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Introduction

Main result:
Action of dual maps of free group morphisms over stepped planes
and surfaces (extends substitutions on words).

Applications :
Brun expansions of stepped planes and surfaces.
Recognition of stepped planes among stepped surfaces.
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Stepped plane

(~e1, . . . ,~ed) basis of Rd . ~x ∈ Zd , i ∈ {1, . . . , d}  face (~x , i∗):
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Definition

Stepped plane of normal vector ~α ∈ Rd
+\{0}:

P~α = {(~x , i∗) | 〈~x , ~α〉 ≤ 0 < 〈~x + ~ei , ~α〉}.
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Stepped plane

A stepped plane.
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Stepped surface

Let π be the orthogonal projection along ~u = ~e1 + . . . + ~ed .

Proposition

Stepped planes are homeomorphic to ~u⊥ by π.

By extension:

Definition [Jamet]

Stepped surfaces : any set of faces homeomorphic to ~u⊥ by π.
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Stepped surface

A stepped surface.
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Definition

Morphism of the free group over {1, . . . , d} (here, d = 3):

σ :


1 7→ 3
2 7→ 3−11
3 7→ 3−12

For example: σ(1−1312) = σ(1)−1σ(3)σ(1)σ(2) = 3−221.

Incidence matrix: (Mσ)ij = |σ(i)|j − |σ(i)|j-1 . Here:

Mσ =

 0 1 0
0 0 1
1 −1 −1

 .
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Definition

σ unimodular f. g. morph.  dual map E ∗1 (σ) (Arnoux-Ito, Ei).

E ∗1 (σ): linear map over weighted sums of faces.

For σ previously defined:

E ∗1 (σ) :


(~0, 1∗) 7→ (~e1, 2

∗)

(~0, 2∗) 7→ (~e1, 3
∗)

(~0, 3∗) 7→ (~0, 1∗)− (~e1, 2
∗)− (~e1, 3

∗).

and, for λ ∈ Z, ~x ∈ Zd :

E ∗1 (σ)(λ.(~x , i∗)) = M−1
σ ~x + λ.E ∗1 (σ)(~0, i∗).
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Properties

Theorem (B. F. 2007)

For σ unimodular free group morphism and ~α ∈ Rd
+\~0:

M>
σ ~α ∈ Rd

+ ⇒ E ∗1 (σ)(P~α) = PM>
σ ~α.

E*
1
(σ  )

−1

E*
1
(σ)
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Properties

Theorem (B. F. 2007)

For σ unimodular free group morphism: if the image by E ∗1 (σ) of a
stepped surface has faces with weights in {0, 1}, then it is a
stepped surface. This holds, in particular, when Mσ ≥ 0.

E*
1
(σ  )

−1

E*
1
(σ)
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Brun expansion of a vector

Brun map T , defined for ~α = (α1, . . . , αd) ∈ Rd\{0}:

T (α1, . . . , αd) =

(
α1

αi
, . . . ,

αi−1

αi
,

1

αi
− a,

αi+1

αi
, . . . ,

αd

αi

)
,

where i = min{j | αj = ||~α||∞} and a = b1/αic. Matrix viewpoint:

(1, ~α)> ∝ Ba,i (1,T (~α))> with Ba,i =


a 1

Ii−1

1 0
Id−i

 .

Brun expansion of ~α: sequence (an, in)n≥0 of N∗ × {1, . . . , d}:

an =
⌊
||T n(~α)||−1

∞
⌋

and in = min{j | 〈T n(~α)|~ej〉 = ||T n(~α)||∞}.
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From vectors to stepped planes

Let βa,i be an automorphism with incidence matrix Ba,i (it exists).

If i = min{j | αj = ||~α||∞} and a = b1/αic are known:

E ∗1 (β−1
a,i )(P(1,~α)) = P(1,T (~α)).

Brun expansions could be computed directly over stepped planes
by “reading” (a, i). By abuse: Brun expansions of stepped planes.

Note: we do not need to know ~α but just to perform entries
comparisons and floor computation.
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From vectors to stepped planes

Definition

An (i , j)-run of length a is a set of faces of the form:

{(~x + k~ej , i
∗) | 0 ≤ k < a}.

entries comparisons:

P~α admits an (i , j)-run of length at least 2 iff αi > αj .

floor computation:

The smallest (i , j)-run of P~α has length max(bαi/αjc, 1).
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From vectors to stepped planes

Stepped plane P(1,α,β), with unkown α, β ≥ 0.
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From vectors to stepped planes

(1, 2)-run and (1, 3)-run of length at least 2  (α, β) ∈ [0, 1]2
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From vectors to stepped planes

(2, 3)-run of length 2  α > β  i = 1.
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From vectors to stepped planes

Smallest (1, 2)-run of length 2  a = b1/αc = 2.
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From vectors to stepped planes

Finally: E ∗1 (β−1
2,1(P(1,α,β)) = P(1,T (α,β)).
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From stepped planes to stepped surfaces

Reading over stepped planes  Brun exp. of stepped planes.

By analogy (runs and dual maps are still defined):

Reading over stepped surfaces  Brun exp. of stepped surfaces.

Relation with Brun exp. of vectors? (no more normal vectors)

Theorem (B. F. 2007)

Stepped surfaces having the Brun expansion of ~α ∈ Rd
+\{0} are:

the stepped plane P(1,~α) (finite or infinite expansion);

some stepped surfaces almost equal to P(1,~α) (idem);

some non-plane stepped surfaces (only finite expansion).
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The stepped plane case (finite or infinite expansion)

(a, i) = (4, 1)
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The stepped plane case (finite or infinite expansion)

(a, i) = (1, 2)
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The stepped plane case (finite or infinite expansion)

a = ∞: (rational) stepped plane recognized.
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(a, i) = (4, 1)
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The stepped quasi-plane case (finite or infinite expansion)

a = ∞: not a stepped plane. . . but almost.
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The stepped surface case (only finite expansion)

(a, i) = (4, 1)
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The stepped surface case (only finite expansion)

(a, i) = (1, 2)
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The stepped surface case (only finite expansion)

(a, i) undefined: not at all a stepped plane.



Conclusion

Where is “digital plane recognition”?

A stepped surface is a rational stepped plane iff it has a finite Brun
expansion, with the last obtained stepped surface being P(1,~0).

Can be extended for finite subset of stepped surfaces.
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