Brun expansions of stepped surfaces

Valérie Berthé et Thomas Fernique

LIRMM - Univ. Montpellier 2 & CNRS

WORDS'07, September 18, 2007

(日)、(型)、(E)、(E)、(E)、(Q)

Main result:

Action of *dual maps of free group morphisms* over stepped planes and surfaces (extends substitutions on words).

(日)、(型)、(E)、(E)、(E)、(Q)

Applications :

Brun expansions of stepped planes and surfaces.

Recognition of stepped planes among stepped surfaces.

Stp. planes & stp. surfaces 0000	Dual maps of f. g. morphisms	Brun expansions of stp. planes	Brun expansions of stp. surfaces 0000

- 2 Dual maps of free group morphisms
- 3 Brun expansions of stepped planes
- 4 Brun expansions of stepped surfaces

Stp. planes & stp. surfaces	Dual maps of f. g. morphisms	Brun expansions of stp. planes	Brun expansions of stp. surfaces

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

1 Stepped planes and stepped surfaces

2 Dual maps of free group morphisms

- 3 Brun expansions of stepped planes
- 4 Brun expansions of stepped surfaces

Stp. planes & stp. surfaces	Dual maps of f. g. morphisms	Brun expansions of stp. planes	Brun expansions of stp. surfaces
••••			
Stepped plane			

 $(\vec{e}_1, \ldots, \vec{e}_d)$ basis of \mathbb{R}^d . $\vec{x} \in \mathbb{Z}^d$, $i \in \{1, \ldots, d\} \rightsquigarrow face (\vec{x}, i^*)$:

Definition

Stepped plane of normal vector $\vec{\alpha} \in \mathbb{R}^d_+ \setminus \{0\}$:

$$\mathcal{P}_{\vec{\alpha}} = \{ (\vec{x}, i^*) \mid \langle \vec{x}, \vec{\alpha} \rangle \leq 0 < \langle \vec{x} + \vec{e}_i, \vec{\alpha} \rangle \}.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Stp. planes & stp. surfaces ○●○○	Dual maps of f. g. morphisms 0000	Brun expansions of stp. planes	Brun expansions of stp. surfaces
Stepped plane			

A stepped plane.

・ロト・日本・日本・日本・日本・日本

Stp. planes & stp. surfaces	Dual maps of f. g. morphisms	Brun expansions of stp. planes	Brun expansions of stp. surfaces
0000			
Stepped surface			

Let π be the orthogonal projection along $\vec{u} = \vec{e}_1 + \ldots + \vec{e}_d$.

By extension:

Definition [Jamet]

Stepped surfaces : any set of faces homeomorphic to \vec{u}^{\perp} by π .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Stp. planes & stp. surfaces	Dual maps of f. g. morphisms	Brun expansions of stp. planes	Brun expansions of stp. surfaces
○○○●		0000	0000
Stepped surface			

A stepped surface.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Stp. planes & stp. surfaces	Dual maps of f. g. morphisms	Brun expansions of stp. planes	Brun expansions of stp. surfaces

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

1 Stepped planes and stepped surfaces

2 Dual maps of free group morphisms

3 Brun expansions of stepped planes

4 Brun expansions of stepped surfaces

Stp. planes & stp. surfaces	Dual maps of f. g. morphisms ●○○○	Brun expansions of stp. planes	Brun expansions of stp. surfaces
Definition			

Morphism of the free group over $\{1, \ldots, d\}$ (here, d = 3):

$$\sigma : \begin{cases} 1 & \mapsto & 3 \\ 2 & \mapsto & 3^{-1}1 \\ 3 & \mapsto & 3^{-1}2 \end{cases}$$

For example: $\sigma(1^{-1}312) = \sigma(1)^{-1}\sigma(3)\sigma(1)\sigma(2) = 3^{-2}21$. Incidence matrix: $(M_{\sigma})_{ij} = |\sigma(i)|_j - |\sigma(i)|_{j^{-1}}$. Here:

$$M_{\sigma}=\left(egin{array}{ccc} 0 & 1 & 0 \ 0 & 0 & 1 \ 1 & -1 & -1 \end{array}
ight).$$

Stp. planes & stp. surfaces	Dual maps of f. g. morphisms ○●○○	Brun expansions of stp. planes 0000	Brun expansions of stp. surfaces
Definition			

 σ unimodular f. g. morph. \rightsquigarrow dual map $E_1^*(\sigma)$ (Arnoux-Ito, Ei). $E_1^*(\sigma)$: linear map over weighted sums of faces.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Stp. planes & stp. surfaces	Dual maps of f. g. morphisms ○●○○	Brun expansions of stp. planes	Brun expansions of stp. surfaces
Definition			

 σ unimodular f. g. morph. \rightsquigarrow dual map $E_1^*(\sigma)$ (Arnoux-Ito, Ei). $E_1^*(\sigma)$: linear map over weighted sums of faces.

For σ previously defined:

$$E_1^*(\sigma) : \begin{cases} (\vec{0}, 1^*) & \mapsto & (\vec{e}_1, 2^*) \\ (\vec{0}, 2^*) & \mapsto & (\vec{e}_1, 3^*) \\ (\vec{0}, 3^*) & \mapsto & (\vec{0}, 1^*) - (\vec{e}_1, 2^*) - (\vec{e}_1, 3^*). \end{cases}$$

and, for $\lambda \in \mathbb{Z}$, $\vec{x} \in \mathbb{Z}^d$:

$$E_1^*(\sigma)(\lambda.(\vec{x},i^*)) = M_{\sigma}^{-1}\vec{x} + \lambda.E_1^*(\sigma)(\vec{0},i^*).$$

Stp. planes & stp. surfaces	Dual maps of f. g. morphisms ○○●○	Brun expansions of stp. planes	Brun expansions of stp. surfaces
Properties			

Theorem (B. F. 2007)

For σ unimodular free group morphism and $\vec{\alpha} \in \mathbb{R}^d_+ \backslash \vec{0}$:

$$M_{\sigma}^{ op}ec{lpha} \in \mathbb{R}^d_+ \; \Rightarrow \; E_1^*(\sigma)(\mathcal{P}_{ec{lpha}}) = \mathcal{P}_{M_{\sigma}^{ op}ec{lpha}}.$$

(ロ) (四) (注) (注) (注) (注)

Stp. planes & stp. surfaces	Dual maps of f. g. morphisms	Brun expansions of stp. planes	Brun expansions of stp. surfaces
0000	0000	0000	0000
Properties			

Theorem (B. F. 2007)

For σ unimodular free group morphism: if the image by $E_1^*(\sigma)$ of a stepped surface has faces with weights in $\{0,1\}$, then it is a stepped surface. This holds, in particular, when $M_{\sigma} \geq 0$.

・ロト ・四ト ・ヨト ・ヨ

Stp. planes & stp. surfaces	Dual maps of f. g. morphisms	Brun expansions of stp. planes	Brun expansions of stp. surfaces
0000	0000	0000	0000

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

1 Stepped planes and stepped surfaces

2 Dual maps of free group morphisms

3 Brun expansions of stepped planes

4 Brun expansions of stepped surfaces

Stp. planes & stp. surfaces	Dual maps of f. g. morphisms	Brun expansions of stp. planes	Brun expansions of stp. surfaces
		0000	
Prup expansion of a vector			

Brun map T, defined for
$$\vec{\alpha} = (\alpha_1, \dots, \alpha_d) \in \mathbb{R}^d \setminus \{0\}$$
:

$$T(\alpha_1,\ldots,\alpha_d) = \left(\frac{\alpha_1}{\alpha_i},\ldots,\frac{\alpha_{i-1}}{\alpha_i},\frac{1}{\alpha_i}-a,\frac{\alpha_{i+1}}{\alpha_i},\ldots,\frac{\alpha_d}{\alpha_i}\right),$$

where $i = \min\{j \mid \alpha_j = ||\vec{\alpha}||_{\infty}\}$ and $a = \lfloor 1/\alpha_i \rfloor$. Matrix viewpoint:

$$(1, \vec{\alpha})^{\top} \propto B_{\mathbf{a},i}(1, T(\vec{\alpha}))^{\top}$$
 with $B_{\mathbf{a},i} = \begin{pmatrix} \mathbf{a} & 1 & \\ & \mathbf{I}_{i-1} & & \\ 1 & & 0 & \\ & & & \mathbf{I}_{d-i} \end{pmatrix}$

٠

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Stp. planes & stp. surfaces	Dual maps of f. g. morphisms	Brun expansions of stp. planes	Brun expansions of stp. surfaces
		0000	
Brun expansion of a vector			

Brun map T, defined for
$$\vec{\alpha} = (\alpha_1, \dots, \alpha_d) \in \mathbb{R}^d \setminus \{0\}$$
:

$$T(\alpha_1,\ldots,\alpha_d)=\left(\frac{\alpha_1}{\alpha_i},\ldots,\frac{\alpha_{i-1}}{\alpha_i},\frac{1}{\alpha_i}-a,\frac{\alpha_{i+1}}{\alpha_i},\ldots,\frac{\alpha_d}{\alpha_i}\right),$$

where $i = \min\{j \mid \alpha_j = ||\vec{\alpha}||_{\infty}\}$ and $a = \lfloor 1/\alpha_i \rfloor$. Matrix viewpoint:

$$(1, \vec{\alpha})^{\top} \propto B_{a,i}(1, T(\vec{\alpha}))^{\top}$$
 with $B_{a,i} = \begin{pmatrix} a & 1 \\ I_{i-1} & \\ 1 & 0 \\ & & I_{d-i} \end{pmatrix}$

Brun expansion of $\vec{\alpha}$: sequence $(a_n, i_n)_{n \ge 0}$ of $\mathbb{N}^* \times \{1, \ldots, d\}$:

 $a_n = \lfloor ||T^n(\vec{\alpha})||_{\infty}^{-1} \rfloor$ and $i_n = \min\{j \mid \langle T^n(\vec{\alpha})|\vec{e}_j \rangle = ||T^n(\vec{\alpha})||_{\infty}\}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Stp. planes & stp. surfaces	Dual maps of f. g. morphisms 0000	Brun expansions of stp. planes	Brun expansions of stp. surfaces
From vectors to stepped plan	es		

Let $\beta_{a,i}$ be an automorphism with incidence matrix $B_{a,i}$ (it exists).

If $i = \min\{j \mid \alpha_j = ||\vec{\alpha}||_{\infty}\}$ and $a = \lfloor 1/\alpha_i \rfloor$ are known:

 $E_1^*(\beta_{a,i}^{-1})(\mathcal{P}_{(1,\vec{\alpha})}) = \mathcal{P}_{(1,T(\vec{\alpha}))}.$

Stp. planes & stp. surfaces	Dual maps of f. g. morphisms 0000	Brun expansions of stp. planes ○●○○	Brun expansions of stp. surfaces 0000
From vectors to stepped plan	es		

Let $\beta_{a,i}$ be an automorphism with incidence matrix $B_{a,i}$ (it exists).

If
$$i = \min\{j \mid \alpha_j = ||\vec{\alpha}||_{\infty}\}$$
 and $a = \lfloor 1/\alpha_i \rfloor$ are known:

$$E_1^*(\beta_{a,i}^{-1})(\mathcal{P}_{(1,\vec{\alpha})}) = \mathcal{P}_{(1,T(\vec{\alpha}))}.$$

Brun expansions could be computed directly over stepped planes by "reading" (a, i). By abuse: Brun expansions of stepped planes.

Note: we do not need to know $\vec{\alpha}$ but just to perform entries comparisons and floor computation.

Stp. planes & stp. surfaces	Dual maps of f. g. morphisms	Brun expansions of stp. planes	Brun expansions of stp. surfaces
From vectors to stepped plan	es		

Definition

An (i, j)-run of length a is a set of faces of the form:

 $\{(\vec{x} + k\vec{e}_j, i^*) \mid 0 \le k < a\}.$

entries comparisons:

 $\mathcal{P}_{\vec{\alpha}}$ admits an (i, j)-run of length at least 2 iff $\alpha_i > \alpha_j$.

floor computation:

The smallest (i, j)-run of $\mathcal{P}_{\vec{\alpha}}$ has length max $(\lfloor \alpha_i / \alpha_j \rfloor, 1)$.

From vectors to stepped plan	ies		
0000	0000	000•	
Stp. planes & stp. surfaces	Dual maps of f. g. morphisms	Brun expansions of stp. planes	Brun expansions of stp. surfa

Stepped plane $\mathcal{P}_{(1,\alpha,\beta)}$, with unkown $\alpha,\beta \geq 0$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Stp. planes & stp. surfaces	Dual maps of f. g. morphisms	Brun expansions of stp. planes	Brun expansions of stp. surfaces 0000
From vectors to stepped plan	es		

(1,2)-run and (1,3)-run of length at least 2 \rightsquigarrow $(lpha,eta)\in [0,1]^2$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

From vectors to stepped plan	ies		
0000	0000	000•	
Stp. planes & stp. surfaces	Dual maps of f. g. morphisms	Brun expansions of stp. planes	Brun expansions of stp. surfa

(2,3)-run of length 2 $\rightsquigarrow \alpha > \beta \rightsquigarrow i = 1$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Stp. planes & stp. surfaces	Dual maps of f. g. morphisms 0000	Brun expansions of stp. planes ○○○●	Brun expansions of stp. surfac
From vectors to stepped play	nes		

Smallest (1,2)-run of length 2 \rightsquigarrow $a = \lfloor 1/\alpha \rfloor = 2$.

(ロ)、(型)、(E)、(E)、 E) のQの

Stp. planes & stp. surfaces	Dual maps of f. g. morphisms	Brun expansions of stp. planes	Brun expansions of stp. surfaces
From vectors to stepped plan	es		

Finally: $E_1^*(\beta_{2,1}^{-1}(\mathcal{P}_{(1,\alpha,\beta)}) = \mathcal{P}_{(1,\mathcal{T}(\alpha,\beta))}$.

・ロト ・西ト ・ヨト ・ヨー うらぐ

Stp. planes & stp. surfaces	Dual maps of f. g. morphisms	Brun expansions of stp. planes	Brun expansions of stp. surfaces

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- 1 Stepped planes and stepped surfaces
- 2 Dual maps of free group morphisms
- 3 Brun expansions of stepped planes
- 4 Brun expansions of stepped surfaces

Stp. planes & stp. surfaces	Dual maps of f. g. morphisms 0000	Brun expansions of stp. planes 0000	Brun expansions of stp. surfaces
From stepped planes to stepp	ed surfaces		

Reading over stepped planes ~>> Brun exp. of stepped planes.

By analogy (runs and dual maps are still defined):

Reading over stepped surfaces \rightsquigarrow Brun exp. of stepped surfaces.

(日)、(型)、(E)、(E)、(E)、(Q)

Relation with Brun exp. of vectors? (no more normal vectors)

Stp. planes & stp. surfaces	Dual maps of f. g. morphisms 0000	Brun expansions of stp. planes	Brun expansions of stp. surfaces
From stepped planes to stepp	ed surfaces		

Reading over stepped planes ~>> Brun exp. of stepped planes.

By analogy (runs and dual maps are still defined):

Reading over stepped surfaces \rightsquigarrow Brun exp. of stepped surfaces.

Relation with Brun exp. of vectors? (no more normal vectors)

Theorem (B. F. 2007)

Stepped surfaces having the Brun expansion of $\vec{\alpha} \in \mathbb{R}^d_+ \setminus \{0\}$ are:

- the stepped plane $\mathcal{P}_{(1,\vec{\alpha})}$ (finite or infinite expansion);
- some stepped surfaces almost equal to $\mathcal{P}_{(1,\vec{\alpha})}$ (idem);
- some non-plane stepped surfaces (only finite expansion).

Stp. planes & stp. surfaces	Dual maps of f. g. morphisms	Brun expansions of stp. planes	Brun expansions of stp. surfaces
0000	0000	0000	0000
The stepped plane case (finit	to or infinite expansion)		

(a, i) = (4, 1)

▲ロト ▲母 ト ▲目 ト ▲目 ト ● ○ ○ ○ ○ ○

Stp. planes & stp. surfaces	Dual maps of f. g. morphisms	Brun expansions of stp. planes	Brun expansions of stp. surfaces
The stepped plane case (finit	e or infinite expansion)		

(a, i) = (1, 2)

▲ロト ▲母 ト ▲目 ト ▲目 ト ● ○ ○ ○ ○ ○

	0000	0000	0000
Stp. planes & stp. surfaces	Dual maps of f. g. morphisms	Brun expansions of stp. planes	Brun expansions of stp. surfaces

 $a = \infty$: (rational) stepped plane recognized.

ヘロト ヘ週ト ヘヨト ヘヨト

3

Stp. planes & stp. surfaces 0000	Dual maps of f. g. morphisms 0000	Brun expansions of stp. planes	Brun expansions of stp. surfaces
The stepped quasi-plane case	(finite or infinite expansion)		

(a, i) = (4, 1)

▲ロト ▲母 ト ▲目 ト ▲目 ト ● ○ ○ ○ ○ ○

Stp. planes & stp. surfaces	Dual maps of f. g. morphisms 0000	Brun expansions of stp. planes	Brun expansions of stp. surfaces $\circ \circ \bullet \circ$
The stepped quasi-plane case	(finite or infinite expansion)		

(a,i)=(1,2)

・ロト・日本・日本・日本・日本・日本

Stp. planes & stp. surfaces	Dual maps of f. g. morphisms 0000	Brun expansions of stp. planes	Brun expansions of stp. surfaces ○○●○
The stepped quasi-plane case	(finite or infinite expansion)		

 $a = \infty$: not a stepped plane... but almost.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Stp. planes & stp. surfaces	Dual maps of f. g. morphisms	Brun expansions of stp. planes

Brun expansions of stp. surfaces $\circ \circ \circ \circ \bullet$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

The stepped surface case (only finite expansion)

(a, i) = (4, 1)

Stp. planes & stp. surfaces	Dual maps of f. g. morphisms	Brun expansions of stp. planes	Brun expansions of stp. surfaces $\circ \circ \circ \bullet$
The stepped surface case (on	ly finite expansion)		

(a,i)=(1,2)

▲ロト ▲母 ト ▲目 ト ▲目 ト ● 日 ● ● ● ●

Stp. planes & stp. surfaces	Dual maps of f. g. morphisms	Brun expansions of stp. planes

Brun expansions of stp. surfaces $\circ \circ \circ \circ$

The stepped surface case (only finite expansion)

(a, i) undefined: not at all a stepped plane.

Where is "digital plane recognition"?

A stepped surface is a rational stepped plane iff it has a finite Brun expansion, with the last obtained stepped surface being $\mathcal{P}_{(1,\vec{0})}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Can be extended for finite subset of stepped surfaces.