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Planar tilings are well ordered. ..



General n — d tilings

. but they can easily be messed up!

Planar tilings are well ordered. .



Local rules
.

Local rules

Definition (Local rules)

A planar tiling of slope E has diameter r and thickness t local rules
if any tiling with a smaller or equal r-atlas lifts into E + [0, t]".

Main Open Question
Which planar tilings do admit local rules?
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Local rules

Definition (Local rules)

A planar tiling of slope E has diameter r and thickness t local rules
if any tiling with a smaller or equal r-atlas lifts into E + [0, t]".
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Main Open Question

Which planar tilings do admit local rules?




Local rules
°

Link with quasicrystals

Planar n — d tilings aim to model the structure of quasicrystals.

Local rules aim to model their stability (i.e., energetic interactions).
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Sufficient conditions
.

Penrose tilings

Definition (Penrose tiling)
A Penrose tiling is a planar 5 — 2 tiling with slope

1 2k 2k
(1,1,1,1,1)+]R<cos7r> —i—R(sin W) :
5 5 Jo<k<a 5 Jo<k<a

It is the dualization of the multigrid with vectors e 5 and shifts %
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Theorem (de Bruijn, 1981)

Penrose tilings have local rules of diameter O and thickness 1.




Sufficient conditions
°

n-fold tilings

Definition (n-fold tiling)
A n-fold tiling is a planar n — 2 tiling which has the same finite
patterns as its image under a rotation by 27 /n.
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Sufficient conditions
°

n-fold tilings

Definition (n-fold tiling)

A n-fold tiling is a planar n — 2 tiling which has the same finite
patterns as its image under a rotation by 27 /n.
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Sufficient conditions
°

n-fold tilings

Definition (n-fold tiling)

A n-fold tiling is a planar n — 2 tiling which has the same finite
patterns as its image under a rotation by 27 /n.




Sufficient conditions
°

n-fold tilings

Definition (n-fold tiling)
A n-fold tiling is a planar n — 2 tiling which has the same finite
patterns as its image under a rotation by 27 /n.

e\ L AN N/
’&'E{" 5 0‘5’&0‘;"{”‘ P SIS N
SON AR AN ON B AANL L NG
N e R S s &
oo NSNS D
(o KR




Sufficient conditions
°

n-fold tilings

Definition (n-fold tiling)
A n-fold tiling is a planar n — 2 tiling which has the same finite
patterns as its image under a rotation by 27 /n.
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Sufficient conditions
°

n-fold tilings

Definition (n-fold tiling)
A n-fold tiling is a planar n — 2 tiling which has the same finite
patterns as its image under a rotation by 27 /n.
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n-fold tilings

Definition (n-fold tiling)
A n-fold tiling is a planar n — 2 tiling which has the same finite
patterns as its image under a rotation by 27 /n.




Sufficient conditions
°

Local rules for n-fold tilings

Theorem (Socolar 1990)

An n-fold tiling has local rules when n is not a multiple of 4.

Local rules actually enforce an alternation condition:




Sufficient conditions
°

Local rules for n-fold tilings

Theorem (Socolar 1990)

An n-fold tiling has local rules when n is not a multiple of 4.

Local rules actually enforce an alternation condition:

When n is a multiple of 4, there are square tiles. ..



Sufficient conditions
°

Subperiods

Definition (Subperiod)
A planar n — d tiling has a subperiod if one gets a periodic tiling
by an orthogonal projection onto d + 1 well-chosen basis vectors.

For example, a Penrose tiling has 10 subperiods (video).



Sufficient conditions
°

Subperiods

Definition (Subperiod)
A planar n — d tiling has a subperiod if one gets a periodic tiling
by an orthogonal projection onto d + 1 well-chosen basis vectors.

For example, a Penrose tiling has 10 subperiods (video).

This translates in linear rational dependencies between Grassmann
coordinates over d + 1 indices. For Penrose:

Giz2 = Gp3 = G34 = Ggs5 = Gy, G13 = G35 = Gsp = Gpa = Gas.



Sufficient conditions
°

Planarity issues

Proposition
The subperiods of a planar tiling can be enforced by local rules.

But these local rules may not suffice to enforce planarity. ..




Sufficient conditions
°

Planarity issues

Proposition
The subperiods of a planar tiling can be enforced by local rules.

But these local rules may not suffice to enforce planarity. ..

Theorem (Bédaride-Fernique 2015)

A planar 4 — 2 tiling has local rules iff its slope is characterized by
its subperiods. In particular the slope is quadratic (or rational).
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Necessary conditions
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4p-fold tilings
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Necessary conditions

4p-fold tilings
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Necessary conditions
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Necessary conditions
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Necessary conditions
°

Local rules of thickness 1

Full subperiods: any projection on d + 1 basis vector is periodic.

Theorem (Levitov 1988)
A planar tiling with thickness 1 local rules has full subperiods.

For n-fold tilings, this yields n € {4,6,8,10,12}.

These are the only symmetries yet observed in real quasicrystals. . .
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Proof sketch

e

Consider a planar tiling which does not have full subperiods.



Necessary conditions
.

Proof sketch

Shifting the slope creates flips. We shift without creating patterns.



Necessary conditions
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Proof sketch

There are lines of flips (corresp. to subperiods) and isolated flips.



Necessary conditions
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Proof sketch

The smaller the shift is, the sparser these flips are.



Necessary conditions
.

Proof sketch

Given r, we eventually find a ring of thickness r without any flip.



Necessary conditions
.

Proof sketch

This yields a planar tiling of thickness t > 1 with the same r-atlas.



Necessary conditions
°

Algebraic obstruction

Theorem (Le 1995)

The slope of a planar tiling with local rules is algebraic.




Algebraic obstruction

Theorem (Le 1995)

The slope of a planar tiling with local rules is algebraic.
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Colored local rules
.

From colors to computability

Definition (Colored local rules)

A planar tiling has colored local rules if it is obtained by removing
the colors of a colored planar tilings which has local rules.




Colored local rules
.

From colors to computability

Definition (Colored local rules)

A planar tiling has colored local rules if it is obtained by removing
the colors of a colored planar tilings which has local rules.

This allows to go far beyond the previous algebraic obstruction:

Theorem (Fernique-Sablik 2012)

A planar tiling has colored local rules iff its slope is computable.

We would like such a characterization for uncolored local rules. . .



Colored local rules
.

Computable slope?

Definition
A number is computable if it can be computed to within any
desired precision by a finite, terminating algorithm.

Q. Are rational numbers computable? Algebraic numbers? e? #7?
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Computable slope?

Definition
A number is computable if it can be computed to within any
desired precision by a finite, terminating algorithm.

Q. Are rational numbers computable? Algebraic numbers? e? #7?

Q. Do there exist any non-computable number!?



Colored local rules
.

Computable slope?

Definition
A number is computable if it can be computed to within any
desired precision by a finite, terminating algorithm.

Q. Are rational numbers computable? Algebraic numbers? e? #7?
Q. Do there exist any non-computable number!?

A slope is computable if it has computable Grassmann coordinates.
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Colored local rules

Proof sketch
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Colored local rules
°

Proof sketch




The End
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