Enforcing 3 by 3 Substitutions by Matching Rules

Thomas Fernique

May 2023

3 by 3 substitutions

Map from colored tiles to 3×3 squares of them (finite colorset).

3 by 3 substitutions

A tiling is a grid of colored tiles which covers the whole plane.

3 by 3 substitutions

											,	-	-		-	-	,	

The substitution is said to define the set of tilings which admit an infinite sequence of preimages (also called hierarchical tilings).

3 by 3 substitutions

The substitution is said to define the set of tilings which admit an infinite sequence of preimages (also called hierarchical tilings).

3 by 3 substitutions

The substitution is said to define the set of tilings which admit an infinite sequence of preimages (also called hierarchical tilings).

3 by 3 substitutions

The substitution is said to define the set of tilings which admit an infinite sequence of preimages (also called hierarchical tilings).

Matching rules

Consider a set of colored tiles.

Matching rules

Tile's edges are decorated. A tile can yield several decorated tiles.

Matching rules

Consider the tilings by translated tiles whose decorations match.

Matching rules

Removing the decorations yields a set of tilings by colored tiles. These tilings are said to be enforced by the set of decorated tiles.

Main result

Theorem
Given any 3 by 3 substitution, there exists a finite set of decorated tiles which enforces the set of tilings defined by this substitution.

Main result

Theorem
Given any 3 by 3 substitution, there exists a finite set of decorated tiles which enforces the set of tilings defined by this substitution.

Several more or less convincing proofs (by chronological order):
囦 Shahar Mozes, Tilings, substitution systems and dynamical systems generated by them, J. Anal. Math. (1989), 48pp.
目 Chaim Goodman-Strauss, Matching rules and substitution tilings, Ann. Math. (1998), 43pp/50+27pp.

Thomas Fernique, Nicolas Ollinger, Combinatorial substitutions and sofic tilings (2010), 11+6pp.

Main result

Theorem

Given any 3 by 3 substitution，there exists a finite set of decorated tiles which enforces the set of tilings defined by this substitution．

Several more or less convincing proofs（by chronological order）：
囦 Shahar Mozes，Tilings，substitution systems and dynamical systems generated by them，J．Anal．Math．（1989），48pp．

目 Chaim Goodman－Strauss，Matching rules and substitution tilings，Ann．Math．（1998），43pp／50＋27pp．

國 Thomas Fernique，Nicolas Ollinger，Combinatorial substitutions and sofic tilings（2010），11＋6pp．

We here follow the last proof，corrected and improved with the help of Nikolay Vereshchagin and Nikita Andrusov．

Proof outline

We will define step by step:

- a finite set τ of decorated squares, where every edge is endowed with a (red,green,blue) triple of indices,
- a bijection ϕ from 3×3 squares of τ-tiles to τ-tiles,

Proof outline

We will define step by step:

- a finite set τ of decorated squares, where every edge is endowed with a (red,green,blue) triple of indices,
- a bijection ϕ from 3×3 squares of τ-tiles to τ-tiles,
such that:
- every τ-tiling can be uniquely partitioned into 3×3 squares,
- applying ϕ on these 3×3 squares (+ scaling) yields a τ-tiling,
- there exist τ-tilings.

Proof outline

We will define step by step:

- a finite set τ of decorated squares, where every edge is endowed with a (red,green,blue) triple of indices,
- a bijection ϕ from 3×3 squares of τ-tiles to τ-tiles,
such that:
- every τ-tiling can be uniquely partitioned into 3×3 squares,
- applying ϕ on these 3×3 squares (+ scaling) yields a τ-tiling,
- there exist τ-tilings.

The main theorem will then easily follow.

Step 1: macro-tiles

Start with tiles T_{1}, \ldots, T_{9}.

Step 1: macro-tiles

Start with tiles T_{1}, \ldots, T_{9}. Endow each edge with a red index enforcing the tiles to assemble into macro-tiles aligned along a grid.

Step 1: macro-tiles

Start with tiles T_{1}, \ldots, T_{9}. Endow each edge with a red index enforcing the tiles to assemble into macro-tiles aligned along a grid.

Step 2: rings and macro-macro-tiles

A green index $i \in\{1, \ldots, 9\}$ runs along a ring in every macro-tile.

Step 2: rings and macro-macro-tiles

Further green indices force rings to order as T_{i} 's in a macro-tile. (X_{i} denotes the red index on the X-edge of $T_{i}, X=N, W, S, E$)

Step 3: the network

A network carries green/blue indices from the central tile to ports.

Step 3: the network

A network carries green/blue indices from the central tile to ports. Outside the network, the blue index just replicate the red one.

Interlude: the map ϕ

ϕ maps the green indices forcing ring ordering onto red indices and copies the green/blue indices from network branches.

Interlude: the map ϕ

ϕ maps the green indices forcing ring ordering onto red indices and copies the green/blue indices from network branches.

Interlude: the map ϕ

ϕ maps a tiling onto a tiling. Does it map a τ-tiling onto a τ-tiling? The indices on the network will have to be chosen so that it holds.

Step 4: ring/network intersections

When a ring along which runs j crosses an X-branch, it checks that the pair carried by the branch is allowed on the X-edge of T_{j}.

For e.g. a North-branch:

Step 4: ring/network intersections

When a ring along which runs j crosses an X-branch, it checks that the pair carried by the branch is allowed on the X-edge of T_{j}.

For e.g. a North-branch:

- $j \in\{1,3\} \rightsquigarrow\{M, P, 14,25,36,47,58,69\} \times\{M\} ;$

Step 4: ring/network intersections

When a ring along which runs j crosses an X-branch, it checks that the pair carried by the branch is allowed on the X-edge of T_{j}.

For e.g. a North-branch:

- $j \in\{1,3\} \rightsquigarrow\{M, P, 14,25,36,47,58,69\} \times\{M\}$;
- $j \in\{4,6,7,9\} \rightsquigarrow\{1, \ldots, 9\} \times\left\{N_{j}\right\}$;

Step 4: ring/network intersections

When a ring along which runs j crosses an X-branch, it checks that the pair carried by the branch is allowed on the X-edge of T_{j}.

For e.g. a North-branch:

- $j \in\{1,3\} \rightsquigarrow\{M, P, 14,25,36,47,58,69\} \times\{M\}$;
- $j \in\{4,6,7,9\} \rightsquigarrow\{1, \ldots, 9\} \times\left\{N_{j}\right\}$;
- $j \in\{2,5,8\} \rightsquigarrow$ every pair already defined on any north-edge!

Step 4: ring/network intersections

When a ring along which runs j crosses an X-branch, it checks that the pair carried by the branch is allowed on the X-edge of T_{j}.

For e.g. a North-branch:

- $j \in\{1,3\} \rightsquigarrow\{M, P, 14,25,36,47,58,69\} \times\{M\} ;$
- $j \in\{4,6,7,9\} \rightsquigarrow\{1, \ldots, 9\} \times\left\{N_{j}\right\}$;
- $j \in\{2,5,8\} \rightsquigarrow$ every pair already defined on any north-edge!

This yields $2 \times 8+4 \times 9+3 \times 6 \times 9=214$ decorated T_{2}.
Together with $T_{4,6,8}$ (214 each) and $T_{1,3,7,9}$ (9 each): 892 tiles.

Step 5: synchronizing network branches

Pairs on X - and Y-branches could be allowed on X - and Y-edges of different decorated T_{j}. The branches have to be synchronized.

Step 5: synchronizing network branches

This is done by allowing on T_{5} the pairs of every non-central tile.

Step 5: synchronizing network branches

This is done by allowing on T_{5} the pairs of every non-central tile. This double the number of tiles: there are thus 1784τ-tiles in all.

Back to the map ϕ

ϕ maps any τ-macro-tile with i on the ring onto a decorated T_{i}. But why should it be a τ-tile?

Back to the map ϕ

The decorated T_{j} the central tile is derived from (Step 5) is in τ. We claim that it is one and the same tile, except if $i=5$.

Back to the map ϕ

When the ring intersects an X-branch of the network, it forces the green/blue pair to be allowed on some decorated T_{i} (Step 4).

Back to the map ϕ

If the X-edge of T_{i} is not on the network of the macro-tile, then its blue index replicates its red one (Step 3).

Back to the map ϕ

A red index (other than M) determines $i($ Step 1$)$, whence $i=j$.

Back to the map ϕ

This fails for $i=5$ because the network crosses every edge of T_{5}. But in this case, ϕ simply maps the macro-tile onto its central tile!

Back to the map ϕ

Whatever i on the ring, ϕ thus maps the τ-macro-tile onto a τ-tile. It is moreover a bijection: the inverse function is straightforward.

Back to the map ϕ

In particular, applying ad infinitum ϕ^{-1} to any τ-tile yields arbitrarily large τ-patches, hence a τ-tiling by compacity.

Back to the map ϕ

In particular, applying ad infinitum ϕ^{-1} to any τ-tile yields arbitrarily large τ-patches, hence a τ-tiling by compacity.

Back to the map ϕ

In particular, applying ad infinitum ϕ^{-1} to any τ-tile yields arbitrarily large τ-patches, hence a τ-tiling by compacity.

Proof of the theorem

We use τ tiles to enforce a given 3×3 substitution.
The T_{i} 's come in colors (those appearing in the substitution).
The ring indices as well.
The color of a τ-tile is determined w.r.t. the substitution by

- its position in the macro-tile (given by its red indices)
- the color on the ring (green index if $i \neq 5$, blue ones if $i=5$).

