sigma_4 &= 10 \\
4\sigma_1 & + \sigma_2 & + \sigma_3 + & = 5.
\end{align*}
\]
Solving Linear Diophantine Systems (cont.)

Example

\[
\begin{align*}
3\sigma_1 & + 2\sigma_2 + \sigma_3 + \sigma_4 = 10 \\
4\sigma_1 & + \sigma_2 + \sigma_3 = 5.
\end{align*}
\]

\[
I := \langle y_1 - x_1^3 x_2^4, y_2 - x_1^2 x_2, y_3 - x_1 x_2, y_4 - x_1 \rangle,
\]
Example

\[
\begin{align*}
3\sigma_1 & + 2\sigma_2 + \sigma_3 + \sigma_4 = 10 \\
4\sigma_1 & + \sigma_2 + \sigma_3 + = 5.
\end{align*}
\]

\[I := \langle y_1 - x_1^3x_2^4, y_2 - x_1^2x_2, y_3 - x_1x_2, y_4 - x_1 \rangle,\]

Gröbner basis of \(I\) w.r.t \(y_i \prec \text{lex} \ x_j\) is:

\[\{y_2 - y_3y_4, y_1y_4 - y_3^4, x_2y_4 - y_3, x_2y_3^3 - y_1, x_1 - y_4\}\]
Example

\[\begin{align*}
3\sigma_1 + 2\sigma_2 + \sigma_3 + \sigma_4 &= 10 \\
4\sigma_1 + \sigma_2 + \sigma_3 + &= 5.
\end{align*}\]

\[I := \langle y_1 - x_1^3 x_2^4, y_2 - x_1^2 x_2, y_3 - x_1 x_2, y_4 - x_1\rangle,\]

Gröbner basis of \(I\) w.r.t \(y_i \prec_{lex} x_j\) is:

\[\{y_2 - y_3 y_4, y_1 y_4 - y_3^4, x_2 y_4 - y_3, x_2 y_3^3 - y_1, x_1 - y_4\}\]

\[x_1^{10} x_2^5 \sim G y_3^5 y_4^5\] and \((0, 0, 5, 5)\) is a solution.
Integer Solutions

- z; a new variable
- $I := \langle y_1 - x_1^{a_{11}} \cdots x_m^{a_{m1}}, \ldots, y_n - x_1^{a_{1n}} \cdots x_m^{a_{mn}}, y_1 \cdots y_n z - 1 \rangle$
- $G = \text{Gröbner basis of } I \text{ w.r.t } z <_{\text{lex}} y_i <_{\text{lex}} x_j$
- $x_1^{b_1} \cdots x_m^{b_m} \leadsto_G h$

Theorem (Hashemi, 2013)

The has an integer solution iff $h \in K[y_1, \ldots, y_n, z]$. Moreover, if the remainder is $y_1^{\alpha_1} \cdots y_n^{\alpha_n} z^\alpha$, then $(\alpha_1 - \alpha, \ldots, \alpha_n - \alpha)$ is a solution of the system.
Example

\[
\begin{align*}
12\sigma_1 &+ 7\sigma_2 + 9\sigma_3 &= 12 \\
5\sigma_2 &+ 8\sigma_3 + 10\sigma_4 &= 0 \\
15\sigma_1 &+ 21\sigma_3 + 69\sigma_4 &= 3.
\end{align*}
\]

\[
I = \langle y_1 - x_1^{12} x_3^{15}, y_2 - x_1^7 x_2^5, y_3 - x_1^9 x_2^8 x_3^{21}, y_4 - x_2^{10} x_3^{69}, y_1 y_2 y_3 y_4 z - 1 \rangle
\]

\[
G = \text{Gröbner basis of } I \text{ w.r.t } z \prec_{\text{lex}} y_i \prec_{\text{lex}} x_j
\]

\[
x_1^{12} x_3^3 \leadsto_G z^{336} y_1^{293} y_3^{656} y_4^{248}
\]

\[
(293, 0, 656, 248) - (336, 336, 336, 336) = (-43, -336, 320, -88)
\]

an integer solution

Since \[
z^{2056} y_1^{1819} y_2^{238} y_3^{3786} y_4^{1581} - 1 \in I,
\]
we have the general solution \[
(-237k - 43, -1818k - 336, 1730k + 320, -475k - 88)
\]
Gröbner Bases and Tilings

Amir Hashemi

Iṣfahān University of Technology & IPM

CIMPA-IRAN school on Tilings and Tessellations, Iṣfahān, Iran, 2015
Hakim Abolfath Omar ebn Ibrahim Khayyám Nieshapuri (18 May 1048 - 4 December 1131), born in Nishapur in North Eastern Iran, was a great Persian polymath, philosopher, mathematician, astronomer and poet, who wrote treatises on mechanics, geography, mineralogy, music, and Islamic theology.

Khayyám was famous during his times as a mathematician. He wrote the influential treatise on *demonstration of problems of algebra* (1070), which laid down the principles of algebra, part of the body of Persian Mathematics that was eventually transmitted to Europe. In particular, he derived general methods for *solving cubic equations and even some higher orders*.
He wrote on the *triangular array of binomial coefficients* known as Khayyám-Pascal’s triangle. In 1077, Khayyám also wrote a book published in English as "On the Difficulties of Euclid’s Definitions". An important part of the book is concerned with Euclid’s famous parallel postulate and his approach made their way to Europe, and may have contributed to the eventual development of non-Euclidean geometry.
So far, we have considered $R = K[x_1, \ldots, x_n]$ and discussed Gröbner bases over fields + applications. In this part, we consider $A = \mathbb{Z}[x_1, \ldots, x_n]$ and we discuss Gröbner bases over integers and review its application in tilings.
Main Problem

Main obstacle in theory of Gröbner bases over \mathbb{Z} is division. Let us consider the polynomial ring $R = K[x_1, \ldots, x_n]$. In this ring we have $2x \mid 3x$. However that does not hold in

$$A = \mathbb{Z}[x_1, \ldots, x_n]$$
Main Problem

Main obstacle in theory of Gr"obner bases over \mathbb{Z} is division. Let us consider the polynomial ring $R = K[x_1, \ldots, x_n]$. In this ring we have $2x \mid 3x$. However that does not hold in

- $A = \mathbb{Z}[x_1, \ldots, x_n]$
- i.e. $2x \nmid 3x$
Main Problem

Main obstacle in theory of Gröbner bases over \(\mathbb{Z} \) is division.

Let us consider the polynomial ring \(R = K[x_1, \ldots, x_n] \). In this ring we have \(2x \mid 3x \). However that does not hold in

- \(A = \mathbb{Z}[x_1, \ldots, x_n] \)
- i.e. \(2x \nmid 3x \)
- Further, in \(A \) we have \(3x \nmid x \) and \(2x \nmid x \) however \(x \in \langle 2x, 3x \rangle \)
Main Problem

Main obstacle in theory of Gröbner bases over \mathbb{Z} is division. Let us consider the polynomial ring $R = K[x_1, \ldots, x_n]$. In this ring we have $2x | 3x$. However that does not hold in $A = \mathbb{Z}[x_1, \ldots, x_n]$ i.e. $2x \nmid 3x$

Further, in A we have $3x \nmid x$ and $2x \nmid x$ however $x \in \langle 2x, 3x \rangle$

Thus $f = x + 1$ is reducible by $\{f_1 = 2x + 3, f_2 = 3x - 5\}$, i.e. $f \sim f - (f_2 - f_1) = (x + 1) - (3x - 5 - 2x - 3) = 9$.
Main Problem

Main obstacle in theory of Gröbner bases over \mathbb{Z} is division. Let us consider the polynomial ring $R = \mathbb{K}[x_1, \ldots, x_n]$. In this ring we have $2x \mid 3x$. However that does not hold in

- $A = \mathbb{Z}[x_1, \ldots, x_n]$
- i.e. $2x \nmid 3x$
- Further, in A we have $3x \nmid x$ and $2x \nmid x$ however $x \in \langle 2x, 3x \rangle$
- Thus $f = x + 1$ is reducible by $\{f_1 = 2x + 3, f_2 = 3x - 5\}$, i.e. $f \sim f - (f_2 - f_1) = (x + 1) - (3x - 5 - 2x - 3) = 9$.

Amir Hashemi
Gröbner Bases and Tilings
Main Problem

☞ Main obstacle in theory of Gröbner bases over \mathbb{Z} is division. Let us consider the polynomial ring $R = K[x_1, \ldots, x_n]$. In this ring we have $2x | 3x$. However that does not hold in $A = \mathbb{Z}[x_1, \ldots, x_n]$.

- $2x \nmid 3x$
- Further, in A we have $3x | x$ and $2x | x$ however $x \in \langle 2x, 3x \rangle$
- Thus $f = x + 1$ is reducible by $\{f_1 = 2x + 3, f_2 = 3x - 5\}$, i.e. $f \sim f - (f_2 - f_1) = (x + 1) - (3x - 5 - 2x - 3) = 9$.

Thus, $\text{LT}(f)$ is divisible by none of $\text{LT}(f_1)$ and $\text{LT}(f_2)$ however, it is reducible by a combination of $\text{LT}(f_1)$ and $\text{LT}(f_2)$.
Example

- $A = \mathbb{Z}[x, y]$ and $y <_{lex} x$
- $f = xy - 1$, $f_1 = 7x + 3$, $f_2 = 3y - 5$
- We note that $\text{LT}(f_1) \nmid \text{LT}(f)$ and $\text{LT}(f_2) \nmid \text{LT}(f)$
- However, $xy \in \langle 7x, 3y \rangle_{\mathbb{Z}[x, y]} \leadsto xy = y(7x) - 2x(3y)$
- $f - (yf_1 - 2xf_2) = -3y - 10x - 1$.
Gröbner Bases

Definition

\[I \subset A \]
\[\prec \text{ a monomial ordering} \]
\[\text{A finite set } G \subset I \text{ is a Gröbner Basis for } I \text{ w.r.t. } \prec, \text{ if} \]

\[\forall f \in I \exists g \in G \text{ s.t. } \text{LT}(g) \mid \text{LT}(f) \]

Existence of Gröbner bases

Each ideal has a Gröbner basis

Membership problem

\[f \in I \text{ iff } f \sim_G 0 \]
Example

\[A = \mathbb{Z}[x, y] \text{ and } y \prec_{lex} x \]

- \(f_1 = 4x + 1, f_2 = 6y + 1 \) and \(I = \langle f_1, f_2 \rangle \)
Example

\(A = \mathbb{Z}[x, y] \) and \(y \prec_{lex} x \)

- \(f_1 = 4x + 1, f_2 = 6y + 1 \) and \(I = \langle f_1, f_2 \rangle \)
- \(f := 3y f_1 - 2x f_2 = 3y - 2x \) and \(\text{LT}(f) = -2x \notin \langle 4x, 6y \rangle \)
Example

\[A = \mathbb{Z}[x, y] \ \text{and} \ y <_{\text{lex}} x \]

- \[f_1 = 4x + 1, \ f_2 = 6y + 1 \ \text{and} \ I = \langle f_1, f_2 \rangle \]
- \[f := 3y f_1 - 2x f_2 = 3y - 2x \ \text{and} \ \text{LT}(f) = -2x \notin \langle 4x, 6y \rangle \]
Example

\[A = \mathbb{Z}[x, y] \text{ and } y <_{\text{lex}} x \]

- \(f_1 = 4x + 1, f_2 = 6y + 1 \) and \(I = \langle f_1, f_2 \rangle \)
- \(f := 3y f_1 - 2xf_2 = 3y - 2x \) and \(\text{LT}(f) = -2x \notin \langle 4x, 6y \rangle \)

\(\{ f_1, f_2 \} \) is not a Gröbner basis for \(I \)
Gröbner Bases Calculation over Integers

- The process is the same as Buchberger’s algorithm over fields.
- The only difference is the division algorithm.
Gröbner Bases Calculation over Integers

- The process is the same as Buchberger’s algorithm over fields
- The only difference is the division algorithm

Example

- $A = \mathbb{Z}[x, y]$ and $y <_{\text{lex}} x$
- $f_1 = 2x + 1$, $f_2 = 3y + 1$ and $I = \langle f_1, f_2 \rangle$

$$\text{Spoly}(f_1, f_2) = \frac{lcm(\text{LT}(f_1), \text{LT}(f_2))}{\text{LT}(f_1)} f_1 - \frac{lcm(\text{LT}(f_1), \text{LT}(f_2))}{\text{LT}(f_2)} f_2$$

$$\text{Spoly}(f_1, f_2) = \frac{6xy}{2x} f_1 - \frac{6xy}{3y} f_2 = 3y f_1 - 2x f_2 = 3y - 2x$$

- $\text{Spoly}(f_1, f_2) \leadsto \text{Spoly}(f_1, f_2) + f_1 = 3y + 1 \leadsto f_2 0$

So, $\{f_1, f_2\}$ is a Gröbner basis for I
A *celle* is the square
\[c(i, j) = \{(x, y) \mid i \leq x < i + 1, j \leq y < j + 1\} \]

To a celle \(c(i, j) \) we associate the polynomial \(\mathcal{P}_{c(i,j)} = x^i y^j \)
A polyomino is a finite union of cells.

Definition

\[T = \bigcup_{(i,j) \in \Lambda} c(i,j) \text{ then define } P_T = \sum_{(i,j) \in \Lambda} P_{c(i,j)}. \]

We associate \(1 + x + xy + xy^2\) to the following polyomino.
\textbf{\textit{Z}-Tiling}

- P: A polyomino
- F: A finite set of polyominoes

\textbf{\textit{Z}-tiling problem} is a finite number of translated polyominoes from F to cover P so that the sum of signs on P at each cell is +1.
We consider the following polyomino P

We associate the polynomial $f = 1 + x + y + \cdots + xy^3$.
and we would like to cover it by the following polyomino T

we associate the polynomial $f_1 = 1 + x + xy + xy^2$.

\[f_1 = 1 + x + xy + xy^2. \]
so we shall consider all (four) rotations of T, e.g.

we associate the polynomial $f_2 = 1 + y + y^2 + xy^2$.

Let f_2, f_3, f_4 be associated poly of all rotations.
In addition, we shall consider all rotations of the reflection of T.

We associate the polynomial $g_1 = 1 + y + y^2 + x$.

Let g_2, g_3, g_4 be associated poly of all rotations.
Example (cont.)

To check whether P can be covered by T (and its rotations and reflection), one can verify whether

$$f \in \langle f_1, \ldots, f_4, g_1, \ldots, g_4 \rangle \subset \mathbb{Z}[x, y]$$
Example (cont.)

- To check whether \(P \) can be covered by \(T \) (and its rotations and reflection), one can verify whether

\[
f \in \langle f_1, \ldots, f_4, g_1, \ldots, g_4 \rangle \subset \mathbb{Z}[x, y]
\]

- we can do this check by Gröbner bases over integers
To check whether P can be covered by T (and its rotations and reflection), one can verify whether

$$f \in \langle f_1, \ldots, f_4, g_1, \ldots, g_4 \rangle \subset \mathbb{Z}[x, y]$$

we can do this check by Gröbner bases over integers

Let G be the Gröbner basis of this ideal
To check whether P can be covered by T (and its rotations and reflection), one can verify whether

$$f \in \langle f_1, \ldots, f_4, g_1, \ldots, g_4 \rangle \subset \mathbb{Z}[x, y]$$

we can do this check by Gröbner bases over integers

Let G be the Gröbner basis of this ideal

since the remainder of f by G is zero,

(indeed we have $f = f_1 + yf_2$)
Example (cont.)

To check whether P can be covered by T (and its rotations and reflection), one can verify whether

$$ f \in \langle f_1, \ldots, f_4, g_1, \ldots, g_4 \rangle \subset \mathbb{Z}[x, y] $$

we can do this check by Gröbner bases over integers

Let G be the Gröbner basis of this ideal

since the remainder of f by G is zero,

indeed we have $f = f_1 + yf_2$
Example (cont.)

- To check whether \(P \) can be covered by \(T \) (and its rotations and reflection), one can verify whether

\[
f \in \langle f_1, \ldots, f_4, g_1, \ldots, g_4 \rangle \subset \mathbb{Z}[x, y]
\]

- we can do this check by Gröbner bases over integers
- Let \(G \) be the Gröbner basis of this ideal
- since the remainder of \(f \) by \(G \) is zero, (indeed we have \(f = f_1 + yf_2 \))

Thus, we can cover \(P \) by \(T \).
Thus we have

\[f = f_1 + yf_2 \]
Thanks for your attention...
References

[1] David Cox, John Little and Donal O’Shea:
Ideals, varieties, and algorithms.

[2] David Cox, John Little and Donal O’Shea:
Using algebraic geometry.

[3] Thomas Becker and Volker Weispfenning:
Gröbner bases, A computational approach to commutative algebra.

An introduction to Gröbner bases.