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3 by 3 substitutions
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Map from colored tiles to 3 x 3 squares of them (finite colorset).
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3 by 3 substitutions

A tiling is a grid of colored tiles which covers the whole plane.
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3 by 3 substitutions

The substitution is said to define the set of tilings which admit an
infinite sequence of preimages (also called hierarchical tilings).
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Matching rules

Consider a set of colored tiles.
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Matching rules
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Tile's edges are decorated. A tile can yield several decorated tiles.
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Matching rules

Consider the tilings by translated tiles whose decorations match.
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Matching rules

Removing the decorations yields a set of tilings by colored tiles.
These tilings are said to be enforced by the set of decorated tiles.
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Main result

Theorem
Given any 3 by 3 substitution, there exists a finite set of decorated
tiles which enforces the set of tilings defined by this substitution.
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Main result

Theorem

Given any 3 by 3 substitution, there exists a finite set of decorated
tiles which enforces the set of tilings defined by this substitution.

Several more or less convincing proofs (by chronological order):

@ Shahar Mozes, Tilings, substitution systems and dynamical
systems generated by them, J. Anal. Math. (1989), 48pp.

[ Chaim Goodman-Strauss, Matching rules and substitution
tilings, Ann. Math. (1998), 43pp/50+27pp.

[ Thomas Fernique, Nicolas Ollinger, Combinatorial
substitutions and sofic tilings (2010), 114-6pp.
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tiles which enforces the set of tilings defined by this substitution.

Several more or less convincing proofs (by chronological order):

@ Shahar Mozes, Tilings, substitution systems and dynamical
systems generated by them, J. Anal. Math. (1989), 48pp.

[ Chaim Goodman-Strauss, Matching rules and substitution
tilings, Ann. Math. (1998), 43pp/50+27pp.

[ Thomas Fernique, Nicolas Ollinger, Combinatorial
substitutions and sofic tilings (2010), 114-6pp.

We here follow the last proof, corrected and improved with the
help of Nikolay Vereshchagin and Nikita Andrusov.
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Proof outline

We will define step by step:

> a finite set 7 of decorated squares, where every edge is
endowed with a (red,green,blue) triple of indices,

» a bijection ¢ from 3 x 3 squares of 7-tiles to 7-tiles,
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such that:
P every 7-tiling can be uniquely partitioned into 3 x 3 squares,
» applying ¢ on these 3 x 3 squares (+scaling) yields a 7-tiling,
> there exist 7-tilings.
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Proof outline

We will define step by step:

> a finite set 7 of decorated squares, where every edge is
endowed with a (red,green,blue) triple of indices,

» a bijection ¢ from 3 x 3 squares of 7-tiles to 7-tiles,

such that:
P every 7-tiling can be uniquely partitioned into 3 x 3 squares,
» applying ¢ on these 3 x 3 squares (+scaling) yields a 7-tiling,
> there exist 7-tilings.

The main theorem will then easily follow.
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Step 1: macro-tiles
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Start with tiles T4, ...
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Step 1: macro-tiles
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Start with tiles Tq,..., To. Endow each edge with a red index
enforcing the tiles to assemble into macro-tiles aligned along a grid.
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Step 1: macro-tiles
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Start with tiles Tq,..., To. Endow each edge with a red index

enforcing the tiles to assemble into macro-tiles aligned along a grid.
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Step 2: rings and macro-macro-tiles

A green index i € {1,...,9} runs along a ring in every macro-tile.
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Step 2: rings and macro-macro-tiles

Further green indices force rings to order as T;'s in a macro-tile.
(X; denotes the red index on the X-edge of T;, X = N, W, S E)
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Step 3: the network
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A network carries green/blue indices from the central tile to ports.
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Step 3: the network

L ICIN WK
oFeoe
Q L ¢

@0
QL ¢
(=)
©

S6E

it
© ] _©
©e®

‘.
ﬁgﬁ
O
2

®%6® 7 SE€S

e
srls |
¢ ®Q§®

Q
N

A network carries green/blue indices from the central tile to ports.
Outside the network, the blue index just replicate the red one.
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Interlude: the map ¢
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¢ maps the green indices forcing ring ordering onto red indices
and copies the green/blue indices from network branches.
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Interlude: the map ¢
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¢ maps a tiling onto a tiling. Does it map a 7-tiling onto a 7-tiling?
The indices on the network will have to be chosen so that it holds.
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Step 4: ring/network intersections

When a ring along which runs j crosses an X-branch, it checks
that the pair carried by the branch is allowed on the X-edge of T;.

For e.g. a North-branch:
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Step 4: ring/network intersections

When a ring along which runs j crosses an X-branch, it checks
that the pair carried by the branch is allowed on the X-edge of T;.

For e.g. a North-branch:

> j e {1,3} ~ {M,P,14,25 36,47,58,69} x {M};
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Step 4: ring/network intersections

When a ring along which runs j crosses an X-branch, it checks

that the pair carried by the branch is allowed on the X-edge of T;.

For e.g. a North-branch:

> j€{4,6,7,9} ~ {1.....9} x {N;}:

» j €1{2,5,8} ~ every pair already defined on any north-edge!
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Step 4: ring/network intersections

When a ring along which runs j crosses an X-branch, it checks

that the pair carried by the branch is allowed on the X-edge of T;.

For e.g. a North-branch:

> j€{4,6,7,9} ~ {1.....9} x {N;}:

» j €1{2,5,8} ~ every pair already defined on any north-edge!

This yields 2 x 8 +4 x 9+ 3 x 6 x 9 = 214 decorated T».
Together with T4 68 (214 each) and T137,9 (9 each): 892 tiles.
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Step 5: synchronizing network branches

Pairs on X- and Y-branches could be allowed on X- and Y-edges
of different decorated T;. The branches have to be synchronized.
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Step 5: synchronizing network branches

This is done by allowing on Ts the pairs of every non-central tile.
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Step 5: synchronizing network branches

This is done by allowing on Ts the pairs of every non-central tile.
This double the number of tiles: there are thus 1784 7-tiles in all.
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Back to the map ¢
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¢ maps any T-macro-tile with 7 on the ring onto a decorated T;.
But why should it be a 7-tile?
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Back to the map ¢
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isin 7.

)

The decorated T; the central tile is derived from (Step 5
We claim that it is one and the same tile, except if i = 5.



Back to the map ¢

it forces the

When the ring intersects an X-branch of the network,

green/blue pair to be allowed on some decorated T; (Step 4).
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Back to the map ¢
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If the X-edge of T; is not on the network of the macro-tile,
then its blue index replicates its red one (Step 3).
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Back to the map ¢
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Step 1), whence i

A red index (other than M) determines i (
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Back to the map ¢
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This fails for i = 5 because the network crosses every edge of Ts.
But in this case, ¢ simply maps the macro-tile onto its central tile!
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Back to the map ¢
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Whatever i on the ring, ¢ thus maps the 7-macro-tile onto a 7-tile.
It is moreover a bijection: the inverse function is straightforward.
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Back to the map ¢

In particular, applying ad infinitum ¢! to any 7-tile yields
arbitrarily large 7-patches, hence a 7-tiling by compacity.
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Back to the map ¢
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In particular, applying ad infinitum ¢! to any 7-tile yields
arbitrarily large 7-patches, hence a 7-tiling by compacity.
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Back to the map ¢
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to any 7-tile yields

1

In particular, applying ad infinitum ¢~

arbitrarily large 7-patches, hence a 7-tiling by compacity.
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Proof of the theorem

We use 7 tiles to enforce a given 3 x 3 substitution.
The T;'s come in colors (those appearing in the substitution).
The ring indices as well.

The color of a 7-tile is determined w.r.t. the substitution by
» its position in the macro-tile (given by its red indices)

» the color on the ring (green index if i # 5, blue ones if i = 5).
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