Brun expansions of stepped surfaces

Valérie Berthé et Thomas Fernique

LIRMM - Univ. Montpellier 2 \& CNRS

WORDS'07, September 18, 2007

Main result:
Action of dual maps of free group morphisms over stepped planes and surfaces (extends substitutions on words).

Applications:
Brun expansions of stepped planes and surfaces.
Recognition of stepped planes among stepped surfaces.
(1) Stepped planes and stepped surfaces
(2) Dual maps of free group morphisms
(3) Brun expansions of stepped planes
(4) Brun expansions of stepped surfaces
(1) Stepped planes and stepped surfaces

2 Dual maps of free group morphisms

3 Brun expansions of stepped planes
(4) Brun expansions of stepped surfaces
$\left(\vec{e}_{1}, \ldots, \vec{e}_{d}\right)$ basis of $\mathbb{R}^{d} . \vec{x} \in \mathbb{Z}^{d}, i \in\{1, \ldots, d\} \rightsquigarrow$ face $\left(\vec{x}, i^{*}\right):$

Definition

Stepped plane of normal vector $\vec{\alpha} \in \mathbb{R}_{+}^{d} \backslash\{0\}$:

$$
\mathcal{P}_{\vec{\alpha}}=\left\{\left(\vec{x}, i^{*}\right) \mid\langle\vec{x}, \vec{\alpha}\rangle \leq 0<\left\langle\vec{x}+\vec{e}_{i}, \vec{\alpha}\right\rangle\right\} .
$$

A stepped plane．

Let π be the orthogonal projection along $\vec{u}=\vec{e}_{1}+\ldots+\vec{e}_{d}$.

Proposition

Stepped planes are homeomorphic to \vec{u}^{\perp} by π.

By extension:

Definition [Jamet]

Stepped surfaces : any set of faces homeomorphic to \vec{u}^{\perp} by π.

Stepped surface

A stepped surface.

(1) Stepped planes and stepped surfaces

(2) Dual maps of free group morphisms
(3) Brun expansions of stepped planes
(4) Brun expansions of stepped surfaces

Morphism of the free group over $\{1, \ldots, d\}$ (here, $d=3$):

$$
\sigma:\left\{\begin{array}{lll}
1 & \mapsto & 3 \\
2 & \mapsto & 3^{-1} 1 \\
3 & \mapsto & 3^{-1} 2
\end{array}\right.
$$

For example: $\sigma\left(1^{-1} 312\right)=\sigma(1)^{-1} \sigma(3) \sigma(1) \sigma(2)=3^{-2} 21$.
Incidence matrix: $\left(M_{\sigma}\right)_{i j}=|\sigma(i)|_{j}-|\sigma(i)|_{j^{-1}}$. Here:

$$
M_{\sigma}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & -1 & -1
\end{array}\right) .
$$

σ unimodular f. g. morph. \rightsquigarrow dual map $E_{1}^{*}(\sigma)$ (Arnoux-lto, Ei). $E_{1}^{*}(\sigma)$: linear map over weighted sums of faces.
σ unimodular f. g. morph. \rightsquigarrow dual map $E_{1}^{*}(\sigma)$ (Arnoux-Ito, Ei). $E_{1}^{*}(\sigma)$: linear map over weighted sums of faces.

For σ previously defined:

$$
E_{1}^{*}(\sigma):\left\{\begin{aligned}
\left(\overrightarrow{0}, 1^{*}\right) & \mapsto\left(\vec{e}_{1}, 2^{*}\right) \\
\left(\overrightarrow{0}, 2^{*}\right) & \mapsto\left(\overrightarrow{e_{1}}, 3^{*}\right) \\
\left(\overrightarrow{0}, 3^{*}\right) & \mapsto\left(\overrightarrow{0}, 1^{*}\right)-\left(\vec{e}_{1}, 2^{*}\right)-\left(\overrightarrow{e_{1}}, 3^{*}\right)
\end{aligned}\right.
$$

and, for $\lambda \in \mathbb{Z}, \vec{x} \in \mathbb{Z}^{d}$:

$$
E_{1}^{*}(\sigma)\left(\lambda \cdot\left(\vec{x}, i^{*}\right)\right)=M_{\sigma}^{-1} \vec{x}+\lambda \cdot E_{1}^{*}(\sigma)\left(\overrightarrow{0}, i^{*}\right)
$$

Theorem (B. F. 2007)

For σ unimodular free group morphism and $\vec{\alpha} \in \mathbb{R}_{+}^{d} \backslash \overrightarrow{0}$:

$$
M_{\sigma}^{\top} \vec{\alpha} \in \mathbb{R}_{+}^{d} \Rightarrow E_{1}^{*}(\sigma)\left(\mathcal{P}_{\vec{\alpha}}\right)=\mathcal{P}_{M_{\sigma}^{\top} \vec{\alpha}} .
$$

Theorem (B. F. 2007)

For σ unimodular free group morphism: if the image by $E_{1}^{*}(\sigma)$ of a stepped surface has faces with weights in $\{0,1\}$, then it is a stepped surface. This holds, in particular, when $M_{\sigma} \geq 0$.

(1) Stepped planes and stepped surfaces

(2) Dual maps of free group morphisms
(3) Brun expansions of stepped planes

Brun map T, defined for $\vec{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{d}\right) \in \mathbb{R}^{d} \backslash\{0\}$:

$$
T\left(\alpha_{1}, \ldots, \alpha_{d}\right)=\left(\frac{\alpha_{1}}{\alpha_{i}}, \ldots, \frac{\alpha_{i-1}}{\alpha_{i}}, \frac{1}{\alpha_{i}}-a, \frac{\alpha_{i+1}}{\alpha_{i}}, \ldots, \frac{\alpha_{d}}{\alpha_{i}}\right),
$$

where $i=\min \left\{j \mid \alpha_{j}=\|\vec{\alpha}\|_{\infty}\right\}$ and $a=\left\lfloor 1 / \alpha_{i}\right\rfloor$. Matrix viewpoint:
$(1, \vec{\alpha})^{\top} \propto B_{a, i}(1, T(\vec{\alpha}))^{\top} \quad$ with $\quad B_{a, i}=\left(\begin{array}{cccc}a & & 1 & \\ & \mathrm{I}_{i-1} & & \\ 1 & & 0 & \\ & & & \mathrm{I}_{d-i}\end{array}\right)$.

Brun map T, defined for $\vec{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{d}\right) \in \mathbb{R}^{d} \backslash\{0\}$:

$$
T\left(\alpha_{1}, \ldots, \alpha_{d}\right)=\left(\frac{\alpha_{1}}{\alpha_{i}}, \ldots, \frac{\alpha_{i-1}}{\alpha_{i}}, \frac{1}{\alpha_{i}}-a, \frac{\alpha_{i+1}}{\alpha_{i}}, \ldots, \frac{\alpha_{d}}{\alpha_{i}}\right),
$$

where $i=\min \left\{j \mid \alpha_{j}=\|\vec{\alpha}\|_{\infty}\right\}$ and $a=\left\lfloor 1 / \alpha_{i}\right\rfloor$. Matrix viewpoint:
$(1, \vec{\alpha})^{\top} \propto B_{a, i}(1, T(\vec{\alpha}))^{\top} \quad$ with $\quad B_{a, i}=\left(\begin{array}{cccc}a & & & \\ & \mathrm{I}_{i-1} & & \\ 1 & & 0 & \\ & & & \mathrm{I}_{d-i}\end{array}\right)$.
Brun expansion of $\vec{\alpha}$: sequence $\left(a_{n}, i_{n}\right)_{n \geq 0}$ of $\mathbb{N}^{*} \times\{1, \ldots, d\}$:

$$
a_{n}=\left\lfloor\left\|T^{n}(\vec{\alpha})\right\|_{\infty}^{-1}\right\rfloor \quad \text { and } \quad i_{n}=\min \left\{j \mid\left\langle T^{n}(\vec{\alpha}) \mid \vec{e}_{j}\right\rangle=\left\|T^{n}(\vec{\alpha})\right\|_{\infty}\right\} .
$$

Let $\beta_{a, i}$ be an automorphism with incidence matrix $B_{a, i}$ (it exists).
If $i=\min \left\{j \mid \alpha_{j}=\|\vec{\alpha}\|_{\infty}\right\}$ and $a=\left\lfloor 1 / \alpha_{i}\right\rfloor$ are known:

$$
E_{1}^{*}\left(\beta_{a, i}^{-1}\right)\left(\mathcal{P}_{(1, \vec{\alpha})}\right)=\mathcal{P}_{(1, T(\vec{\alpha}))}
$$

Let $\beta_{a, i}$ be an automorphism with incidence matrix $B_{a, i}$ (it exists).
If $i=\min \left\{j \mid \alpha_{j}=\|\vec{\alpha}\|_{\infty}\right\}$ and $a=\left\lfloor 1 / \alpha_{i}\right\rfloor$ are known:

$$
E_{1}^{*}\left(\beta_{a, i}^{-1}\right)\left(\mathcal{P}_{(1, \vec{\alpha})}\right)=\mathcal{P}_{(1, T(\vec{\alpha}))} .
$$

Brun expansions could be computed directly over stepped planes by "reading" (a,i). By abuse: Brun expansions of stepped planes.

Note: we do not need to know $\vec{\alpha}$ but just to perform entries comparisons and floor computation.

Definition

An (i, j)-run of length a is a set of faces of the form:

$$
\left\{\left(\vec{x}+k \vec{e}_{j}, i^{*}\right) \mid 0 \leq k<a\right\} .
$$

entries comparisons:
$\mathcal{P}_{\vec{\alpha}}$ admits an (i, j)-run of length at least 2 iff $\alpha_{i}>\alpha_{j}$.
floor computation:
The smallest (i, j)-run of $\mathcal{P}_{\vec{\alpha}}$ has length $\max \left(\left\lfloor\alpha_{i} / \alpha_{j}\right\rfloor, 1\right)$.

Stepped plane $\mathcal{P}_{(1, \alpha, \beta)}$, with unkown $\alpha, \beta \geq 0$.

(1,2)-run and (1,3)-run of length at least $2 \rightsquigarrow(\alpha, \beta) \in[0,1]^{2}$

(2,3)-run of length $2 \rightsquigarrow \alpha>\beta \rightsquigarrow i=1$.

Smallest (1, 2)-run of length $2 \rightsquigarrow a=\lfloor 1 / \alpha\rfloor=2$.

From vectors to stepped planes

Finally: $E_{1}^{*}\left(\beta_{2,1}^{-1}\left(\mathcal{P}_{(1, \alpha, \beta)}\right)=\mathcal{P}_{(1, T(\alpha, \beta))}\right.$.

(1) Stepped planes and stepped surfaces

2 Dual maps of free group morphisms
(3) Brun expansions of stepped planes
(4) Brun expansions of stepped surfaces

Reading over stepped planes \rightsquigarrow Brun exp. of stepped planes.
By analogy (runs and dual maps are still defined):
Reading over stepped surfaces \rightsquigarrow Brun exp. of stepped surfaces.
Relation with Brun exp. of vectors? (no more normal vectors)

Reading over stepped planes \rightsquigarrow Brun exp. of stepped planes.
By analogy (runs and dual maps are still defined):
Reading over stepped surfaces \rightsquigarrow Brun exp. of stepped surfaces.
Relation with Brun exp. of vectors? (no more normal vectors)

Theorem (B. F. 2007)

Stepped surfaces having the Brun expansion of $\vec{\alpha} \in \mathbb{R}_{+}^{d} \backslash\{0\}$ are:

- the stepped plane $\mathcal{P}_{(1, \vec{\alpha})}$ (finite or infinite expansion);
- some stepped surfaces almost equal to $\mathcal{P}_{(1, \vec{\alpha})}$ (idem);
- some non-plane stepped surfaces (only finite expansion).

$(a, i)=(4,1)$

$$
(a, i)=(1,2)
$$

$a=\infty:($ rational) stepped plane recognized.

$(a, i)=(4,1)$

$(a, i)=(1,2)$

$a=\infty$: not a stepped plane. . . but almost.

$(a, i)=(4,1)$

$(a, i)=(1,2)$

(a, i) undefined: not at all a stepped plane.

Where is "digital plane recognition"?

A stepped surface is a rational stepped plane iff it has a finite Brun expansion, with the last obtained stepped surface being $\mathcal{P}_{(1, \overrightarrow{0})}$.

Can be extended for finite subset of stepped surfaces.

