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Tiling

Definition
A tiling is a way of covering a given region using a given set of tiles
completely and without any overlap.
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Statement of the problem

More precisely here we consider the following problem :

Problem
Is a finite figure drawn on a plane grid (i.e., a set of cells of Z× Z
tilable with a given set of tiles ?

FIGURE: Set of cells of Z2
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Outlines of the lecture

Tiling with dominoes (see also Lecture on Random Tilings)

Tiling with bars

Tiling with rectangles

Tiling with a polyomino



I. Tiling with dominoes

Problem

Can we tile a region of Z2 with horizontal or vertical dominoes, that is
1× 2 and 2× 1 bars ?



A first example

Problem
Remove two opposite corners of an 8× 8 chessboard.
Is it possible to tile the resulting figure with dominoes ?

The cells of chessboard are colored black and white
alternatingly. This coloring is crucial in answering the question.
Regardless of where it is placed, a domino will cover one black
and one white square of the board.
Therefore, 31 dominoes will cover 31 black squares and 31 white
squares. However, the board has 32 black squares and 30 white
squares in all, so a tiling does not exist.
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A second example

Problem
Remove one black square and one white square from the chessboard.
Is it possible to tile the resulting board with dominoes ?

The answer is yes, regardless of which squares we remove.
Consider any closed path that covers all the cells of the
chessboard.
Start traversing the path from the point immediately after the
black hole of the chessboard. Cover the two first celld of the path
with a domino ; they are white and black, respectively. Then
cover the two next ones with a domino ; they are also white and
black, respectively. Continue in this way, until the path reaches
the second hole of the chessboard. This second hole is white, so
there is no gap between the last domino placed and this hole.
Skip this hole, and continue covering the path with succes- sive
dominoes. When the path returns to the first hole, there is again
no gap between the last domino placed and the hole.
Therefore, the board is entirely tiled with dominoes.
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A third example

Problem
Is it possible to tile the figure below with dominoes ?

Consider the six black squares in the red perimeter. They are
adjacent to a total of five white squares.
Six different tiles would to cover the six black squares, and each
one of these tiles would have to cover one of the five adjacent
white squares. This makes a tiling impossible.

Hall’s theorem (1935)
There exists a dominoes tiling of a figure if and only

there are the same number of white and black cells in the figure

and each subset of k white (resp. black) cells has at least k black
(resp. white) neighbors.
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Bipartite graph and perfect matching

A bipartite graph is a graph whose vertices can be partitioned into
two disjoint subsets X and Y such that every edge connects a vertex in
X to one in Y .
A perfect matching is a set of edges without common vertices that
cover all vertices.

Hall’s theorem (1935)
There exists a perfect matching in a bipartite graph whose set of
vertices is partitioned into X ∪ Y if and only

there are the same number of vertices in X and Y

and each subset of k vertices of X (resp. Y) has at least k adjacent
vertices.

N What is the relation between a tiling of a region by dominoes and a
perfect matching in a bipartite graph ?
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Tiling with dominoes and perfect matchings

The problem of tiling a region by dominoes can be transformed into
the search of a perfect matching in a non-directed graph bipartite
graph in the following way.

The vertices of the graph are the cells of the region to be tiled.

There is a non-directed edge between each pair of (horizontally
or vertically) adjacent cells.

The cells are colored black and white alternatingly and
partitioned following their color.

N Then there exists a tiling of the region with dominoes if and only if
there exist a perfect matching in the corresponding bipartite graph.
The edges of the matching are in bijection with the dominoes of the
tiling.
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How to find a perfect matching ? A tiling by dominoes ?

Given a matching M, an M-augmenting path is is a path in which the
edges belong alternatively to the matching and not to the matching
that starts from and ends on free (unmatched) vertices.

An augmentating path can be used to make the matching bigger.

Berge theorem (57)
Let M be a matching in a graph. Then either M is a maximum
cardinality matching or there exists an M-augmenting path.
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How to find a tiling by dominoes ?

In a bipartite graph, the augmenting path algorithm builds a
maximal matching

beginning from the empty matching,

by finding an augmenting path from each x ∈ X to Y

and adding it to the matching if it exists.

As each path can be found in O(|E|) time with with for example a
breadth-first search or a depth-first search, the augmenting path
algorithm finds a perfect matching or prove that there is not such
matching, in quadratic time O(|V| · |E|).

Proposition
A figure of surface n can be tiled by 1× 2 and 2× 1 tiles, or proved
not to be tileable, in quadratic time in n.

An improvement over this is the Hopcroft–Karp algorithm, which
runs in O(n3/2)



How to find a tiling by dominoes ?

In a bipartite graph, the augmenting path algorithm builds a
maximal matching

beginning from the empty matching,

by finding an augmenting path from each x ∈ X to Y

and adding it to the matching if it exists.

As each path can be found in O(|E|) time with with for example a
breadth-first search or a depth-first search, the augmenting path
algorithm finds a perfect matching or prove that there is not such
matching, in quadratic time O(|V| · |E|).

Proposition
A figure of surface n can be tiled by 1× 2 and 2× 1 tiles, or proved
not to be tileable, in quadratic time in n.

An improvement over this is the Hopcroft–Karp algorithm, which
runs in O(n3/2)



How to find a tiling by dominoes ?

In a bipartite graph, the augmenting path algorithm builds a
maximal matching

beginning from the empty matching,

by finding an augmenting path from each x ∈ X to Y

and adding it to the matching if it exists.

As each path can be found in O(|E|) time with with for example a
breadth-first search or a depth-first search, the augmenting path
algorithm finds a perfect matching or prove that there is not such
matching, in quadratic time O(|V| · |E|).

Proposition
A figure of surface n can be tiled by 1× 2 and 2× 1 tiles, or proved
not to be tileable, in quadratic time in n.

An improvement over this is the Hopcroft–Karp algorithm, which
runs in O(n3/2)



Enumeration of tilings by dominoes

A lot of things are known about tiling by dominoes

A theorem independently proved to Kasteleyn and Temperley
and Fisher (see Lecture on Random tilings) give the number of
tilings of a figure by dominoes.

The statement of this result in the particular case of tilings of
rectangles is the following

Theorem (Kasteleyn, Temperley-Fisher 1961)
The number of tilings of a 2m× 2n rectangle with 2mn dominoes is
equal to

4mn
m∏

j=1

n∏
k=1

(
cos2 jπ

2m + 1
+ cos2 kπ

2n + 1

)
.

Proof is based on the fact that the number of perfect matchings of a
graph can be calculated via the determinant of a matrix closely related
to the graph.



II. Tiling with bars

Problem

Can we tile a region of Z2 with horizontal or vertical bars, at least one
of them having a length greater than two ?
If the region is a rectangle ? A polygon ? A general region with
possible holes ?
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Tiling a rectangle with a bar

Proposition (Klarner 1966)
An m× n rectangle can be tiled with 1× b rectangles if and only if b
divides m or n.

• If b divides m or n an m× n rectangle can be cut into 1× b
rectangles in a natural way.
• Conversely suppose an m× n rectangle has been tiled with 1× b
rectangles and that m is not divisible by b :

m = qb + r, with 0 < r < b.

Then number from 1 to m the m rows of length n.

Let f1, f2, . . . fb denote distinct colors and color the c-th row fi if
c ∼ i mod b.
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Tiling a rectangle with a bar

We shall use a coloring argument (counting colored cells in two
different ways) to prove that n is necessarily divisible by b.

Let ci denote the total number of cells in the rectangles colored
fi, then

ci =

{
qn + n, for 1 ≤ i ≤ r,
qn, for r < i ≤ b.

In the tiling, each 1× b rectangle is monocolor if it is horizontal
and contains exactly one cell of each color is it vertical.
• Let x denote the number of vertical 1× b rectangles
• Let yi denote the number of horizontal 1× b rectangles with
every cell colored fi for 1 ≤ i ≤ b.
Then ci = x + byi, and ci = x + byi ∼ x + byj = cj mod b.

In particular c1 = qn+ n ∼ qn = cr+1 mod b, so n ∼ 0 mod b.
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Tiling a polygon

Theorem (Kenyon-Kenyon 1992)
A polygon of surface n can be tiled by 1× ` and k × 1 tiles, or proved
not to be tileable, in time linear in n.

This algorithm generalizes a domino tiling algorithm due to
Thurston based on ideas of Conway and Lagarias which rely on
geometric group theory and the notion of height function.

The notion of height function will presented in detail and used in
both Lectures on Random tilings and Flip dynamics

A quadratic algorithm for tiling with `× k and k × ` rectangles
can be derived of the same ideas.
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A decision problem

A decision problem is a question in some formal system with a
yes-or-no answer, depending on the values of some input
parameters.

For example, the problem ”given a set of tiles T and a plane
region R, does T tile R ?” is a decision problem. The answer can
be either ’yes’ or ’no’, and depends upon T and R.



An NP-complete problem

A decision problem is NP-complete when it is both in NP and
NP-hard.

Intuitively, NP is the set of all decision problems for which the
instances where the answer is ”yes” have efficiently verifiable
proofs of the fact that the answer is indeed ”yes”.
More precisely, these proofs have to be verifiable in polynomial
time by a deterministic Turing machine (see Lecture on Cellular
automata).

NP-hard is a class of problems that are, informally, ”at least as
hard as the hardest problems in NP”.
More precisely, a problem H is NP-hard when every problem L
in NP can be reduced in polynomial time to H.

As a consequence, finding a polynomial algorithm to solve any
NP-hard problem would give polynomial algorithms for all the
problems in NP, which is unlikely as many of them are
considered hard.
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Tiling an arbitrary region.

Problem

Can we tile a region of Z2 with horizontal or vertical bars, at least one
of them having a length greater than two ?

In the general case, the result is completly different.

Theorem (Beauquier-Nivat-Rémila-Robson 1995)
Deciding whether a figure can be tiled with 1× ` and k × 1 bars is an
NP-complete problem as soon as k or ` > 2.

The result is based on a reduction of this problem to a classical
NP-complete problem.

Ask Eric Rémila for more details.
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III. Tiling with rectangles



A. Tiling a rectangle with another rectangle

Problem
When can an m× n rectangle be tiled with a× b rectangles (in any
orientation) ?



Tiling a rectangle with another rectangle

First example
Can a 5× 9 rectangle be tiled with 2× 3 rectangles ?

This is impossible.

Each 2× 3 rectangle contains 6 cells,

while the number of cells in a 5× 9 rectangle is 45, which is not
a multiple of 6.

A necessary condition
For a tiling to be possible, the number of cells of the large rectangle
must be divisible by the number of cells of the small rectangle.

N Is this condition enough ?
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Tiling a rectangle with another rectangle

Second example
Can a 11× 20 rectangle be tiled with 4× 5 rectangles ?

The number of tiles needed is 11
But if the 11 cells of the first column can be covered with 4× 5
tiles, then 11 can be written as a sum of 4s and 5s, which is
impossible.

A necessary condition
For a tiling to be possible, the lengths of the sides of the large
rectangle must be decomposable as sums of the lengths of the sides of
the small rectangle.

N Is this condition enough ?
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Tiling a rectangle with another rectangle

Third example
Can a 10× 15 rectangle be tiled with 1× 6 rectangles ?

150 is a multiple of 6

Both 10 and 15 can be written as a sum of 1s and 6s.

However, this tiling problem is still impossible !

Neither 10 nor 15 are divisible by 6 ! (Previous proposition)

Theorem (de Bruijn-Klarner 1969)
An m× n rectangle can be tiled with a× b rectangles if and only if :

The first row and first column can be covered (i.e., m and n can
be expressed in the form ax + by with x, y ≥ 0).

m or n is divisible by a, and m or n is divisible by b.
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Tiling a rectangle with another rectangle (Proof)

If a divides m and b divides n, an m× n rectangle can be cut into
a× b in a natural way.
If ab divides m and n = ax + by, with x, y ≥ 0, the rectangle can
be cut into x strips a× m and y strips b× m, and these strips can
be cut into a× b rectangles because both a and b divide m.

Conversely, recall that

Proposition
An m× n rectangle can be tiled with 1× b rectangles if and only if b
divides m or n.

If an m× n rectangle R has been tiled with a× b rectangles each
side of R can be expressed in the form ax + by, with x, y ≥ O,
because each side of R is the union of length a or b segments.
Since each a× b rectangle can be cut into 1× b rectangles, b
divides m or n by the previous proposition ;
similarly, a divides m or n.



Tiling a rectangle with another rectangle (Proof)

If a divides m and b divides n, an m× n rectangle can be cut into
a× b in a natural way.
If ab divides m and n = ax + by, with x, y ≥ 0, the rectangle can
be cut into x strips a× m and y strips b× m, and these strips can
be cut into a× b rectangles because both a and b divide m.

Conversely, recall that

Proposition
An m× n rectangle can be tiled with 1× b rectangles if and only if b
divides m or n.

If an m× n rectangle R has been tiled with a× b rectangles each
side of R can be expressed in the form ax + by, with x, y ≥ O,
because each side of R is the union of length a or b segments.
Since each a× b rectangle can be cut into 1× b rectangles, b
divides m or n by the previous proposition ;
similarly, a divides m or n.



B. Tiling a square with similar rectangles

Problem
Can a square be tiled with finitely many rectangles similar to a 1× x
rectangle (in any orientation) ?
In other words, can a square be tiled with finitely many rectangles, all
of the form a× ax (where a may vary) ?



Tiling a square with similar rectangles - Examples

We begin with a first simple example ;
Let x = 3

4 .

1

3/4

1/3

1/4

1

1

In this case, we only need one size of rectangle, because we can tile a

a 1× 1 square with 12 1
3 ×

1
4 rectangles (a = 1

3 )

or equivalently a 3× 3 square with 12 1× 3
4 rectanglses.

Note that x = 3
4 satisfies the equation 4x− 3 = 0.
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Tiling a square with similar rectangles- Examples

A similar construction will work for any positive rational number

x =
p
q
.

When x = p
q is a positive rational number, a tiling of the unit square is

obtained

with pq tiles 1
p ×

1
q

that are similar to the 1× p
q rectangle.

Again x = p
q satisfies the equation qx− p = 0.
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Tiling a square with similar rectangles- Example

Let us find a tiling using three similar rectangles of different sizes.
1

x

1-x

(1-x)/xx(1-x)

Say that the largest rectangle has dimensions 1× x.

Then the second largest one has dimensions (1− x)× (1−x)
x .

The last one has dimension (1− x)× x(1− x).

Therefore x(1− x) + (1−x)
x = 1, x satisfies the equation

x3 − x2 + 2x− 1 = 0
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Tiling a square with similar rectangles- Examples

x satisfies the equation

x3 − x2 + 2x− 1 = 0

One value of x which satisfies this equation is
x = 0.5698402910 . . .
For this value of x, the tiling problem can be solved as above.

The two other solutions are approximately 0.215 + 1.307i and
0.215− 1.307i.
These two numbers do not give a real solution to tiling problem.
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Tiling a square with similar rectangles

Theorem (Freiling-Rinne, Laczkovich-Szekeres 1995)
Let x > 0. The three following statements are equivalent

1 It is possible to tile a square with rectangles similar (up to a
rotation) to the 1× x rectangle.

2 There exist rational positive numbers c1, . . . , cn such that

c1x +
1

c2x + 1
. . .+ 1

cnx

= 1.

3 The real x is algebraic and every (complex) conjugate of x has
positive real part.



Tiling a square with similar rectangles Statement 3→ Statement 2

Here the key ingredient is the following theorem

Theorem (Wall 1945)

Let P(z) = zn + pn−1zn−1 + · · ·+ p0.
Let Q(z) = pn−1zn−1 + pn−3zn−3 + · · · be the alternant of P(z).
All roots of P(z) have positive real part if and only if

Q(z)
P(z)− Q(z)

=
−1

c1z + 1
c2z+ 1

. . .+ 1
cnz

where each ci > 0.



Tiling a square with similar rectangles Statement 3→ Statement 2

Let x > 0 be an algebraic number having conjugate roots with
positive real parts.

Let P be the minimal polynomial of degree n for x over the
rationals. By Wall’s Theorem, we have

Q(z)
P(z)− Q(z)

=
−1

c1z + 1
c2z+ 1

. . .+ 1
cnz

where each ci > 0.

Since P(x) = 0, P(x)− Q(x) = −Q(x) so −Q(x)
P(x)−Q(x) = 1 and

1 =
1

c1x + 1
c2x+ 1

. . .+ 1
cnx
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Tiling a square with similar rectangles : Statement 2→ Statement 1

Take a unit square.
Cut off a rectangle of ratio (that is, the length of the horizontal
side divided by the length of the vertical one) c1x from the
square by a vertical cut. The remaining part is a rectangle of ratio

1− c1x =
1

c2x + 1
. . .+ 1

cnx

.

Now cut off a rectangle of ratio 1
c2x from the remaining part by a

horizontal cut. We get a rectangle of ratio

c3x +
1

c4x + 1
. . .+ 1

cnx

.

Continue this process alternating vertical and horizontal cuts.
After (n− 1) steps we get a rectangle of ratio cnx.
Since all ci are rational one can chop the tiling into rectangles
similar to the 1× x rectangle.
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Tiling a square with similar rectangles : Applications

The value x =
√

2 does satisfy a polynomial equation with
integer coefficients, namely x2 − 2 = 0.
However, the other root of the equation is −

√
2 < 0.

Thus a square cannot be tiled with finitely many rectangles
similar to a 1×

√
2 rectangle.

On the other hand, x =
√

2 + 17
12 satisfies the quadratic equation

144x2 − 408x + 1 = 0,

whose other root is −
√

2 + 17
12 = 0.002453 . . . > 0.

Therefore a square can be tiled with finitely many rectangles
similar to a 1×

√
2 + 17

12 .
How would we actually do it ?
Can you find a solution for rectangles similar to a 1×−

√
2+ 17

12 ?



Tiling a square with similar rectangles : Applications

The value x =
√

2 does satisfy a polynomial equation with
integer coefficients, namely x2 − 2 = 0.
However, the other root of the equation is −

√
2 < 0.

Thus a square cannot be tiled with finitely many rectangles
similar to a 1×

√
2 rectangle.

On the other hand, x =
√

2 + 17
12 satisfies the quadratic equation

144x2 − 408x + 1 = 0,

whose other root is −
√

2 + 17
12 = 0.002453 . . . > 0.

Therefore a square can be tiled with finitely many rectangles
similar to a 1×

√
2 + 17

12 .
How would we actually do it ?
Can you find a solution for rectangles similar to a 1×−

√
2+ 17

12 ?



Tiling a square with similar rectangles : Applications

The value x =
√

2 does satisfy a polynomial equation with
integer coefficients, namely x2 − 2 = 0.
However, the other root of the equation is −

√
2 < 0.

Thus a square cannot be tiled with finitely many rectangles
similar to a 1×

√
2 rectangle.

On the other hand, x =
√

2 + 17
12 satisfies the quadratic equation

144x2 − 408x + 1 = 0,

whose other root is −
√

2 + 17
12 = 0.002453 . . . > 0.

Therefore a square can be tiled with finitely many rectangles
similar to a 1×

√
2 + 17

12 .
How would we actually do it ?
Can you find a solution for rectangles similar to a 1×−

√
2+ 17

12 ?



Tiling a square with similar rectangles : Applications

The value x =
√

2 does satisfy a polynomial equation with
integer coefficients, namely x2 − 2 = 0.
However, the other root of the equation is −

√
2 < 0.

Thus a square cannot be tiled with finitely many rectangles
similar to a 1×

√
2 rectangle.

On the other hand, x =
√

2 + 17
12 satisfies the quadratic equation

144x2 − 408x + 1 = 0,

whose other root is −
√

2 + 17
12 = 0.002453 . . . > 0.

Therefore a square can be tiled with finitely many rectangles
similar to a 1×

√
2 + 17

12 .
How would we actually do it ?
Can you find a solution for rectangles similar to a 1×−

√
2+ 17

12 ?



C. Tiling a rectangle with squares

Problem
Can a rectangle be tiled with finitely many squares ?
Squares can be all distinct or not.
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Tiling a rectangle with squares

An m× n rectangle, where m and n are integers, can be tiled by
mn unit squares.

Thus a rectangle with rational side ratio can be tiled by squares.

The following result shows that this condition is sufficient :

Theorem (Dehn 1903)
A rectangle can be tiled by squares (not necessarily equal) if and only
if the ratio of two sides of the rectangle is rational.

The original proof is complicated.

In 1940, Brooks, Smith, Stone, and Tutte study tilings by squares
introducing a nice interpretation in terms of electrical networks.

Roughly speaking, the study of squared rectangles is transformed
into the study of certain flows of electricity in networks of unit
resistors (i.e, with wires of conductance 1) .
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Tiling a rectangle with squares

Define a directed graph such that
vertices are the horizontal lines found in the rectangle ;
for each square there is one edge going from its top horizontal
line to its bottom horizontal line ;
each square corresponds to a wire (in the network) through
which the current flowing is equal to the length of the
corresponding square.
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Tiling a rectangle with squares

To each horizontal line corresponds a ”horizontal equation” for
the side lengths of the squares : a + d = g + h, b = d + e, . . . and
we get one equation saying that the top and bottom sides of the
rectangle are equal : a + b + c = g + i
They are equivalent to the equations for conservation of current
in this network (Kirshoff’s law).
we get a ”vertical equation” for each vertical line : a = b + d,
d + h = e + f , . . . and one equation saying that the left and right
sides of the rectangle are equal a + g = c + f + i.
The ”vertical equations” are equivalent to Ohm’s law : U = RI
(with R = 1 here) or I = CU.
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Tiling a rectangle with squares

Theorem (Weyl 1923)
The flow in each wire is determined uniquely, once the potential
difference between some two vertices (up to scaling) is known.

The resulting system of linear equations always has a unique
solution up to scaling, for any proposed layout of squares.
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Tiling a rectangle with squares - Dehn’s Theorem

If we fix the flow going out from the top vertex to be the
complexity of the circuit (here it is also the number of the
subtrees of the network),

then computations involve only integers and rationals numbers

we obtain

Dehn’s Theorem (Rational ratios)
Every rectangle that can be tiled by rectangles has commensurable
sides and square tiles.



Tiling a rectangle with squares - Applications

Characterization of the network
The structure of the networks corresponding to a squared rectangle is
characterized as follows

It is a connected planer graph (can be designed on the plane
without crossing edges)

There are two special vertices (one without ingoing edge, the
another without aoutgoing edge)

All conductances (and resistances) are equal to 1

The values of the flow in each wire and of the potential
difference between each pairs of vertices must satisfies Ohm’s
law and Kirshoff’s law.

N Exhaustive generation of rectangles that can be tiled with n squares
(n small) building all networks with n wires.
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Tiling a rectangle with squares - Applications

To find tilings of squares instead of rectangles an additional
linear equation is needed, stating that the vertical and horizontal
side lengths of the rectangle are equal. In terms of the electrical
network, this is equivalent to saying that the network has total
resistance 1.

Using this technique Duijvestijn (1978) with a computer showed
that the smallest possible number of squares in a perfect tiling
of a square is 21.

See http://www.squaring.net for a survey and artwork.

To described a tiling of a rectangle by rectangles with an
electrical network, it suffice to take for the conductances the
ratios of the rectangle instead of 1.

There is no generalization of this constrcution in higher
dimension.
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IV. Tiling with a polyomino

Problem
Given a polyomino P, does there exist a rectangle which can be tiled
using copies of P ?



Undecidability

Roughly speaking, an undecidable problem is a decision
problem for which it is known to be impossible to construct a
single algorithm that always leads to a correct yes-or-no answer

that is, any possible program would sometimes give the wrong
answer or run forever without giving any answer.

A rigorous definition of the notion of decidabilty/undecidability
based on Turing machines will be given during the lecture on
Cellular Automata.



Tiling a rectangle with a polyomino

Theorem (Berger 1966)
The general problem of whether a given arbitrary polyomino can tile a
rectangle is undecidable

This implies that there is no computable function f (n) which
bounds the area of the minimum rectangle that a given n-omino
might tile.

Otherwise we would have a decision procedure :
“Try all arrangements of the given n-omino in all rectangles of
area < f (n).”
While this is no doubt computationally “hard,” it is nonetheless
much easier than “undecidable.“
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Thank you for your attention !


