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Local rules are not enough

I You saw in Thomas’ lecture that
one can enforce some
Cut-and-project tilings through
local rules.

I Still, if you turn these local rules
into a puzzle, it is hard to
assemble.

I A Tiling Algorithm is harder to
construct than a Tiling.
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The Emil Makovicky Objection

Imagine you are building a tomb in
Maragha

I then you are only interested in
finite patterns

I so everything is decidable

I But: what is the algorithm?

I I don’t think they had enough
resources, so they had to be
clever.

I Is there always a clever solution?
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I Time

I Working Memory (Space)

I What happens when they are restricted?

I A theory of feasible algorithms.

I Tiling algorithms play a particular part in that theory.
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Local algorithms

In Cellular Automata and Turing Machines, we assume a
global synchronization mechanism:

I In Turing Machines, there is only one head

I In Cellular Automata, all cells update synchronously

I Tomorrow, we will see a system for tiling algorithms
without global synchronization: self-assembly.
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Outline

Today efficient algorithms with Turing Machines:

I Time and Space complexity
I The classes P and NP
I NP-complete problems
I this is not in the lecture notes (sorry)

Tomorrow self-assembly

These are two mostly independent points of view.
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Possible is not (necessarily) fast

Given an algorithm i.e., a Turing Machine,

I does it take long to compute

I does it eat all memory?



Time complexity

Definition
Let M be a Turing Machine, and x a word. The computation
time tM(x) of M on x is the number of steps M takes to stop on
input x.
The worst-case time complexity TM of M is the function from
N→ N̄ defined by TM(n) = max{tM(x)|x of size n }



Example

I There is a machine to check if a word contains a 0 with
time complexity n.

I There is a machine to check if a word is a palindrome with
time complexity O(n2).
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Space complexity

Definition
Let M be a Turing Machine with k input tapes, and x a k-uple
of words. The computation space sM(x) of M on x is the
number of distrinct cells of the work-tape M writes on, when
run on input x.
The worst-case space complexity SM of M is the function from
N→ N̄ defined by SM(n) = max{sM(x)|x of size n }.



A link between time and space

Theorem
Let M be a Turing Machine, SM ≥ TM.

Proof.
To write on a tape-cell, one first needs to get there.



Shrinking space

Theorem
Let M be Turing Machine, there is a Turing Machine M′ with
SM = dSM

2 e



Accelerating time

Theorem
Let M be Turing Machine, there is a Turing Machine M′ with
TM = dTM

2 e



Using O notation

Because of the previous two theorems, time and space
complexities are always given using the O notation.



Complexity of a problem

Definition
Let f be a computable function, a function T is a time
complexity lower bound for f if for any Turing Machine M
implementing f , TM(n) = Ω(f(n)).

Theorem
The problem “palindrome” has a time complexity lower bound
of n2 on one-tape Turing Machines.



Finding a closed class

Evaluating precise complexity is complicated, in particular:

I it does not let us compose functions

I it is very sensitive to encoding

I it is sensitive to details of the definition of the machine



The class P

Definition
We say that a function f is in class P if there is a Turing
Machine for computing f with time complexity O(nk) for some
k.

This class corresponds to the generally admitted notion of
feasible, but it also contains functions computable in n1234.



Simplifying hypothesis

In order to determine if some problem is in P, we can assume
the following:

I We work in a high-level like Python

I We count the number of steps of execution

I Arithmetic operations take logarithmic time

I Array access takes linear time

Generally, complexity results are not expressed



Introduction

Time and space complexity
The class P

NP: finding versus verifying

NP-completeness and reductions



Checking versus deciding

Let wang-rectangle-tiling be the following problem:

Input I 2 integers, n and m
I a list of 4-tuples of integers representing

Wang Tiles

Output 1 if it is possible to tile an n×m rectangle with
these Wang Tiles, with only the color 0 on the
border, 0 otherwise.

I wang-rectangle-tiling is decidable; there is a Turing
Machine for solving it; it has exponential complexity.

I we do not know of a better algorithm for this problem,
except in particular cases, but we are looking at the worst
case.



Certificate

On the other hand, we can easily convince someone that an
instance of wang-rectangle-tiling is positive: just show them
the solution.

Definition
A polynomial certificate scheme for a problem prob is a
problem prob′ together with a polynomial c such that:

I P′ is computable in polynomial time

I ∀x,prob(x) ⇐⇒ ∃y ∈ {0,1}≤s(x),prob′(x, y)



Decision Problems

The way we have phrased wang-rectangle-tiling is a bit
peculiar, but it let us define a polynomial certificate scheme
for this problem. Otherwise, we would have needed to state
which tiling we want to give on each input.

Definition
A decision problem is a function with codomain {0,1}.
For the rest of this lecture, all problems are decision problems.



The class NP

Definition
The class NP is the set of decision problems with a polynomial
certificate scheme.

This corresponds to the phenomenon we have identified with
wang-rectangle-tiling, where a solution is easy to verify, but
not necessarily easy to find



Examples of problems in NP

I 3-coloring of a graph

I Fitting furniture into a truck

I Every problem in P is also in NP
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The million-dollar question

Is every problem in NP also in P?



Reduction

We want a way to compare the difficulty of problems without
knowing the best algorithm for them.

Definition
A problem prob is harder by reduction than prob’ if there is a
function f computable in polynomial time from instances of
prob’ to instances of prob such that prob(x) if and only if
prob’(x)



Examples of reduction

I palindrome is harder by reduction than square: reverse
the second half of the word. . .

I . . . and vice-versa

I Any problem in P reduces to the trivial problem of
checking if the input is 0.
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NP-completeness

Which are the tougher nuts to crack?

Definition
A problem P is NP-hard if it is harder by reduction than any
problem in NP. If P is also in NP, then it is said to be
NP-complete.



An NP-complete problem

Theorem
There exists an NP-complete problem.

This means that by studying this problem, we can get
knowledge on all NP problems.



Tiling is NP-complete

Theorem
wang-rectangle-tiling is NP-complete



The SAT problem

Definition
SAT is the following problem: given a logical formula with
variables x1, . . . , xk, is there an assignment of its variables
which makes it true.

Theorem
SAT is NP-complete

Proof.
By reduction from wang-rectangle-tiling: the tiling constraints
can be represented by a logical formula, with variables
representing the possible positions of the tiles.
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