Cut \& Project Tilings of Finite Type

Thomas Fernique
Laboratoire d'Informatique de Paris Nord CNRS \& Univ. Paris 13

Cut and project tilings

Definition (C \& P tiling)

A $C \& P$ tiling is the projection onto a d-dim. subspace $E \subset \mathbb{R}^{n}$, called the slope, of the d-dim. facets of \mathbb{Z}^{n} included in $E+[0,1]^{n}$.

n	d	example
2	1	Sturmian words
3	1	Billiard words
3	2	Discrete planes
4	2	Ammann-Beenker tilings
5	2	Penrose tilings
6	3	Icosahedral tilings
\vdots	\vdots	\vdots

Examples

A rhombille tiling in Saint-Étienne de Marmoutier (Alsace).

Examples

Michael Baake's Ammann-Beenker tiled floor in Tübingen.

Examples

My Penrose wooden floor in Paris.

Main question

Definition (Tiling space)
A tiling space is a set of tilings invariant by translation and closed.

Main question

Definition (Tiling space)
A tiling space is a set of tilings defined by forbidden patterns.

Main question

Definition (Tiling space)
A tiling space is a set of tilings defined by forbidden patterns.

Example

The hull of a C \& P tiling is a tiling space. It is (typically) invariant by shifting the slope, even infinitesimally.

Main question

Definition (Tiling space)
A tiling space is a set of tilings defined by forbidden patterns.

Example

The hull of a C \& P tiling is a tiling space.
It is (typically) invariant by shifting the slope, even infinitesimally.

Definition (Finite type)
A tiling space of finite type is defined by finitely many patterns.

Main question

Definition (Tiling space)
A tiling space is a set of tilings defined by forbidden patterns.

Example

The hull of a C \& P tiling is a tiling space. It is (typically) invariant by shifting the slope, even infinitesimally.

Definition (Finite type)
A tiling space of finite type is defined by finitely many patterns.
Main question (motivated by quasicrystal stabilization)
Which C \& P tilings have a hull of finite type?

Main question

Definition (Tiling space)

A tiling space is a set of tilings defined by forbidden patterns.

Example

The hull of a C \& P tiling is a tiling space. It is (typically) invariant by shifting the slope, even infinitesimally.

Definition (Finite type)
A tiling space of finite type is defined by finitely many patterns.
Main question (motivated by quasicrystal stabilization)
Which C \& P tilings have a hull of finite type?

- How to characterize a slope by patterns?
- How to enforce planarity by patterns?

Studying patterns

Definition (Window)

The window W of a $C \& P$ tiling of slope $E \subset \mathbb{R}^{n}$ is the image of $[0,1]^{n}$ by the orthogonal projection π^{\prime} onto E^{\perp} :

$$
W:=\pi^{\prime}\left([0,1]^{n}\right)
$$

Proposition

To any pointed pattern P corresponds a subregion R of the window in which project the vertices which point this pattern in the tiling:

$$
R:=\bigcap_{\vec{x} \text { vertex of } \mathcal{P}}\left(W-\pi^{\prime} \vec{x}\right) .
$$

Examples

Examples

$6 / 10$

Examples

$13-8 \varphi$

$13 \varphi-21$
$13-8 \varphi$
$2 \varphi-3$
$5 \varphi-8$
$2-\varphi$

$5-3 \varphi$

Examples

Codimension 1

Theorem (Levitov, 1988)
Aperiodic codim. 1 C \& P tilings do not have hull of finite type.

Codimension 1

Theorem (Levitov, 1988)
Aperiodic codim. 1 C \& P tilings do not have hull of finite type.

Shifting a slope yields "isolated flips" that can be "decorrelated".

Codimension 1

Theorem (Levitov, 1988)
Aperiodic codim. 1 C \& P tilings do not have hull of finite type.

Shifting a slope yields "isolated flips" that can be "decorrelated".

Codimension 1

Theorem (Levitov, 1988)
Aperiodic codim. 1 C \& P tilings do not have hull of finite type.

Shifting a slope yields "isolated flips" that can be "decorrelated".

Higher codimensions

Theorem (De Bruijn, 1981)
Penrose tilings are $5 \rightarrow 2$ C \& P tilings whose hull has finite type.

Higher codimensions

Theorem (De Bruijn, 1981)
Penrose tilings are $5 \rightarrow 2$ C \& P tilings whose hull has finite type.

Higher codimensions

Theorem (De Bruijn, 1981)
Penrose tilings are $5 \rightarrow 2 C \& P$ tilings whose hull has finite type.

Shifting the slope yields "lines of flips" that cannot be decorrelated.

Subperiods

These lines of flips are directed by "hidden periodicities":
Definition (Subperiod)
A subperiod of a d-plane E is a vector with $d+1$ integer entries.

Subperiods

These lines of flips are directed by "hidden periodicities":
Definition (Subperiod)
A subperiod of a d-plane E is a vector with $d+1$ integer entries.

Subperiods

These lines of flips are directed by "hidden periodicities":
Definition (Subperiod)
A subperiod of a d-plane E is a vector with $d+1$ integer entries.

Subperiods

These lines of flips are directed by "hidden periodicities":
Definition (Subperiod)
A subperiod of a d-plane E is a vector with $d+1$ integer entries.

Subperiods

These lines of flips are directed by "hidden periodicities":
Definition (Subperiod)
A subperiod of a d-plane E is a vector with $d+1$ integer entries.

Subperiods

These lines of flips are directed by "hidden periodicities":
Definition (Subperiod)
A subperiod of a d-plane E is a vector with $d+1$ integer entries.

Proposition (Subperiods and expansivity)
If a C \& P tiling has subperiods for any choice of $d+1$ entries, then these subperiods give the non-expansive directions of its hull. Otherwise, there is no expansive direction.

A conjecture

Conjecture (Bédaride-Fernique, ~ 2012)

An aperiodic $n \rightarrow d C \& P$ tiling have a hull of finite type iff

1. it has subperiods for any choice of entries;
2. these subperiods characterize its slope.

A conjecture

Conjecture (Bédaride-Fernique, ~ 2012)

An aperiodic $n \rightarrow d C \& P$ tiling have a hull of finite type iff

1. it has subperiods for any choice of entries;
2. these subperiods characterize its slope.

- The first conditions is necessary
(Levitov, 1988)

A conjecture

Conjecture (Bédaride-Fernique, ~ 2012)
An aperiodic $n \rightarrow d C \& P$ tiling have a hull of finite type iff

1. it has subperiods for any choice of entries;
2. these subperiods characterize its slope.

- The first conditions is necessary
(Levitov, 1988)
- The second condition is necessary
(Bédaride-F., 2015)

A conjecture

Conjecture (Bédaride-Fernique, ~ 2012)
An aperiodic $n \rightarrow d C \& P$ tiling have a hull of finite type iff

1. it has subperiods for any choice of entries;
2. these subperiods characterize its slope.

- The first conditions is necessary
- The second condition is necessary
- It holds for $4 \rightarrow 2$ tilings (up to thickness issues)
(Levitov, 1988)
(Bédaride-F., 2015)
(Bédaride-F., 2017)

A conjecture

Conjecture (Bédaride-Fernique, ~ 2012)
An aperiodic $n \rightarrow d C \& P$ tiling have a hull of finite type iff

1. it has subperiods for any choice of entries;
2. these subperiods characterize its slope.

- The first conditions is necessary
(Levitov, 1988)
- The second condition is necessary
- It holds for $4 \rightarrow 2$ tilings (up to thickness issues)
- It holds if planarity is assumed
(Bédaride-F., 2015)
(Bédaride-F., 2017)
(Bédaride-F., 2020)

Ammann-Beenker

Ammann-Beenker tilings are not characterized by their subperiods. Patterns of given size are preserved by suitably modifying the slope.

Ammann-Beenker

Ammann-Beenker tilings are not characterized by their subperiods. Patterns of given size are preserved by suitably modifying the slope.

Ammann-Beenker

Ammann-Beenker tilings are not characterized by their subperiods. Patterns of given size are preserved by suitably modifying the slope.

Ammann-Beenker

Ammann-Beenker tilings are not characterized by their subperiods. Patterns of given size are preserved by suitably modifying the slope.

Ammann-Beenker

Ammann-Beenker tilings are not characterized by their subperiods. Patterns of given size are preserved by suitably modifying the slope.

