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3 by 3 substitutions

Map from colored tiles to 3× 3 squares of them (finite colorset).
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3 by 3 substitutions

A tiling is a grid of colored tiles which covers the whole plane.
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3 by 3 substitutions

The substitution is said to define the set of tilings which admit an
infinite sequence of preimages (also called hierarchical tilings).
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Matching rules

Consider a set of colored tiles.
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Matching rules

Tile’s edges are decorated. A tile can yield several decorated tiles.
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Matching rules

Consider the tilings by translated tiles whose decorations match.
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Matching rules

Removing the decorations yields a set of tilings by colored tiles.
These tilings are said to be enforced by the set of decorated tiles.
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Main result

Theorem
Given any 3 by 3 substitution, there exists a finite set of decorated
tiles which enforces the set of tilings defined by this substitution.

Several more or less convincing proofs (by chronological order):

Shahar Mozes, Tilings, substitution systems and dynamical
systems generated by them, J. Anal. Math. (1989), 48pp.

Chaim Goodman-Strauss, Matching rules and substitution
tilings, Ann. Math. (1998), 43pp/50+27pp.

Thomas Fernique, Nicolas Ollinger, Combinatorial
substitutions and sofic tilings (2010), 11+6pp.

We here follow the last proof, corrected and improved with the
help of Nikolay Vereshchagin and Nikita Andrusov.
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Proof outline

We will define step by step:

I a finite set τ of decorated squares, where every edge is
endowed with a (red,green,blue) triple of indices,

I a bijection φ from 3× 3 squares of τ -tiles to τ -tiles,

such that:

I every τ -tiling can be uniquely partitioned into 3× 3 squares,

I applying φ on these 3× 3 squares (+scaling) yields a τ -tiling,

I there exist τ -tilings.

The main theorem will then easily follow.
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Step 1: macro-tiles

Start with tiles T1, . . . ,T9.

Endow each edge with a red index
enforcing the tiles to assemble into macro-tiles aligned along a grid.
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Step 2: rings and macro-macro-tiles

A green index i ∈ {1, . . . , 9} runs along a ring in every macro-tile.
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Step 2: rings and macro-macro-tiles

Further green indices force rings to order as Ti ’s in a macro-tile.
(Xi denotes the red index on the X -edge of Ti , X = N,W ,S ,E )
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Step 3: the network

A network carries green/blue indices from the central tile to ports.

Outside the network, the blue index just replicate the red one.
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A network carries green/blue indices from the central tile to ports.
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Interlude: the map φ

φ maps the green indices forcing ring ordering onto red indices
and copies the green/blue indices from network branches.
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Interlude: the map φ

φ maps a tiling onto a tiling. Does it map a τ -tiling onto a τ -tiling?
The indices on the network will have to be chosen so that it holds.
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Step 4: ring/network intersections

When a ring along which runs j crosses an X -branch, it checks
that the pair carried by the branch is allowed on the X -edge of Tj .

For e.g. a North-branch:

I j ∈ {1, 3}  {M,P, 14, 25, 36, 47, 58, 69} × {M};
I j ∈ {4, 6, 7, 9}  {1, . . . , 9} × {Nj};
I j ∈ {2, 5, 8}  every pair already defined on any north-edge!

This yields 2× 8 + 4× 9 + 3× 6× 9 = 214 decorated T2.
Together with T4,6,8 (214 each) and T1,3,7,9 (9 each): 892 tiles.
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Step 5: synchronizing network branches

Pairs on X - and Y -branches could be allowed on X - and Y -edges
of different decorated Tj . The branches have to be synchronized.

This double the number of tiles: there are thus 1784 τ -tiles in all.
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This is done by allowing on T5 the pairs of every non-central tile.

This double the number of tiles: there are thus 1784 τ -tiles in all.

10/12



Step 5: synchronizing network branches

This is done by allowing on T5 the pairs of every non-central tile.
This double the number of tiles: there are thus 1784 τ -tiles in all.

10/12



Back to the map φ

φ maps any τ -macro-tile with i on the ring onto a decorated Ti .
But why should it be a τ -tile?
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Back to the map φ

The decorated Tj the central tile is derived from (Step 5) is in τ .
We claim that it is one and the same tile, except if i = 5.
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Back to the map φ

When the ring intersects an X -branch of the network, it forces the
green/blue pair to be allowed on some decorated Ti (Step 4).
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Back to the map φ

If the X -edge of Ti is not on the network of the macro-tile,
then its blue index replicates its red one (Step 3).
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Back to the map φ

A red index (other than M) determines i (Step 1), whence i = j .
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Back to the map φ

This fails for i = 5 because the network crosses every edge of T5.
But in this case, φ simply maps the macro-tile onto its central tile!
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Back to the map φ

Whatever i on the ring, φ thus maps the τ -macro-tile onto a τ -tile.
It is moreover a bijection: the inverse function is straightforward.
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Back to the map φ

In particular, applying ad infinitum φ−1 to any τ -tile yields
arbitrarily large τ -patches, hence a τ -tiling by compacity.
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Proof of the theorem

We use τ tiles to enforce a given 3× 3 substitution.

The Ti ’s come in colors (those appearing in the substitution).

The ring indices as well.

The color of a τ -tile is determined w.r.t. the substitution by

I its position in the macro-tile (given by its red indices)

I the color on the ring (green index if i 6= 5, blue ones if i = 5).
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