Cut & Project Tilings of Finite Type

Thomas Fernique Laboratoire d'Informatique de Paris Nord CNRS & Univ. Paris 13

Cut and project tilings

Definition (C & P tiling)

A C & P tiling is the projection onto a d-dim. subspace $E \subset \mathbb{R}^n$, called the *slope*, of the d-dim. facets of \mathbb{Z}^n included in $E + [0, 1]^n$.

n	d	example
2	1	Sturmian words
3	1	Billiard words
3	2	Discrete planes
4	2	Ammann-Beenker tilings
5	2	Penrose tilings
6	3	Icosahedral tilings
÷	÷	:

A rhombille tiling in Saint-Étienne de Marmoutier (Alsace).

Michael Baake's Ammann-Beenker tiled floor in Tübingen.

My Penrose wooden floor in Paris.

Definition (Tiling space)

A tiling space is a set of tilings invariant by translation and closed.

Definition (Tiling space)

A tiling space is a set of tilings defined by forbidden patterns.

Definition (Tiling space)

A tiling space is a set of tilings defined by forbidden patterns.

Example

The *hull* of a C & P tiling is a tiling space.

It is (typically) invariant by shifting the slope, even infinitesimally.

Definition (Tiling space)

A tiling space is a set of tilings defined by forbidden patterns.

Example

The *hull* of a C & P tiling is a tiling space. It is (typically) invariant by shifting the slope, even infinitesimally.

Definition (Finite type)

A tiling space of *finite type* is defined by finitely many patterns.

Definition (Tiling space)

A tiling space is a set of tilings defined by forbidden patterns.

Example

The *hull* of a C & P tiling is a tiling space. It is (typically) invariant by shifting the slope, even infinitesimally.

Definition (Finite type)

A tiling space of *finite type* is defined by finitely many patterns.

Main question (motivated by quasicrystal stabilization) Which C & P tilings have a hull of finite type?

Definition (Tiling space)

A tiling space is a set of tilings defined by forbidden patterns.

Example

The *hull* of a C & P tiling is a tiling space. It is (typically) invariant by shifting the slope, even infinitesimally.

Definition (Finite type)

A tiling space of *finite type* is defined by finitely many patterns.

Main question (motivated by quasicrystal stabilization) Which C & P tilings have a hull of finite type?

- How to characterize a slope by patterns?
- How to enforce planarity by patterns?

Studying patterns

Definition (Window)

The window W of a C & P tiling of slope $E \subset \mathbb{R}^n$ is the image of $[0,1]^n$ by the orthogonal projection π' onto E^{\perp} :

$$W:=\pi'([0,1]^n).$$

Proposition

To any pointed pattern P corresponds a subregion R of the window in which project the vertices which point this pattern in the tiling:

$$R := \bigcap_{\vec{x} \text{ vertex of } \mathcal{P}} \left(W - \pi' \vec{x} \right).$$

Theorem (Levitov, 1988)

Aperiodic codim. 1 C & P tilings do not have hull of finite type.

Theorem (Levitov, 1988)

Aperiodic codim. 1 C & P tilings do not have hull of finite type.

Shifting a slope yields "isolated flips" that can be "decorrelated".

Theorem (Levitov, 1988)

Aperiodic codim. 1 C & P tilings do not have hull of finite type.

Shifting a slope yields "isolated flips" that can be "decorrelated".

Theorem (Levitov, 1988)

Aperiodic codim. 1 C & P tilings do not have hull of finite type.

Shifting a slope yields "isolated flips" that can be "decorrelated".

Higher codimensions

Theorem (De Bruijn, 1981)

Penrose tilings are 5 \rightarrow 2 C & P tilings whose hull has finite type.

Higher codimensions

Theorem (De Bruijn, 1981)

Penrose tilings are 5 \rightarrow 2 C & P tilings whose hull has finite type.

Higher codimensions

Theorem (De Bruijn, 1981)

Penrose tilings are 5 \rightarrow 2 C & P tilings whose hull has finite type.

Shifting the slope yields "lines of flips" that cannot be decorrelated.

These lines of flips are directed by "hidden periodicities":

Definition (Subperiod)

These lines of flips are directed by "hidden periodicities":

Definition (Subperiod)

These lines of flips are directed by "hidden periodicities":

Definition (Subperiod)

These lines of flips are directed by "hidden periodicities":

Definition (Subperiod)

These lines of flips are directed by "hidden periodicities":

Definition (Subperiod)

These lines of flips are directed by "hidden periodicities":

Definition (Subperiod)

A subperiod of a d-plane E is a vector with d + 1 integer entries.

Proposition (Subperiods and expansivity)

If a C & P tiling has subperiods for any choice of d + 1 entries, then these subperiods give the non-expansive directions of its hull. Otherwise, there is no expansive direction.

Conjecture (Bédaride-Fernique, \sim 2012)

An aperiodic $n \rightarrow d \ C \ \& P$ tiling have a hull of finite type iff

- 1. it has subperiods for any choice of entries;
- 2. these subperiods characterize its slope.

Conjecture (Bédaride-Fernique, \sim 2012)

An aperiodic $n \rightarrow d \ C \ \& \ P$ tiling have a hull of finite type iff

- 1. it has subperiods for any choice of entries;
- 2. these subperiods characterize its slope.
- The first conditions is necessary

(Levitov, 1988)

Conjecture (Bédaride-Fernique, \sim 2012)

An aperiodic $n \rightarrow d \ C \ \& \ P$ tiling have a hull of finite type iff

- 1. it has subperiods for any choice of entries;
- 2. these subperiods characterize its slope.
- The first conditions is necessary
- The second condition is necessary

(Levitov, 1988) (Bédaride-F., 2015)

Conjecture (Bédaride-Fernique, \sim 2012)

An aperiodic $n \rightarrow d \ C \ \& P$ tiling have a hull of finite type iff

- 1. it has subperiods for any choice of entries;
- 2. these subperiods characterize its slope.
- The first conditions is necessary
- The second condition is necessary
- It holds for $4 \rightarrow 2$ tilings (up to thickness issues)

(Levitov, 1988) (Bédaride-F., 2015) (Bédaride-F., 2017)

Conjecture (Bédaride-Fernique, \sim 2012)

An aperiodic $n \rightarrow d \ C \ \& \ P$ tiling have a hull of finite type iff

- 1. it has subperiods for any choice of entries;
- 2. these subperiods characterize its slope.
- The first conditions is necessary
- The second condition is necessary
- It holds for $4 \rightarrow 2$ tilings (up to thickness issues)
- It holds if planarity is assumed

(Levitov, 1988) (Bédaride-F., 2015) (Bédaride-F., 2017) (Bédaride-F., 2020)

