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Cut and project tilings

Definition (C & P tiling)

A C & P tiling is the projection onto a d-dim. subspace E ⊂ Rn,
called the slope, of the d-dim. facets of Zn included in E + [0, 1]n.

n d example

2 1 Sturmian words
3 1 Billiard words
3 2 Discrete planes
4 2 Ammann-Beenker tilings
5 2 Penrose tilings
6 3 Icosahedral tilings
...

...
...
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Examples

A rhombille tiling in Saint-Étienne de Marmoutier (Alsace).
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Examples

Michael Baake’s Ammann-Beenker tiled floor in Tübingen.
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Examples

My Penrose wooden floor in Paris.
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Main question

Definition (Tiling space)

A tiling space is a set of tilings invariant by translation and closed.

Example

The hull of a C & P tiling is a tiling space.
It is (typically) invariant by shifting the slope, even infinitesimally.

Definition (Finite type)

A tiling space of finite type is defined by finitely many patterns.

Main question (motivated by quasicrystal stabilization)

Which C & P tilings have a hull of finite type?

I How to characterize a slope by patterns?

I How to enforce planarity by patterns?
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Studying patterns

Definition (Window)

The window W of a C & P tiling of slope E ⊂ Rn is the image of
[0, 1]n by the orthogonal projection π′ onto E⊥:

W := π′([0, 1]n).

Proposition

To any pointed pattern P corresponds a subregion R of the window
in which project the vertices which point this pattern in the tiling:

R :=
⋂

~x vertex of P

(
W − π′~x

)
.
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Examples
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Codimension 1

Theorem (Levitov, 1988)

Aperiodic codim. 1 C & P tilings do not have hull of finite type.

Shifting a slope yields “isolated flips” that can be “decorrelated”.
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Higher codimensions

Theorem (De Bruijn, 1981)

Penrose tilings are 5→ 2 C & P tilings whose hull has finite type.

Shifting the slope yields “lines of flips” that cannot be decorrelated.
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Subperiods
These lines of flips are directed by “hidden periodicities”:

Definition (Subperiod)

A subperiod of a d-plane E is a vector with d + 1 integer entries.

Proposition (Subperiods and expansivity)

If a C & P tiling has subperiods for any choice of d + 1 entries,
then these subperiods give the non-expansive directions of its hull.
Otherwise, there is no expansive direction.
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A conjecture

Conjecture (Bédaride-Fernique, ∼ 2012)

An aperiodic n→ d C & P tiling have a hull of finite type iff

1. it has subperiods for any choice of entries;

2. these subperiods characterize its slope.

I The first conditions is necessary (Levitov, 1988)

I The second condition is necessary (Bédaride-F., 2015)

I It holds for 4→ 2 tilings (up to thickness issues) (Bédaride-F., 2017)

I It holds if planarity is assumed (Bédaride-F., 2020)

10/10



A conjecture

Conjecture (Bédaride-Fernique, ∼ 2012)

An aperiodic n→ d C & P tiling have a hull of finite type iff

1. it has subperiods for any choice of entries;

2. these subperiods characterize its slope.

I The first conditions is necessary (Levitov, 1988)

I The second condition is necessary (Bédaride-F., 2015)

I It holds for 4→ 2 tilings (up to thickness issues) (Bédaride-F., 2017)

I It holds if planarity is assumed (Bédaride-F., 2020)

10/10



A conjecture

Conjecture (Bédaride-Fernique, ∼ 2012)

An aperiodic n→ d C & P tiling have a hull of finite type iff

1. it has subperiods for any choice of entries;

2. these subperiods characterize its slope.

I The first conditions is necessary (Levitov, 1988)

I The second condition is necessary (Bédaride-F., 2015)

I It holds for 4→ 2 tilings (up to thickness issues) (Bédaride-F., 2017)

I It holds if planarity is assumed (Bédaride-F., 2020)

10/10



A conjecture

Conjecture (Bédaride-Fernique, ∼ 2012)

An aperiodic n→ d C & P tiling have a hull of finite type iff

1. it has subperiods for any choice of entries;

2. these subperiods characterize its slope.

I The first conditions is necessary (Levitov, 1988)

I The second condition is necessary (Bédaride-F., 2015)

I It holds for 4→ 2 tilings (up to thickness issues) (Bédaride-F., 2017)

I It holds if planarity is assumed (Bédaride-F., 2020)

10/10



A conjecture

Conjecture (Bédaride-Fernique, ∼ 2012)

An aperiodic n→ d C & P tiling have a hull of finite type iff

1. it has subperiods for any choice of entries;

2. these subperiods characterize its slope.

I The first conditions is necessary (Levitov, 1988)

I The second condition is necessary (Bédaride-F., 2015)

I It holds for 4→ 2 tilings (up to thickness issues) (Bédaride-F., 2017)

I It holds if planarity is assumed (Bédaride-F., 2020)

10/10





Ammann-Beenker

Ammann-Beenker tilings are not characterized by their subperiods.
Patterns of given size are preserved by suitably modifying the slope.
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