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General n → d tilings

Planar tilings are well ordered. . .

but they can easily be messed up!



Local rules Sufficient conditions Necessary conditions Colored local rules

General n → d tilings

Planar tilings are well ordered. . . but they can easily be messed up!



Local rules Sufficient conditions Necessary conditions Colored local rules

Local rules

Definition (Local rules)

A planar tiling of slope E has diameter r and thickness t local rules
if any tiling with a smaller or equal r -atlas lifts into E + [0, t]n.

Main Open Question

Which planar tilings do admit local rules?
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Link with quasicrystals

Planar n → d tilings aim to model the structure of quasicrystals.

Local rules aim to model their stability (i.e., energetic interactions).
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Penrose tilings

Definition (Penrose tiling)

A Penrose tiling is a planar 5 → 2 tiling with slope

1
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It is the dualization of the multigrid with vectors e
2ikπ

5 and shifts 1
5 .

Theorem (de Bruijn, 1981)

Penrose tilings have local rules of diameter 0 and thickness 1.
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n-fold tilings

Definition (n-fold tiling)

A n-fold tiling is a planar n → 2 tiling which has the same finite
patterns as its image under a rotation by 2π/n.
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Local rules for n-fold tilings

Theorem (Socolar 1990)

An n-fold tiling has local rules when n is not a multiple of 4.

Local rules actually enforce an alternation condition:

When n is a multiple of 4, there are square tiles. . .
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Subperiods

Definition (Subperiod)

A planar n → d tiling has a subperiod if one gets a periodic tiling
by an orthogonal projection onto d + 1 well-chosen basis vectors.

For example, a Penrose tiling has 10 subperiods (video).

This translates in linear rational dependencies between Grassmann
coordinates over d + 1 indices. For Penrose:

G12 = G23 = G34 = G45 = G51, G13 = G35 = G52 = G24 = G41.
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Planarity issues

Proposition

The subperiods of a planar tiling can be enforced by local rules.

But these local rules may not suffice to enforce planarity. . .

Theorem (Bédaride-Fernique 2015)

A planar 4 → 2 tiling has local rules iff its slope is characterized by
its subperiods. In particular the slope is quadratic (or rational).
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4p-fold tilings

Theorem (Bédaride-Fernique 2015)

The 4p-fold tilings do not have local rules.
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Local rules of thickness 1

Full subperiods: any projection on d + 1 basis vector is periodic.

Theorem (Levitov 1988)

A planar tiling with thickness 1 local rules has full subperiods.

For n-fold tilings, this yields n ∈ {4, 6, 8, 10, 12}.

These are the only symmetries yet observed in real quasicrystals. . .
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Proof sketch

Consider a planar tiling which does not have full subperiods.
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Proof sketch

Shifting the slope creates flips. We shift without creating patterns.
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Proof sketch

There are lines of flips (corresp. to subperiods) and isolated flips.
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Proof sketch

The smaller the shift is, the sparser these flips are.
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Proof sketch

Given r , we eventually find a ring of thickness r without any flip.
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Proof sketch

This yields a planar tiling of thickness t > 1 with the same r -atlas.
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Algebraic obstruction

Theorem (Le 1995)

The slope of a planar tiling with local rules is algebraic.
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From colors to computability

Definition (Colored local rules)

A planar tiling has colored local rules if it is obtained by removing
the colors of a colored planar tilings which has local rules.

This allows to go far beyond the previous algebraic obstruction:

Theorem (Fernique-Sablik 2012)

A planar tiling has colored local rules iff its slope is computable.

We would like such a characterization for uncolored local rules. . .
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Computable slope?

Definition

A number is computable if it can be computed to within any
desired precision by a finite, terminating algorithm.

Q. Are rational numbers computable? Algebraic numbers? e? π?

Q. Do there exist any non-computable number!?

A slope is computable if it has computable Grassmann coordinates.
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The End
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